Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.824
Filtrar
2.
Acta Neuropathol Commun ; 12(1): 125, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107797

RESUMEN

Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Cerebelosas , ADN (Citosina-5-)-Metiltransferasa 1 , Proteínas Hedgehog , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Animales , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Humanos , Ratones , Línea Celular Tumoral , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Técnicas de Inactivación de Genes/métodos
4.
Sci Rep ; 14(1): 17922, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095557

RESUMEN

Alterations in miRNA levels have been observed in various types of cancer, impacting numerous cellular processes and increasing their potential usefulness in combination therapies also in brain tumors. Recent advances in understanding the genetics and epigenetics of brain tumours point to new aberrations and associations, making it essential to continually update knowledge and classification. Here we conducted molecular analysis of 123 samples of childhood brain tumors (pilocytic astrocytoma, medulloblastoma, ependymoma), focusing on identification of genes that could potentially be regulated by crucial representatives of OncomiR-1: miR-17-5p and miR-20a-5p. On the basis of microarray gene expression analysis and qRTPCR profiling, we selected six (WEE1, CCND1, VEGFA, PTPRO, TP53INP1, BCL2L11) the most promising target genes for further experiments. The WEE1, CCND1, PTPRO, TP53INP1 genes showed increased expression levels in all tested entities with the lowest increase in the pilocytic astrocytoma compared to the ependymoma and medulloblastoma. The obtained results indicate a correlation between gene expression and the WHO grade and subtype. Furthermore, our analysis showed that the integration between genomic and epigenetic pathways should now point the way to further molecular research.


Asunto(s)
Neoplasias Encefálicas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , Masculino , Femenino , Adolescente , Preescolar , Meduloblastoma/genética , Meduloblastoma/patología , Astrocitoma/genética , Astrocitoma/patología , Ependimoma/genética , Lactante
6.
Cancer Cell ; 42(8): 1434-1449.e5, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137728

RESUMEN

Hypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB, suggesting that TH can be used to broadly treat MB subgroups. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Meduloblastoma , Hormonas Tiroideas , Meduloblastoma/patología , Meduloblastoma/metabolismo , Meduloblastoma/genética , Humanos , Diferenciación Celular/efectos de los fármacos , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Ratones , Hormonas Tiroideas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Transducción de Señal/efectos de los fármacos
7.
Genome Med ; 16(1): 102, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160595

RESUMEN

BACKGROUND: The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma. METHODS: We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods. RESULTS: Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures. CONCLUSIONS: Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.


Asunto(s)
Antígenos de Neoplasias , Meduloblastoma , Meduloblastoma/inmunología , Meduloblastoma/genética , Humanos , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/genética , Inmunoterapia
8.
J Neuroimmunol ; 393: 578402, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996717

RESUMEN

Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Toxoplasmosis , Animales , Ratones , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Toxoplasmosis/inmunología , Toxoplasma/inmunología , Meduloblastoma/inmunología , Meduloblastoma/patología , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Transgénicos , Femenino
9.
Sci Rep ; 14(1): 16074, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992221

RESUMEN

SNCAIP duplication may promote Group 4 medulloblastoma via induction of PRDM6, a poorly characterized member of the PRDF1 and RIZ1 homology domain-containing (PRDM) family of transcription factors. Here, we investigated the function of PRDM6 in human hindbrain neuroepithelial stem cells and tested PRDM6 as a driver of Group 4 medulloblastoma. We report that human PRDM6 localizes predominantly to the nucleus, where it causes widespread repression of chromatin accessibility and complex alterations of gene expression patterns. Genome-wide mapping of PRDM6 binding reveals that PRDM6 binds to chromatin regions marked by histone H3 lysine 27 trimethylation that are located within, or proximal to, genes. Moreover, we show that PRDM6 expression in neuroepithelial stem cells promotes medulloblastoma. Surprisingly, medulloblastomas derived from PRDM6-expressing neuroepithelial stem cells match human Group 3, but not Group 4, medulloblastoma. We conclude that PRDM6 expression has oncogenic potential but is insufficient to drive Group 4 medulloblastoma from neuroepithelial stem cells. We propose that both PRDM6 and additional factors, such as specific cell-of-origin features, are required for Group 4 medulloblastoma. Given the lack of PRDM6 expression in normal tissues and its oncogenic potential shown here, we suggest that PRDM6 inhibition may have therapeutic value in PRDM6-expressing medulloblastomas.


Asunto(s)
Cromatina , Meduloblastoma , Animales , Humanos , Línea Celular Tumoral , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Cromatina/metabolismo , Cromatina/genética , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Células Neuroepiteliales/metabolismo
10.
Cancer Cell ; 42(7): 1154-1157, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981435

RESUMEN

Recent incorporation of the four primary medulloblastoma subgroups into the WHO Classification of Central Nervous System Tumors necessitates globally accessible methods to discern subgroups. In this issue of Cancer Cell, Wang et al. develop a rapid and reliable machine learning workflow for pre-operative subgroup determination using routine magnetic resonance imaging.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Meduloblastoma/patología , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/diagnóstico por imagen , Humanos , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/genética , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
11.
Nat Commun ; 15(1): 6237, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043693

RESUMEN

Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.


Asunto(s)
Meduloblastoma , Polisacáridos , Proteoma , Meduloblastoma/metabolismo , Meduloblastoma/genética , Humanos , Polisacáridos/metabolismo , Proteoma/metabolismo , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/genética , Metilación de ADN , Transcriptoma , Niño , Proteómica/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Preescolar , Perfilación de la Expresión Génica/métodos
12.
Nat Cell Biol ; 26(8): 1233-1246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025928

RESUMEN

OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program. OTX2 can directly or indirectly bind RNA and this may be partially independent of its DNA regulatory functions. OTX2 controls a pro-tumorigenic splicing program that is mirrored in human cerebellar rhombic lip origins. Among the OTX2-regulated differentially spliced genes, PPHLN1 is expressed in the most primitive rhombic lip stem cells, and targeting PPHLN1 splicing reduces tumour growth and enhances survival in vivo. These findings identify OTX2-mediated alternative splicing as a major determinant of cell fate decisions that drive group 3 MB progression.


Asunto(s)
Empalme Alternativo , Neoplasias Cerebelosas , Meduloblastoma , Células Madre Neoplásicas , Factores de Transcripción Otx , Factores de Transcripción Otx/metabolismo , Factores de Transcripción Otx/genética , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Empalme Alternativo/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones , Proliferación Celular
13.
Biomolecules ; 14(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39062517

RESUMEN

Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.


Asunto(s)
ARN Helicasas DEAD-box , Progresión de la Enfermedad , Meduloblastoma , Mutación , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Animales , Proteínas de Saccharomyces cerevisiae
14.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062749

RESUMEN

Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4ß, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.


Asunto(s)
Cromosomas Humanos Par 17 , Cromosomas Humanos Par 6 , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidad , Meduloblastoma/patología , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 6/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Regulación Neoplásica de la Expresión Génica , Variaciones en el Número de Copia de ADN , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Femenino , Perfilación de la Expresión Génica
15.
Pharmacol Ther ; 260: 108673, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857789

RESUMEN

Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Recurrencia Local de Neoplasia , Humanos , Meduloblastoma/patología , Meduloblastoma/genética , Meduloblastoma/terapia , Meduloblastoma/tratamiento farmacológico , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Animales , Niño , Antineoplásicos/uso terapéutico , Medicina de Precisión
16.
J Clin Invest ; 134(15)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885332

RESUMEN

Most children with medulloblastoma (MB) achieve remission, but some face very aggressive metastatic tumors. Their dismal outcome highlights the critical need to advance therapeutic approaches that benefit such high-risk patients. Minnelide, a clinically relevant analog of the natural product triptolide, has oncostatic activity in both preclinical and early clinical settings. Despite its efficacy and tolerable toxicity, this compound has not been evaluated in MB. Utilizing a bioinformatic data set that integrates cellular drug response data with gene expression, we predicted that Group 3 (G3) MB, which has a poor 5-year survival, would be sensitive to triptolide/Minnelide. We subsequently showed that both triptolide and Minnelide attenuate the viability of G3 MB cells ex vivo. Transcriptomic analyses identified MYC signaling, a pathologically relevant driver of G3 MB, as a downstream target of this class of drugs. We validated this MYC dependency in G3 MB cells and showed that triptolide exerts its efficacy by reducing both MYC transcription and MYC protein stability. Importantly, Minnelide acted on MYC to reduce tumor growth and leptomeningeal spread, which resulted in improved survival of G3 MB animal models. Moreover, Minnelide improved the efficacy of adjuvant chemotherapy, further highlighting its potential for the treatment of MYC-driven G3 MB.


Asunto(s)
Diterpenos , Compuestos Epoxi , Meduloblastoma , Fenantrenos , Proteínas Proto-Oncogénicas c-myc , Ensayos Antitumor por Modelo de Xenoinjerto , Fenantrenos/farmacología , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Profármacos/farmacología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Organofosfatos
17.
J Clin Neurosci ; 126: 154-161, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901153

RESUMEN

Medulloblastoma (MB) is a primary brain malignancy. However, updated epidemiological data and long-term outcomes are lacking.The clinical and epidemiological datasets of patients with MB in the current study were obtained from the Surveillance, Epidemiology, and End Results (SEER) databases. Joinpoint regression models were used to assess the rate of changes in the incidence, prevalence, and treatment trends in patients with MB. Cox hazard and competition risk model analyses were used to assess overall survival (OS) and cancer-specific survival (CSS).The age-adjusted incidence of MB remained relatively stable at 0.15 per 100,000 individuals in 2019. The annual percentage change (APC) of females remained stable, whereas that of males increased over time. The 20-year limited-duration prevalence of patients with MB increased significantly from 0.00016 % in 1999 to 0.00203 % in 2018. Patients aged 5-19 years accounted for 46.7 % of all age groups, and the trend for the three treatments was increased. Average annual percentage change (AAPC) for the chemotherapy group was increased in patients aged 20 + years MB [AAPC = 2.66 (95 % CI 0.93-6.31)]. Multivariate analysis revealed that OS and CSS varied significantly according to age, year of diagnosis, histology, stage, surgery, and radiotherapy. Subgroup analysis showed that chemotherapy was associated with a favorable prognosis in high-risk groups.The incidence of MB remained relatively stable, and its prevalence increased significantly. This current population-based study further identified the prognostic factors in patients with MB. Moreover, the use of chemotherapy was associated with better survival in high-risk groups.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Programa de VERF , Humanos , Meduloblastoma/mortalidad , Meduloblastoma/epidemiología , Meduloblastoma/terapia , Femenino , Masculino , Adolescente , Niño , Preescolar , Adulto Joven , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/epidemiología , Neoplasias Cerebelosas/terapia , Incidencia , Lactante , Prevalencia , Anciano
18.
Int J Radiat Biol ; 100(8): 1174-1182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889539

RESUMEN

INTRODUCTION: Medulloblastoma is a central nerves tumor that often occurs in pediatrics. The main radiotherapy technique for this tumor type is craniospinal irradiation (CSI), through which the whole brain and spinal cord are exposed to radiation. Due to the immaturity of healthy organs in pediatrics, radiogenic side effects such as second cancer are more severe. Accordingly, the current study aimed to evaluate the risk of secondary cancer development in healthy organs following CSI. MATERIALS AND METHODS: Seven organs at risk (OARs) including skin, eye lens, thyroid, lung, liver, stomach, bladder, colon, and gonads were considered and the dose received by each OAR during CSI was measured inside an anthropomorphic RANDO phantom by TLDs. Then, the mean obtained dose for each organ was used to estimate the probability of secondary malignancy development according to the recommended cancer risk coefficients for specific organs. RESULTS: The results demonstrated that the stomach and colon are at high risk of secondary malignancy occurrence, while the skin has the lowest probability of secondary cancer development. The total received dose after the treatment course by all considered organs was lower than the corresponding tolerable dose levels. CONCLUSIONS: From the results, it can be concluded that some OARs during CSI are highly at risk of secondary cancer development. This issue may be of concern due to organ immaturity in pediatrics which can intensify the radiogenic effects of radiation exposure. Accordingly, strict shielding the OARs during craniospinal radiotherapy and/or sparing them from the radiation field through modern techniques such as hadron therapy is highly recommended.


Asunto(s)
Irradiación Craneoespinal , Meduloblastoma , Neoplasias Inducidas por Radiación , Órganos en Riesgo , Humanos , Irradiación Craneoespinal/efectos adversos , Órganos en Riesgo/efectos de la radiación , Medición de Riesgo , Neoplasias Inducidas por Radiación/etiología , Meduloblastoma/radioterapia , Niño , Neoplasias Primarias Secundarias/etiología , Masculino , Dosificación Radioterapéutica , Femenino , Neoplasias Cerebelosas/radioterapia
19.
Eur J Radiol ; 177: 111562, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901074

RESUMEN

PURPOSE: Survivors of medulloblastoma face a range of challenges after treatment, involving behavioural, cognitive, language and motor skills. Post-treatment outcomes are associated with structural changes within the brain resulting from both the tumour and the treatment. Diffusion magnetic resonance imaging (MRI) has been used to investigate the microstructure of the brain. In this review, we aim to summarise the literature on diffusion MRI in patients treated for medulloblastoma and discuss future directions on how diffusion imaging can be used to improve patient quality. METHOD: This review summarises the current literature on medulloblastoma in children, focusing on the impact of both the tumour and its treatment on brain microstructure. We review studies where diffusion MRI has been correlated with either treatment characteristics or cognitive outcomes. We discuss the role diffusion MRI has taken in understanding the relationship between microstructural damage and cognitive and behavioural deficits. RESULTS: We identified 35 studies that analysed diffusion MRI changes in patients treated for medulloblastoma. The majority of these studies found significant group differences in measures of brain microstructure between patients and controls, and some of these studies showed associations between microstructure and neurocognitive outcomes, which could be influenced by patient characteristics (e.g. age), treatment, radiation dose and treatment type. CONCLUSIONS: In future, studies would benefit from being able to separate microstructural white matter damage caused by the tumour, tumour-related complications and treatment. Additionally, advanced diffusion modelling methods can be explored to understand and describe microstructural changes to white matter.


Asunto(s)
Neoplasias Cerebelosas , Imagen de Difusión por Resonancia Magnética , Meduloblastoma , Humanos , Meduloblastoma/diagnóstico por imagen , Meduloblastoma/patología , Niño , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/complicaciones , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología
20.
J Cell Biochem ; 125(8): e30616, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924562

RESUMEN

Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin ß1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.


Asunto(s)
Carcinoma de Células Escamosas , Meduloblastoma , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Línea Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Metástasis de la Neoplasia , Movimiento Celular , Fenotipo , Cadherinas/metabolismo , Cadherinas/genética , Niño , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...