Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Eur J Pharm Biopharm ; 202: 114416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013494

RESUMEN

Owing to its exposed nature, the skin can be injured by various factors, including by Staphylococcus aureus, which inhabits its innate microbiota. Treatment of infected wounds presents an important challenge, making it imperative to develop new treatment options. Plant-derived formulations, such as those containing Melaleuca alternifolia essential oil (MaEO), are used for wound treatment because of their healing, anti-inflammatory, and antimicrobial properties. This study presents a cream containing 2% MaEO (2% CMa) and evaluates its effects in an S. aureus-infected wound murine model. The 2% CMa was subjected to quality control testing and pH and analysis of density, organoleptic characteristics, and microbiological effects. The quality control parameters all revealed the good stability of the 2% CMa. The formulation strongly reduced the S. aureus ATCC 6538 colony-forming unit (CFU) count in an ex vivo porcine skin model. In the murine model, daily topical application of 2% CMa reduced the severity and size of S. aureus-infected wounds and the bacterial load. These effects may be due to the presence of terpinen-4-ol, which exhibits anti-inflammatory activity. Based on these findings, the formulation exhibits good quality and safety. We suggest the topical application of this formulation, which exhibited an antimicrobial effect, as an interesting treatment strategy for wound healing.


Asunto(s)
Melaleuca , Aceites Volátiles , Infecciones Estafilocócicas , Staphylococcus aureus , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Ratones , Melaleuca/química , Aceites Volátiles/farmacología , Aceites Volátiles/administración & dosificación , Porcinos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/administración & dosificación , Aceite de Árbol de Té/química , Piel/efectos de los fármacos , Piel/microbiología , Productos Biológicos/farmacología , Productos Biológicos/administración & dosificación , Productos Biológicos/química , Femenino , Modelos Animales de Enfermedad , Masculino
2.
PeerJ ; 12: e17241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854801

RESUMEN

Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.


Asunto(s)
Nanopartículas del Metal , Porphyromonas gingivalis , Streptococcus mutans , Aceite de Árbol de Té , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Nanopartículas del Metal/química , Porphyromonas gingivalis/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Enterococcus faecalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Boca/microbiología , Microscopía Electrónica de Rastreo , Melaleuca/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Humanos , Hierro , Espectroscopía Infrarroja por Transformada de Fourier
3.
Braz J Microbiol ; 55(3): 2057-2069, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38775905

RESUMEN

This work aimed to evaluate the effects of 4 selected essential oils on planktonic cells and microbial biofilms of the Staphylococcus aureus strain (MRSA ATCC 33591). The antibacterial activities of the four essential oils Geranium (Pelargonium graveolens), PgEO, Tea Tree (Melaleuca alternifolia) MaEO, Lemon peel (Citrus limon) ClEO and Peppermint (Mentha piperita) MpEO had MICs ranging from 1.56 to 12.5 µl/ml. The evaluation of the antibiofilm activities of the 4 EOs revealed that they had antiadhesive activities against S. aureus MRSA biofilms; the activity reached 60% (the EO of MpEO peppermint at a concentration of 3.12 µl/ml), and the eradication activity was 80% (the EO of PgEO and MpEO at 3.12 µl/ml). The antibiofilm activity of S. aureus has been explained by the binding of several essential oil bioactive molecules to the SarA protein, the main target protein involved in biofilm formation. The synthesis of the virulence factor staphyloxanthin by S. aureus MRSA ATCC 33591 was significantly inhibited in the presence of PgEO at a concentration of MIC/2. This inhibition was explained by the binding of the main PgEO molecules (ß-citronellol and geraniol) to the CrTM protein involved in the staphyloxanthin synthesis pathway. There is evidence that these essential oils could be used as potential anti-virulents to control Staphylococcus biofilm formation.


Asunto(s)
Antibacterianos , Biopelículas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Aceites de Plantas , Xantófilas , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Aceites Volátiles/farmacología , Xantófilas/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Melaleuca/química , Mentha piperita/química , Pelargonium/química , Geranium/química , Citrus/química
4.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568986

RESUMEN

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Asunto(s)
Monoterpenos Ciclohexánicos , Cimenos , Melaleuca , Aceite de Árbol de Té , Limoneno , Cromatografía de Gases y Espectrometría de Masas/métodos , Árboles , Australia , Terpenos/química , , Melaleuca/química
5.
Biomed Pharmacother ; 173: 116389, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461682

RESUMEN

Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.


Asunto(s)
Antiinfecciosos , Melaleuca , Aceites Volátiles , Infecciones Estafilocócicas , Aceite de Árbol de Té , Porcinos , Animales , Ratones , Staphylococcus aureus , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites Volátiles/química , Melaleuca/química , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antiinfecciosos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
6.
BMC Complement Med Ther ; 24(1): 76, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317130

RESUMEN

BACKGROUND: The genus Melaleuca (Myrtaceae) comprises dozens of essential oil (EO)-rich species that are appreciated worldwide for their various medicinal values. Additionally, they are renowned in traditional medicine for their antimicrobial, antifungal, and other skin-related activities. The current study investigated the chemical profile and skin-related activities of volatile constituents derived from M. subulata (Cheel) Craven (Synonym Callistemon subulatus) leaves cultivated in Egypt for the first time. METHODS: The volatile components were extracted using hydrodistillation (HD), headspace (HS), and supercritical fluid (SF). GC/MS and Kovat's retention indices were implemented to identify the volatile compounds, while the variations among the components were assessed using Principal Component Analysis and Hierarchical Cluster Analysis. The radical scavenging activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene assays. Moreover, the anti-aging effect was evaluated using anti-elastase, and anti-collagenase, while the antimicrobial potential was deduced from the agar diffusion and broth microdilution assays. Lastly, the molecular docking study was executed using C-docker protocol in Discovery Studio 4.5 to rationalize the binding affinity with targeted enzymes. RESULTS: The SF extraction approach offered the highest EO yield, being 0.75%. According to the GC/MS analysis, monoterpene hydrocarbons were the most abundant volatile class in the HD oil sample (54.95%), with α-pinene being the most copious component (35.17%). On the contrary, the HS and SF volatile constituents were pioneered with oxygenated monoterpenes (72.01 and 36.41%) with eucalyptol and isopulegone being the most recognized components, representing 67.75 and 23.46%, respectively. The chemometric analysis showed segregate clustering of the three extraction methods with α-pinene, eucalyptol, and isopulegone serving as the main discriminating phytomarkers. Concerning the bioactivity context, both SF and HD-EOs exhibited antioxidant effects in terms of ORAC and ß-carotene bleaching. The HD-EO displayed potent anti-tyrosinase activity, whereas the SF-EO exhibited significant anti-elastase properties. Moreover, SF-EO shows selective activity against gram-positive skin pathogens, especially S. aureus. Ultimately, molecular docking revealed binding scores for the volatile constituents; analogous to those of the docked reference drugs. CONCLUSIONS: M. subulata leaves constitute bioactive volatile components that may be indorsed as bioactive hits for managing skin aging and infection, though further in vivo studies are recommended.


Asunto(s)
Antiinfecciosos , Monoterpenos Bicíclicos , Monoterpenos Ciclohexánicos , Melaleuca , Myrtaceae , Aceites Volátiles , Melaleuca/química , Eucaliptol , Simulación del Acoplamiento Molecular , beta Caroteno , Quimiometría , Staphylococcus aureus , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Monoterpenos/farmacología
7.
Vet Res Commun ; 48(3): 1379-1391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267710

RESUMEN

In cattle, Hyalomma scupense serves as an important vector of several pathogens resulting in diseases, subsequently affecting the agricultural field as well as the economy. Resistance to chemical acaricides has become widespread affirming the need for new drugs to tick control. The goal of this study was to investigate the acaricidal, repellent activities as well as the putative mode of action of two essential oils (EOs) from Melaleuca alternifolia (Tea tree) and Chamaemelum nobile (Roman chamomile) on Hyalomma scupense. The chemical composition of EOs was also evaluated. Different concentrations of EOs were tested in vitro for their acaricidal property on adults and larvae of H. scupense using adult immersion test (AIT) and larval packet test (LPT). Additionally, using Ellman's spectrophotometric method, the anticholinesterase (AChE) inhibition activity of M. alternifolia and C. nobile EOs was assessed in order to understand their putative mode of action. The main compounds of C. nobile were α-Bisabolene (22.20%) and (E)-ß-Famesene (20.41%). The major components in the analyzed M. alternifolia were Terpinen-4-ol (36.32%) and γ-Terpinene (13.69%). Adulticidal and larvicidal assays demonstrated a promising efficacy of the essential oils against tick H. scupense. The lethal concentration (LC50) values obtained for M. alternifolia and C. nobile oils were 0.84 and 0.96 mg/mL in the AIT and 0.37 and 0.48 mg/mL in the LPT, respectively. Regarding repellent activity, M. alternifolia achieved 100% repellency at the concentration of 1 mg/mL while C. nobile showed 95.98% repellency activity at concentration of 4 mg/mL. Also, M. alternifolia and C. nobile EOs displayed potent AChE inhibition with IC50 value of 91.27 and 100.12 µg/mL, respectively. In the present study, M. alternifolia and, to a lesser degree, C. nobile EOs were found to be effective in vitro acaricides, repellents and acetylcholinesterase inhibitor against H. scupense ticks. These plants may represent an economical and sustainable alternative to toxic synthetic acaricides in the management of ectoparasites of veterinary importance.


Asunto(s)
Acaricidas , Inhibidores de la Colinesterasa , Repelentes de Insectos , Ixodidae , Aceites Volátiles , Animales , Acaricidas/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ixodidae/efectos de los fármacos , Repelentes de Insectos/farmacología , Inhibidores de la Colinesterasa/farmacología , Melaleuca/química , Larva/efectos de los fármacos , Aceites de Plantas/farmacología , Aceites de Plantas/química , Femenino , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química
8.
J Cosmet Dermatol ; 23(5): 1840-1849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213091

RESUMEN

BACKGROUND: Sleep is one of the most important factors affecting overall health. During the night, the skin repairs damage caused by daily stresses. Melatonin plays a key role in this process. Toxins are removed, and cellular repair and growth hormone production are increased. Inter alia, this also decreases signs of intrinsic aging. AIMS: The current study was intended to demonstrate the impact of a unique fraction of Melaleuca alternifolia (FMA) essential oil, on sleep and skin quality. METHODS: The effect of FMA was investigated in vitro on skin cells, evaluating its antioxidant and anti-inflammatory properties, and in an ex-vivo study on human skin biopsies treated with FMA following stress induction. In addition, two clinical studies were performed on volunteers with life-style-related sleep complaints. In one study, sleep was measured using a noncontact monitoring device (SleepScore Labs, Max). A second study was conducted to assess skin anti-aging effects. RESULTS: In vitro application of FMA reduced IL-8 and reactive oxygen species (ROS) generation in skin cells. This was confirmed ex vivo through a decrease in inflammatory markers and an increase in antioxidant enzymes after stress induction. Interestingly, FMA also upregulated melatonin-associated genes. Real-world sleep tracking revealed that FMA significantly improved sleep quality, relative to unscented control. In vivo applications also showed a reduction in signs of aging. CONCLUSION: These results provide initial data to suggest that this unique FMA delivers skin anti-aging benefits via a two-pronged mode of action, improving sleep quality, and reducing skin inflammatory and oxidative stress.


Asunto(s)
Antioxidantes , Melatonina , Piel , Calidad del Sueño , Humanos , Melatonina/farmacología , Melatonina/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Envejecimiento de la Piel/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Interleucina-8/metabolismo , Masculino , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Melaleuca/química , Aceites Volátiles/farmacología , Aceites Volátiles/administración & dosificación
9.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989849

RESUMEN

Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Quitosano , Melaleuca , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Aceite de Árbol de Té , Staphylococcus aureus , Pseudomonas aeruginosa , Melaleuca/química , Quitosano/farmacología , Árboles , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Nanopartículas/química , Pruebas de Sensibilidad Microbiana ,
10.
New Phytol ; 240(5): 1944-1960, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37737003

RESUMEN

Leaf oil terpenes vary categorically in many plant populations, leading to discrete phenotypes of adaptive and economic significance, but for most species, a genetic explanation for the concerted fluctuation in terpene chemistry remains unresolved. To uncover the genetic architecture underlying multi-component terpene chemotypes in Melaleuca alternifolia (tea tree), a genome-wide association study was undertaken for 148 individuals representing all six recognised chemotypes. A number of single nucleotide polymorphisms in a genomic region of c. 400 kb explained large proportions of the variation in key monoterpenes of tea tree oil. The region contained a cluster of 10 monoterpene synthase genes, including four genes predicted to encode synthases for 1,8-cineole, terpinolene, and the terpinen-4-ol precursor, sabinene hydrate. Chemotype-dependent null alleles at some sites suggested structural variants within this gene cluster, providing a possible basis for linkage disequilibrium in this region. Genotyping in a separate domesticated population revealed that all alleles surrounding this gene cluster were fixed after artificial selection for a single chemotype. These observations indicate that a supergene accounts for chemotypes in M. alternifolia. A genetic model with three haplotypes, encompassing the four characterised monoterpene synthase genes, explained the six terpene chemotypes, and was consistent with available biparental cross-segregation data.


Asunto(s)
Melaleuca , Melaleuca/genética , Melaleuca/química , Árboles/genética , Estudio de Asociación del Genoma Completo , Terpenos/química ,
11.
J Biomater Sci Polym Ed ; 34(17): 2438-2461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640030

RESUMEN

Essential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential -9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 µl of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 µl. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed.


Asunto(s)
Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Melaleuca/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Antiinflamatorios/farmacología ,
12.
Molecules ; 28(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37175338

RESUMEN

Tea tree oil (TTO) is a volatile essential oil obtained by distillation, mainly from the Australian native plant Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae). In this study, a comparative analysis of the chemical constituents of seven tea tree oils (M. alternifolia) and four other Melaleuca spp. oils (M. cajuputi, (MCa), two chemotypes of M. quinquenervia, (MNe and MNi), and M. ericifolia (MRo)) was carried out using gas chromatography-mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC). Among the seven TTOs, terpinen-4-ol (37.66-44.28%), γ-terpinene (16.42-20.75%), α-terpinene (3.47-12.62%), α-terpineol (3.11-4.66%), and terpinolene (2.75-4.19%) were the most abundant compounds. On the other hand, the most abundant compounds of the other Melaleuca oils varied, such as 1,8-cineole (64.63%) in MCa oil, (E)-nerolidol (48.40%) and linalool (33.30%) in MNe oil, 1,8-cineole (52.20%) in MNi oil, and linalool (38.19%) and 1,8-cineole (27.57%) in MRo oil. HPTLC fingerprinting of Melaleuca oils enabled the discrimination of TTO oils from other Melaleuca spp. oils. Variation was observed in the profile of the Rf values among EOs. The present study shows that HPTLC is one of the best ways to identify and evaluate the quality control in authenticating TTOs, other Melaleuca EOs, or EOs from other species within the Myrtaceae.


Asunto(s)
Melaleuca , Myrtaceae , Aceites Volátiles , Aceite de Árbol de Té , Aceites Volátiles/química , Aceite de Árbol de Té/química , Melaleuca/química , Eucaliptol/análisis , Cromatografía en Capa Delgada , Australia , Terpenos/química
13.
Molecules ; 28(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838657

RESUMEN

In the present investigation, the anti-biofilm potential of two essential oils (EOs), Melaleuca alternifolia Chell (Tea-Tree) (TTO) and Eucalyptus globulus Labill. (EEO) was characterized and tested "in vitro" against both mature biofilms and biofilms in the process of formation, produced by strains belonging to three main categories of antibiotic resistant bacteria (ARB): Vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and broad-spectrum ß-lactamase-producing Escherichia coli (ESBL). The study was carried out in 96-well microtiter-plates using EOs alone, in association with each other and in combination with antibiotics against both single and multi-species biofilm. The study demonstrated the ability of TTO and EEO to counteract the ARB strains in sessile form, with promising results in particular against the biofilm in formation. Mature biofilm by ESBL E. coli was the most sensitive in the results from the quantification study of viable cells performed in multi-species biofilms. Lastly, in all tests, carried out using TTO/EEO associations and EOs/antibiotic combinations, the synergistic effect which emerged from the FIC-index has been confirmed, and both the reduction of biofilm in formation, and the removal of mature structure was obtained at very low concentrations, with values from 4 to >512-fold lower than the minimum inhibitory concentration (MIC) of the single compounds.


Asunto(s)
Eucalyptus , Melaleuca , Staphylococcus aureus Resistente a Meticilina , Aceites Volátiles , Aceites Volátiles/química , Eucalyptus/química , Melaleuca/química , Árboles , Escherichia coli , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antibacterianos/farmacología , Biopelículas , , Pruebas de Sensibilidad Microbiana
14.
Photochem Photobiol ; 99(1): 176-183, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35668682

RESUMEN

This aim of this study was to evaluate the penetration depth, antioxidant capacity and the clinical efficacy of Melaleuca alternifolia pure essential oil and in a nanoemulsion to prevent skin photoaging. For this, 2% of pure essential oil or 2% of this essential oil in a nanoemulsion were vehiculated in a formulation. The skin penetration was evaluated using confocal Raman microspectroscopy. The radical protection factor was evaluated using electron paramagnetic resonance spectroscopy. For a clinical study, 40 male participants, aged 18-28 years, were enrolled, being divided into three groups: vehicle formulation, M. alternifolia pure essential oil and M. alternifolia Nanoemulsion. All the participants also received a sunscreen SPF 50 to use during the day. Before and after 90 days of study, skin hydrolipidics and morphological characteristics were performed by skin imaging and biophysical techniques. The nanoemulsion presented a lower antioxidant capacity and a higher penetration through the stratum corneum, reaching the viable epidermis, improving the stratum granulosum morphology. The groups presented an increase in the papillary depth, improving in the dermis echogenicity and the collagen fibers. Melaleuca alternifolia essential provides the potential to improve photoaged skin, being the application of nanoemulsion able to reach deeper skin layers.


Asunto(s)
Cosméticos , Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Masculino , Humanos , Melaleuca/química , Antioxidantes , Aceites Volátiles/química
15.
J Ethnopharmacol ; 298: 115596, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987414

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Melaleuca or tea tree species are well known to be an important source of biological active oils and extracts. The biological significance appears in their usage for treatment of several clinical disorder owing to their traditional uses as anti-inflammatory, antibacterial, antifungal, and cytotoxic activities. AIM OF THE STUDY: Our study aimed to investigate the metabolic profile of the M. rugulosa polyphenol-rich fraction along with determination of its anti-inflammatory potential, free radical scavenging and antiaging activities supported with virtual understanding of the mode of action using molecular modeling strategy. MATERIALS AND METHODS: The anti-inflammatory activity of the phenolic rich fraction was investigated through measuring its inhibitory activity against inflammatory mediators viz tumor necrosing factor receptor-2 (TNF-α) and cyclooxygenases 1/2 (COX-1/2) in a cell free and cell-based assays. Moreover, the radical scavenging activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene assays, while the antiaging activity in anti-elastase, anti-collagenase, and anti-tyrosinase inhibitory assays. Finally, the biological findings were supported with molecular docking study using MOE software. RESULTS: The chromatographic purification of the polyphenol-rich fraction of Melaleuca rugulosa (Link) Craven afforded fourteen phytoconstituents (1-14). The anti-inflammatory gauging experiments demonstrated inhibition of inflammatory-linked enzymes COX-1/2 and the TNF-α at low µg/mL levels in the enzyme-based assays. Further investigation of the underlying mechanism was inferred from the quantification of protein levels and gene expression in the lipopolysaccharide (LPS)-activated murine macrophages (RAW264.7) in vitro model. The results revealed the reduction of protein synthesis of COX-1/2 and TNF-α with the down regulation of gene expression. The cell free in vitro radical scavenging assessment of the polyphenol-rich fraction revealed a significant DPPH reduction, peroxyl radicals scavenging, and ß-carotene peroxidation inhibition. Besides, the polyphenol-rich fraction showed a considerable inhibition of the skin aging-related enzymes as elastase, collagenase, and tyrosinase. Ultimately, the computational molecular modelling studies uncovered the potential binding poses and relevant molecular interactions of the identified polyphenols with their targeted enzymes. Particularly, terflavin C (8) which showed a favorable binding pose at the elastase binding pocket, while rosmarinic acid (14) demonstrated the best binding pose at the COX-2 catalytic domain. In short, natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions. CONCLUSION: Natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions.


Asunto(s)
Melaleuca , Animales , Antiinflamatorios , Antioxidantes , Radicales Libres , Humanos , Inflamación , Melaleuca/química , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales , Polifenoles/química , Taninos , Factor de Necrosis Tumoral alfa , beta Caroteno
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121766, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988468

RESUMEN

Essential oil distilled from Melaleuca alternifolialeaves, commonly known as tea tree oil, is well known for its biological activity, principally its antimicrobial properties. However, many samples are adulterated with other, cheaper essential oils such as eucalyptus oil. Current methods of detecting such adulteration are costly and time-consuming, making them unsuitable for rapid authentication screening. This study investigated the use of mid-infrared (MIR) spectroscopy for detecting and quantifying the level of eucalyptus oil adulteration in spiked samples of pure Australian tea tree oil. To confirm the authenticity of the tea tree oil samples, GC-MS analysis was used to profile 37 of the main volatile constituents present, demonstrating that the samples conformed to ISO specifications. Three chemometric regression techniques (PLSR, PCR and SVR) were trialled on the MIR spectra, along with a variety of pre-processing techniques. The best-performing full-wavelength PLSR model showed excellent prediction of eucalyptus oil content, with an R2CV of 0.999 and RMSECV of 1.08 % v/v. The RMSECV could be further improved to 0.82 % v/v through a moving window wavenumber optimisation process. The results suggest that MIR spectroscopy combined with PLSR can be used to predict eucalyptus oil adulteration in Australian tea tree oil samples with a high level of accuracy.


Asunto(s)
Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Australia , Aceite de Eucalipto , Melaleuca/química , Aceites Volátiles/química , Espectrofotometría Infrarroja , Aceite de Árbol de Té/química
17.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744845

RESUMEN

Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.


Asunto(s)
Antiinfecciosos , Eucalyptus , Subtipo H1N1 del Virus de la Influenza A , Melaleuca , Aceites Volátiles , Antiinfecciosos/farmacología , Antivirales/farmacología , Eucalyptus/química , Melaleuca/química , Aceites Volátiles/química , Aceites Volátiles/farmacología
18.
Molecules ; 27(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35744913

RESUMEN

The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Desinfectantes , Melaleuca , Aceite de Árbol de Té , Antivirales/farmacología , Desinfectantes/farmacología , Humanos , Melaleuca/química , Pandemias , SARS-CoV-2 , Aceite de Árbol de Té/química , Aceite de Árbol de Té/farmacología
19.
Phytochem Anal ; 33(6): 831-837, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35557478

RESUMEN

INTRODUCTION: The essential oils of tea tree (Melaleuca alternifolia) leaves mainly contain eucalyptol, α-terpinene, γ -terpinene, and terpinen-4-ol and have anti-bacterial, anti-fungal, anti-infective, and anti-inflammatory actions. The essential oils of lemon grass (Cymbopogon citratus) leaves mainly contain neral, geranial, and geraniol and have anti-microbial and anti-fungal activities and hypocholesterolemic effect. OBJECTIVES: The present study describes the use of low-toxicity solvents called betaine-based deep eutectic solvents (DESs) for efficient extraction of essential oils from tea tree and lemon grass. H2 O and EtOH were used for extraction as control methods. METHODOLOGY: Quantitative analysis was performed using gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Scanning electron micrography (SEM) and antioxidant assays for extracted samples were also conducted. RESULTS: The results indicated that extraction for tea tree using betaine/sucrose (molar ratio 2:1) improved the yields of terpinolene and eucalyptol 2.5- and 1.9-fold, respectively, compared with the control method. In lemon grass, extraction using betaine/sucrose (molar ratio 2:1) improved the yields of neral and geranial 1.9- and 1.7-fold, respectively, compared with the control method. CONCLUSION: These results demonstrated the effective extraction of essential oils from plant leaves under milder conditions than those needed for the conventional methods. The environmentally benign DESs for the extraction would be applicable to the food and cosmetic industries.


Asunto(s)
Cymbopogon , Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Betaína , Cymbopogon/química , Disolventes Eutécticos Profundos , Eucaliptol , Melaleuca/química , Aceites Volátiles/química , Solventes , Sacarosa , , Aceite de Árbol de Té/química , Árboles
20.
Chem Biodivers ; 19(3): e202100944, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35170191

RESUMEN

Melaleuca alternifolia (tea tree), family Myrtaceae, is endemic to the northern rivers of NSW, Australia. Since 1925, the volatile components of the hydro- and steam-distilled oils of the leaves have been studied in detail. However, the less-volatile compounds have not been investigated. Using an ethanolic extract of the seedling leaves, the non-volatile components were studied using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography- mass spectrometry (LC/MS). Four of these less-volatile components were isolated by preparative-HPLC from young seedling leaves and identified as the acylphloroglucinols 1-(2,6-dihydroxy-4-methoxy-3-methylphenyl)-2-methylpropan-1-one, callisalignone A, 1-(2,6-dihydroxy-4-methoxyphenyl)-3-methylbutan-1-one and pulverulentone B described here for the first time from M. alternifolia. These compounds change in concentration in the leaf sets as later seedling leaves mature on the seedling.


Asunto(s)
Melaleuca , Aceites Volátiles , Plantas Medicinales , Australia , Melaleuca/química , , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...