Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.874
Filtrar
1.
Front Immunol ; 15: 1387329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119340

RESUMEN

Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.


Asunto(s)
Antioxidantes , Polifenoles , Vitíligo , Vitíligo/tratamiento farmacológico , Vitíligo/metabolismo , Vitíligo/terapia , Humanos , Polifenoles/uso terapéutico , Polifenoles/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Animales , Estrés Oxidativo/efectos de los fármacos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida , Apoptosis/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología
2.
Environ Pollut ; 356: 124508, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089942

RESUMEN

Chemicals are representative environmental factors that affect human health. Recently, external exposure to a chemical of rhododenol (RD) caused chemical leukoderma, an acquired patchy hypopigmentation, in about 20,000 Asian people. The development of a hazard assessment system for accurate determination of leukoderma-inducible chemicals is required for the prevention of such tragedies. Case studies in humans have shown 6 chemicals, including RD, with a constitutive leukoderma-inducible potency and 3 chemicals with a photosensitive but not a constitutive leukoderma-inducible potency. In this study, the 6 positive and 3 negative control chemicals with or without constitutive leukoderma-inducible potencies were investigated by our previously developed in vivo hazard assessment system using tail skin of mice. Based on the results of validation, this study aimed to develop an in vitro hazard assessment system to correctly determine chemicals with a constitutive leukoderma-inducible potency. As expected, external exposure to the 6 positive control chemicals, but not external exposure to the 3 negative control chemicals, resulted in development of constitutive leukoderma in mouse tail skin with a decreased level of skin melanin and decreased number of melanocytes. Moreover, the 6 positive and 3 negative control chemicals were correctly distinguished by the presence or absence of endoplasmic reticulum (ER) stress induction, but not by tyrosinase-dependent cell death or production of reactive oxygen species (ROS), in immortalized normal melanocytes. The hazard assessment system using tail skin could be a solid in vivo tool to reliably determine the chemical potency of a chemical for constitutive leukoderma induction. The hazard assessment system focusing on ER stress induction in normal melanocytes might be a novel and convenient in vitro tool for accurately evaluating chemicals with leukoderma-inducible potencies. Thus, this study contributed to environmentology through the development of a screening system for preventing an environmental factor-related disease.


Asunto(s)
Hipopigmentación , Animales , Ratones , Hipopigmentación/inducido químicamente , Medición de Riesgo , Melanocitos/efectos de los fármacos , Piel/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melaninas , Humanos , Pruebas de Toxicidad/métodos , Butanoles
3.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125630

RESUMEN

Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 µM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes.


Asunto(s)
Autofagia , Ceramidas , Melaninas , Melanoma Experimental , Melanosomas , MicroARNs , Transducción de Señal , Serina-Treonina Quinasas TOR , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Melanosomas/metabolismo , Ceramidas/metabolismo , Melaninas/metabolismo , Melaninas/biosíntesis , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/genética , Línea Celular Tumoral , alfa-MSH/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos
4.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062529

RESUMEN

Early detection of cancer via biomarkers is vital for improving patient survival rates. In the case of skin cancers, low-molecular-weight biomarkers can penetrate the skin barrier, enabling non-invasive sampling at an early stage. This study focuses on detecting tryptophan (Trp) and kynurenine (Kyn) on the surface of reconstructed 3D melanoma and melanocyte models. This is examined in connection with IDO-1 and IL-6 expression in response to IFN-γ or UVB stimulation, both crucial factors of the melanoma tumor microenvironment (TME). Using a polystyrene scaffold, full-thickness human skin equivalents containing fibroblasts, keratinocytes, and melanocytes or melanoma cells were developed. The samples were stimulated with IFN-γ or UVB, and Trp and Kyn secretion was measured using HPLC-PDA and HPLC-MS. The expression of IDO-1 and IL-6 was measured using RT-qPCR. Increased Trp catabolism to Kyn was observed in IFN-γ-stimulated melanoma and melanocyte models, along with higher IDO-1 expression. UVB exposure led to significant changes in Kyn levels but only in the melanoma model. This study demonstrates the potential of skin surface Trp and Kyn monitoring to capture TME metabolic changes. It also lays the groundwork for future in vivo studies, aiding in understanding and monitoring skin cancer progression.


Asunto(s)
Biomarcadores de Tumor , Indolamina-Pirrol 2,3,-Dioxigenasa , Interleucina-6 , Quinurenina , Melanocitos , Melanoma , Neoplasias Cutáneas , Triptófano , Quinurenina/metabolismo , Humanos , Triptófano/metabolismo , Melanoma/metabolismo , Melanoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-6/metabolismo , Interferón gamma/metabolismo , Interferón gamma/farmacología , Línea Celular Tumoral , Microambiente Tumoral , Rayos Ultravioleta
5.
Arch Dermatol Res ; 316(7): 478, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023568

RESUMEN

The efficacy of ritlecitinib, an oral JAK3/TEC family kinase inhibitor, on active and stable lesions was evaluated in patients with active non-segmental vitiligo in a phase 2b trial (NCT03715829). Patients were randomized to placebo or daily ritlecitinib 50 mg (with or without 4-week 100-mg or 200-mg loading dose), 30 mg, or 10 mg for 24 weeks. Active lesions showed greater baseline expression of inflammatory/immune markers IFNG and CCL5, levels of CD103, and T-cell infiltrates than stable lesions. Patients with more active than stable vitiligo lesions showed higher baseline serum levels of CXCL9 and PD-L1, while patients with more stable than active lesions showed higher baseline serum levels of HO-1. At Week 24, ritlecitinib 50 mg significantly stabilized mean percent change from baseline in depigmentation extent in both active lesions and stable lesions vs. placebo-response, with stable lesions showing greater repigmentation. After 24 weeks of treatment, ritlecitinib 50 mg increased expression of melanocyte markers in stable lesions, while Th1/Th2-related and co-stimulatory molecules decreased significantly in both stable and active lesions. Serum from patients with more active than stable lesions showed decreased levels of ICOS and NK cell activation markers. These data, confirmed at transcription/protein levels, indicate that stable lesion repigmentation occurs early with ritlecitinib, while active lesions require stabilization of inflammation first. ClinicalTrials.gov: NCT03715829.


Asunto(s)
Janus Quinasa 3 , Inhibidores de Proteínas Quinasas , Vitíligo , Humanos , Vitíligo/tratamiento farmacológico , Vitíligo/diagnóstico , Vitíligo/inmunología , Masculino , Femenino , Adulto , Janus Quinasa 3/antagonistas & inhibidores , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/administración & dosificación , Resultado del Tratamiento , Quimiocina CXCL9/sangre , Quimiocina CCL5/sangre , Adulto Joven , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/sangre , Melanocitos/efectos de los fármacos , Método Doble Ciego , Pigmentación de la Piel/efectos de los fármacos , Administración Oral , Interferón gamma
6.
Gen Physiol Biophys ; 43(4): 321-333, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953574

RESUMEN

Vitiligo is featured by manifestation of white maculae and primarily results from oxidative stress. Sphingosine kinase-1 (SPHK1) participates in oxidative stress. This paper was devised to explore the role of SPHK1 in vitiligo and to disclose the mechanism. PIG1 cell viability was appraised utilizing cell counting kit-8 assay while Western blot detected SPHK1 and four and a half LIM domains 2 (FHL2). The transduction efficacy of small interfering RNA (siRNA)-SPHK1, siRNA-FHL2 and pcDNA3.1 plasmid overexpressing FHL2 (Ov-FHL2) was checked using Western blot. Flow cytometry detected cell apoptotisis. Western blot detected mitochondrial cytochrome c (Mit-Cyt-c) and cytosolic cytochrome c (Cyto-Cyt-c). Dichloro-dihydro-fluorescein diacetate (DCFH-DA) detected reactive oxygen species (ROS) activity while oxidative stress markers were evaluated using corresponding assay kits. SPHK1 expression was discovered to be increased in hydrogen peroxide (H2O2)-challenged PIG1 cells and SPHK1 interference alleviated H2O2-challenged viability damage, apoptosis, oxidative stress and FHL2 expression in PIG1 cells. FHL2 depletion could suppress viability damage, apoptosis and oxidative stress in H2O2-challenged PIG1 cells. Rescue experiments demonstrated that the suppressive impacts of SPHK1 deficiency on PIG1 cell viability, apoptosis and oxidative stress induced by H2O2 were offset by FHL2 overexpression. Collectively, SPHK1 knockdown protected against vitiligo via the regulation of FHL2.


Asunto(s)
Supervivencia Celular , Peróxido de Hidrógeno , Proteínas con Homeodominio LIM , Melanocitos , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Estrés Oxidativo/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Peróxido de Hidrógeno/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Humanos , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Línea Celular
7.
Food Chem ; 455: 139814, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824735

RESUMEN

Persimmon (Diospyros kaki) leaf is widely used as a tea substitute in East Asia, offering potential health benefits. Although studies have highlighted their effects on hyperpigmentation disorders, the active components remain unidentified. This study introduces a novel approach combining LC-MS/MS-based molecular networking with AlphaFold2-enabled virtual screening to expedite the identification of bioactive components in persimmon leaf. A total of 105 compounds were identified by MS/MS analysis. Further, virtual screening identified five flavonoids with potential anti-melanogenic properties. Bioassays confirmed myricetin, quercetin, and kaempferol inhibited melanogenesis in human melanocytes in a dose-dependent manner. Biolayer interferometry assays revealed strong binding affinity between these flavonols and hsTYR, with KD values of 23.26 ± 11.77 for myricetin, 12.43 ± 0.37 for quercetin, and 14.99 ± 3.80 µM for kaempferol. Molecular dynamics simulations provided insights into the binding interactions of these flavonols with hsTYR, particularly highlighting the essential role of the 3-OH group on the C-ring. This study elucidates the bioactive components responsible for the anti-melanogenic effects of persimmon leaf, supporting their use in product development.


Asunto(s)
Diospyros , Extractos Vegetales , Hojas de la Planta , Humanos , Diospyros/química , Flavonoides/química , Flavonoides/farmacología , Cromatografía Líquida con Espectrometría de Masas , Melaninas/química , Melaninas/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928474

RESUMEN

Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or ß-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/ß-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that ß-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the ß conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. ß-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.


Asunto(s)
Quitina , Proteína 1 Similar a Quitinasa-3 , Quitosano , Melanocitos , Oligosacáridos , Quitosano/química , Quitosano/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Humanos , Quitina/análogos & derivados , Quitina/farmacología , Quitina/química , Oligosacáridos/farmacología , Proteína 1 Similar a Quitinasa-3/metabolismo , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología
9.
Arch Dermatol Res ; 316(7): 401, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878083

RESUMEN

BACKGROUND: The adhesive properties of vitiligo melanocytes have decreased under oxidative stress., cytoskeleton proteins can control cell adhesion. Paeoniflorin (PF) was proved to resist hydrogen peroxide (H2O2)-induced oxidative stress in melanocytes via nuclear factorE2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. OBJECTIVES: This study was to investigate whether PF exerts anti-oxidative effect through influencing cytoskeleton markers or potential signaling pathway. METHODS: Human Oxidative Stress Plus array was used to identify the differentially expressed genes between H2O2 + PF group and H2O2 only group, in PIG1 and PIG3V melanocyte cell lines respectively. Western blotting was used to verify the PCR array results and to test the protein expression levels of cytoskeleton markers including Ras homolog family member A (RhoA), Rho-associated kinase 1 (ROCK1) and antioxidative marker Nrf2. Small interfering RNA was used to knock down PDZ and LIM domain 1 (PDLIM1). RESULTS: PF increased the expressions of PDLIM1, RhoA and ROCK1 in H2O2-induced PIG1, in contrast, decreased the expressions of PDLIM1 and ROCK1 in H2O2-induced PIG3V. Knockdown of PDLIM1 increased the expressions of RhoA and Nrf2 in PF-pretreated H2O2-induced PIG1, and ROCK1 and Nrf2 in PF-pretreated H2O2-induced PIG3V. CONCLUSIONS: PF regulates RhoA/ROCK1 and Nrf2 pathways in PDLIM1-dependent or independent manners in H2O2-induced melanocytes. In PIG1, PF promotes PDLIM1 to inhibit RhoA/ROCK1 pathway or activates Nrf2/HO-1 pathway, separately. In PIG3V, PF directly downregulates ROCK1 in PDLIM1-independent manner or upregulates Nrf2 dependent of PDLIM1.


Asunto(s)
Glucósidos , Peróxido de Hidrógeno , Proteínas con Dominio LIM , Melanocitos , Monoterpenos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Factor 2 Relacionado con NF-E2/metabolismo , Quinasas Asociadas a rho/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Humanos , Glucósidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Peróxido de Hidrógeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Monoterpenos/farmacología , Línea Celular
10.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892114

RESUMEN

This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.


Asunto(s)
Ácidos Cafeicos , Proliferación Celular , Dopamina , Lacasa , Melaninas , Melanocitos , Poliestirenos , Humanos , Lacasa/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Poliestirenos/química , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Dopamina/metabolismo , Melaninas/metabolismo , Adhesión Celular/efectos de los fármacos , Levodopa/farmacología , Levodopa/metabolismo , Levodopa/química , Propiedades de Superficie , Línea Celular Tumoral , Células Madre de Carcinoma Embrionario/metabolismo , Células Madre de Carcinoma Embrionario/efectos de los fármacos
11.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892131

RESUMEN

Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.


Asunto(s)
Melaninas , Simulación del Acoplamiento Molecular , Pez Cebra , Animales , Pez Cebra/metabolismo , Melaninas/metabolismo , Melaninas/biosíntesis , Fosforilación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos
12.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734811

RESUMEN

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Asunto(s)
Apoptosis , Capsaicina , Proliferación Celular , Proteínas HSP70 de Choque Térmico , Melanocitos , Mitocondrias , Transducción de Señal , Serina-Treonina Quinasas TOR , Receptor Toll-Like 4 , Vitíligo , Humanos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Capsaicina/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Vitíligo/metabolismo , Vitíligo/tratamiento farmacológico , Quinasa 1 de Adhesión Focal/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo
13.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731556

RESUMEN

Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA's composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA's constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA's anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications.


Asunto(s)
Aspergillus oryzae , Fermentación , Proteínas Filagrina , Oryza , Aspergillus oryzae/metabolismo , Oryza/química , Oryza/metabolismo , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Células HaCaT , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Cuidados de la Piel/métodos , Piel/metabolismo
14.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791225

RESUMEN

Epidermal melanin synthesis determines an individual's skin color. In humans, melanin is formed by melanocytes within the epidermis. The process of melanin synthesis strongly depends on a range of cellular factors, including the fine-tuned interplay with reactive oxygen species (ROS). In this context, a role of cold atmospheric plasma (CAP) on melanin synthesis was proposed due to its tunable ROS generation. Herein, the argon-driven plasma jet kINPen® MED was employed, and its impact on melanin synthesis was evaluated by comparison with known stimulants such as the phosphodiesterase inhibitor IBMX and UV radiation. Different available model systems were employed, and the melanin content of both cultured human melanocytes (in vitro) and full-thickness human skin biopsies (in situ) were analyzed. A histochemical method detected melanin in skin tissue. Cellular melanin was measured by NIR autofluorescence using flow cytometry, and a highly sensitive HPLC-MS method was applied, which enabled the differentiation of eu- and pheomelanin by their degradation products. The melanin content in full-thickness human skin biopsies increased after repeated CAP exposure, while there were only minor effects in cultured melanocytes compared to UV radiation and IBMX treatment. Based on these findings, CAP does not appear to be a useful option for treating skin pigmentation disorders. On the other hand, the risk of hyperpigmentation as an adverse effect of CAP application for wound healing or other dermatological diseases seems to be neglectable.


Asunto(s)
Epidermis , Melaninas , Melanocitos , Gases em Plasma , Humanos , Melaninas/metabolismo , Melaninas/biosíntesis , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Gases em Plasma/farmacología , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Rayos Ultravioleta , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de la radiación , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Biopsia , Melanogénesis
15.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38812330

RESUMEN

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Asunto(s)
Etanol , Melaninas , Melanocitos , Monofenol Monooxigenasa , Sargassum , Animales , Sargassum/química , Melaninas/biosíntesis , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Ratones , Etanol/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , alfa-MSH/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Oxidorreductasas Intramoleculares/metabolismo
16.
Toxicol In Vitro ; 98: 105844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740103

RESUMEN

Streptomycin (STR) is an aminoglycoside antibiotic with a broad-spectrum of activity and ototoxic potential. The mechanism of STR-induced inner ear damage has not been fully elucidated. It was previously found that STR binds to melanin, which may result in the accumulation of the drug in melanin-containing tissues. Melanin pigment is present in various parts of the inner ear, including the cochlea and vestibular organ. The present study aimed to assess if streptomycin generates oxidative stress and affects melanogenesis in normal human melanocytes. Moreover the variation of free radical concentration in STR-treated melanocytes was examined by electron paramagnetic resonance spectroscopy (EPR). We found that STR decreases cell metabolic activity and reduces melanin content. The observed changes in the activity of antioxidant enzymes activity in HEMn-DPs treated with streptomycin may suggest that the drug affects redox homeostasis in melanocytes. In this work EPR study expanded knowledge about free radicals in interactions of STR and melanin in melanocytes. The results may help elucidate the mechanisms of STR toxicity on pigment cells, including melanin-producing cells in the inner ear. This is important because understanding the mechanism of STR-induced ototoxicity would be helpful in developing new therapeutic strategies to protect patients' hearing.


Asunto(s)
Antibacterianos , Melaninas , Melanocitos , Estrés Oxidativo , Estreptomicina , Melaninas/metabolismo , Humanos , Espectroscopía de Resonancia por Spin del Electrón , Estrés Oxidativo/efectos de los fármacos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Estreptomicina/toxicidad , Antibacterianos/toxicidad , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Radicales Libres/metabolismo , Línea Celular
17.
Pigment Cell Melanoma Res ; 37(4): 514-529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705722

RESUMEN

Epidermal melanin unit integrity is crucial for skin homeostasis and pigmentation. Epidermal growth factor (EGF) receptor (EGFR) is a pivotal player in cell growth, wound healing, and maintaining skin homeostasis. However, its influence on skin pigmentation is relatively unexplored. This study investigates the impact and underlying mechanisms of EGFR inhibitors on skin pigmentation. We evaluated EGF and EGFR expression in various skin cells using quantitative real-time PCR, Western blot, and immunofluorescence. EGF and EGFR were predominantly expressed in epidermal keratinocytes, and treatment with the EGFR tyrosine kinase inhibitors (EGFR-TKIs) gefitinib and PD153035 significantly increased stem cell factor (SCF) and endothelin-1 (ET-1) expression in cultured keratinocytes. Enhanced melanocyte migration and proliferation were observed in co-culture, as evidenced by time-lapse live imaging and single-cell tracking assays. Furthermore, topical application of gefitinib to guinea pig dorsal skin induced increased pigmentation and demonstrated efficacy in mitigating rhododendrol-induced leukoderma. Suppression of EGF signaling indirectly enhanced skin pigmentation by upregulating SCF and ET-1 in epidermal keratinocytes. This novel mechanism highlights the pivotal role of EGF signaling in regulating skin pigmentation, and topical EGFR-TKI therapy at an appropriate dose may be a promising approach for depigmentation disorder management.


Asunto(s)
Receptores ErbB , Gefitinib , Hipopigmentación , Queratinocitos , Melaninas , Melanocitos , Inhibidores de Proteínas Quinasas , Receptores ErbB/metabolismo , Animales , Melaninas/metabolismo , Melaninas/biosíntesis , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Hipopigmentación/patología , Hipopigmentación/tratamiento farmacológico , Gefitinib/farmacología , Cobayas , Pigmentación de la Piel/efectos de los fármacos , Factor de Células Madre/metabolismo , Epidermis/efectos de los fármacos , Epidermis/patología , Epidermis/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Endotelina-1/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Quinazolinas
18.
Toxicol Ind Health ; 40(8): 479-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814634

RESUMEN

Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.


Asunto(s)
Exposición Profesional , Vitíligo , Humanos , Vitíligo/inducido químicamente , Vitíligo/fisiopatología , Exposición Profesional/efectos adversos , Melanocitos/efectos de los fármacos , India , Hipopigmentación/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674064

RESUMEN

Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.


Asunto(s)
Glucósidos Iridoides , Melaninas , Melanocitos , Olea , Fenoles , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Olea/química , Animales , Melaninas/biosíntesis , Melaninas/metabolismo , Ratones , Fenoles/farmacología , Glucósidos Iridoides/farmacología , Iridoides/farmacología , Aldehídos/farmacología , Diferenciación Celular/efectos de los fármacos , Monoterpenos Ciclopentánicos , Células Epidérmicas/metabolismo , Células Epidérmicas/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Línea Celular Tumoral , Hojas de la Planta/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanogénesis
20.
Photodermatol Photoimmunol Photomed ; 40(3): e12970, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685665

RESUMEN

OBJECTIVE: Both piperine and a 308-nm excimer laser have significant curative effects on vitiligo. This study mainly explored the molecular mechanism of a 308-nm excimer combined with piperine in regulating melanocyte proliferation. METHODS: Epidermal melanocytes were cultured in piperine solution, and the cells were irradiated by an XTRAC excimer laser treatment system at 308-nm output monochromatic light. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were for detecting the expression levels of genes or proteins. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell method was for assessing cell viability and migration capacity. The content of melanin was also detected. RESULTS: The combination of the 308-nm excimer laser and piperine enhanced the cell proliferation, migration, and melanin production of melanocytes and upregulated the level of miR-328, and restraint of miR-328 reversed the influence of the 308-nm excimer laser and piperine. Secreted frizzled-related protein 1 (SFRP1) is a direct target gene of miR-328, and miR-328 can inhibit the expression of SFRP1 and elevate the protein level of the Wnt/ß-catenin signaling pathway. CONCLUSION: The 308-nm excimer laser combined with piperine may be more efficient than piperine alone in the remedy of vitiligo, and the miR-328/SFRP1 and Wnt/ß-catenin pathways are participated in the proliferation, migration, and melanin synthesis of melanocytes.


Asunto(s)
Benzodioxoles , Movimiento Celular , Proliferación Celular , Melaninas , Piperidinas , Humanos , Alcaloides/farmacología , Benzodioxoles/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Melaninas/biosíntesis , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Rayos Láser , Vitíligo/tratamiento farmacológico , Vitíligo/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...