Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Sci Rep ; 11(1): 13430, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183758

RESUMEN

Many innate immune receptors function collaboratively to detect and elicit immune responses to pathogens, but the physical mechanisms that govern the interaction and signaling crosstalk between the receptors are unclear. In this study, we report that the signaling crosstalk between Fc gamma receptor (FcγR) and Toll-like receptor (TLR)2/1 can be overall synergistic or inhibitory depending on the spatial proximity between the receptor pair on phagosome membranes. Using a geometric manipulation strategy, we physically altered the spatial distribution of FcγR and TLR2 on single phagosomes. We demonstrate that the signaling synergy between FcγR and TLR2/1 depends on the proximity of the receptors and decreases as spatial separation between them increases. However, the inhibitory effect from FcγRIIb on TLR2-dependent signaling is always present and independent of receptor proximity. The overall cell responses are an integration from these two mechanisms. This study presents quantitative evidence that the nanoscale proximity between FcγR and TLR2 functions as a key regulatory mechanism in their signaling crosstalk.


Asunto(s)
Fagosomas/inmunología , Receptor Cross-Talk/inmunología , Receptores de IgG/inmunología , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 2/inmunología , Animales , Citocinas/metabolismo , Inmunidad Innata , Inmunoglobulina G/inmunología , Membranas Intracelulares/inmunología , Ratones , Transporte de Proteínas , Células RAW 264.7 , Transducción de Señal , Quinasa Syk/fisiología , Factor de Transcripción ReIA/metabolismo
2.
Plant Mol Biol ; 101(4-5): 343-354, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31621005

RESUMEN

KEY MESSAGE: Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad de la Planta , Plantas/ultraestructura , Vacuolas/ultraestructura , Biomarcadores/metabolismo , Muerte Celular , Membranas Intracelulares/inmunología , Membranas Intracelulares/microbiología , Membranas Intracelulares/ultraestructura , Proteínas de Plantas/metabolismo , Plantas/inmunología , Plantas/microbiología , Vacuolas/inmunología , Vacuolas/microbiología
3.
Sci Signal ; 12(572)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862701

RESUMEN

Ion channels facilitate the movement of ions across the plasma and organellar membranes. A recent symposium brought together scientists who study ion channels and transporters in immune cells, which highlighted advances in this emerging field and served to chart new avenues for investigating the roles of ion channels in immunity.


Asunto(s)
Señalización del Calcio/inmunología , Membranas Intracelulares/inmunología , Canales Iónicos/inmunología , Orgánulos/inmunología , Animales , Humanos
4.
Nihon Saikingaku Zasshi ; 73(3): 193-199, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30158393

RESUMEN

Autophagy acts as an intracellular host defense system against invading pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we revealed Rab GTPase network that regulate autophagosome formation against GAS. A unique set of Rab GTPases coordinates autophagy to enable to form huge autophagosomes surrounding GAS by linking recycling endosomes and trans Golgi-network. We also found that NLRP4, one of intracellular pathogen recognition receptor, directs Rho signaling to facilitate autophagosome formation. In this article, we would like to show our findings on how host autophagy regulators coordinate autophagy during GAS infection.


Asunto(s)
Autofagia/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes , Proteínas Adaptadoras Transductoras de Señales , Autofagosomas/inmunología , Endosomas/inmunología , Humanos , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Transporte de Proteínas , Proteínas Represoras/inmunología , Transducción de Señal/inmunología , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/patogenicidad , Proteínas de Unión al GTP rab/fisiología , Proteínas de Unión al GTP rho/inmunología , Red trans-Golgi/inmunología
5.
Methods Mol Biol ; 1656: 131-142, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28808966

RESUMEN

The mitochondrial antiviral signaling (MAVS) protein is a central adaptor protein required for antiviral innate immune signaling. To facilitate its roles in innate immunity, MAVS localizes to multiple intracellular membranous compartments, including the mitochondria, the mitochondrial-associated ER membrane (MAM), and peroxisomes. Studies of MAVS function therefore often require an analysis of MAVS localization. To detect MAVS protein on intracellular membranes, biochemical fractionation to isolate MAMs, mitochondria, or peroxisomes can be used. Further, immunofluorescence with antibodies against specific membrane markers can be used to visualize MAVS distribution throughout the cell. Here, we describe the biochemical fractionation and immunofluorescence protocols used to detect MAVS subcellular localization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Retículo Endoplásmico/inmunología , Técnica del Anticuerpo Fluorescente/métodos , Inmunidad Innata , Membranas Intracelulares/inmunología , Mitocondrias/microbiología , Peroxisomas/inmunología , Animales , Humanos , Transporte de Proteínas/inmunología
6.
J Leukoc Biol ; 101(5): 1155-1168, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28096301

RESUMEN

Production of reactive oxygen species (ROS) in the phagosome by the NADPH oxidase is critical for mammalian immune defense against microbial infections and phosphoinositides are important regulators in this process. Phosphoinositol 3-phosphate (PI(3)P) regulates ROS production at the phagosome via p40phox by an unknown mechanism. This study tested the hypothesis that PI(3)P controls ROS production by regulating the presence of p40phox and p67phox at the phagosomal membrane. Pharmacologic inhibition of PI(3)P synthesis at the phagosome decreased the ROS production both in differentiated PLB-985 cells and human neutrophils. It also releases p67phox, the key cytosolic subunit of the oxidase, and p40phox from the phagosome. The knockdown of the PI(3)P phosphatase MTM1 or Rubicon or both increases the level of PI(3)P at the phagosome. That increase enhances ROS production inside the phagosome and triggers an extended accumulation of p67phox at the phagosome. Furthermore, the overexpression of MTM1 at the phagosomal membrane induces the disappearance of PI(3)P from the phagosome and prevents sustained ROS production. In conclusion, PI(3)P, indeed, regulates ROS production by maintaining p40phox and p67phox at the phagosomal membrane.


Asunto(s)
Monocitos/inmunología , NADPH Oxidasas/inmunología , Neutrófilos/inmunología , Fagosomas/inmunología , Fosfatos de Fosfatidilinositol/inmunología , Fosfoproteínas/inmunología , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Monocitos/citología , Monocitos/efectos de los fármacos , NADPH Oxidasas/genética , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Fosfoproteínas/genética , Cultivo Primario de Células , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/inmunología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Traffic ; 17(9): 961-2, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27510703

RESUMEN

Cover legend: Macrophages phagocytosing RFP-labeled E.coli. GFP-APPL2 labels the phagosomal membrane. Image produced by N. Condon. See Yeo et al. Traffic 2016; 17(9):1014-1026. Read the full article on doi:10.1111/tra.12415.


Asunto(s)
Escherichia coli/inmunología , Membranas Intracelulares/ultraestructura , Macrófagos/ultraestructura , Fagocitosis , Fagosomas/ultraestructura , Proteínas Fluorescentes Verdes , Membranas Intracelulares/inmunología , Proteínas Luminiscentes , Macrófagos/inmunología , Fagosomas/inmunología , Proteína Fluorescente Roja
8.
J Leukoc Biol ; 97(6): 1121-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25877929

RESUMEN

Neutrophils kill microorganisms by inducing exocytosis of granules with antibacterial properties. Four isoforms of the "a" subunit of V-ATPase-a1V, a2V, a3V, and a4V-have been identified. a2V is expressed in white blood cells, that is, on the surface of monocytes or activated lymphocytes. Neutrophil associated-a2V was found on membranes of primary (azurophilic) granules and less often on secondary (specific) granules, tertiary (gelatinase granules), and secretory vesicles. However, it was not found on the surface of resting neutrophils. Following stimulation of neutrophils, primary granules containing a2V as well as CD63 translocated to the surface of the cell because of exocytosis. a2V was also found on the cell surface when the neutrophils were incubated in ammonium chloride buffer (pH 7.4) a weak base. The intracellular pH (cytosol) became alkaline within 5 min after stimulation, and the pH increased from 7.2 to 7.8; this pH change correlated with intragranular acidification of the neutrophil granules. Upon translocation and exocytosis, a2V on the membrane of primary granules remained on the cell surface, but myeloperoxidase was secreted. V-ATPase may have a role in the fusion of the granule membrane with the cell surface membrane before exocytosis. These findings suggest that the granule-associated a2V isoform has a role in maintaining a pH gradient within the cell between the cytosol and granules in neutrophils and also in fusion between the surface and the granules before exocytosis. Because a2V is not found on the surface of resting neutrophils, surface a2V may be useful as a biomarker for activated neutrophils.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , Neutrófilos/inmunología , ATPasas de Translocación de Protón Vacuolares/inmunología , Cloruro de Amonio/química , Movimiento Celular/efectos de los fármacos , Citocalasina D/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Exocitosis/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Isoenzimas/genética , Isoenzimas/inmunología , Fusión de Membrana/efectos de los fármacos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Peroxidasa/genética , Peroxidasa/inmunología , Peroxidasa/metabolismo , Cultivo Primario de Células , Transducción de Señal , Tetraspanina 30/genética , Tetraspanina 30/inmunología , ATPasas de Translocación de Protón Vacuolares/genética
9.
Mol Immunol ; 65(2): 436-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25765883

RESUMEN

Cyclic GMP-AMP synthase (cGAS), which belongs to the nucleotidyltransferase family, recognizes cytosolic DNA and induces the type I interferon (IFN) pathway through the synthesis of the second messenger cGAMP. In this study, porcine cGAS (p-cGAS) was identified and its tissue distribution, subcellular localization, and functions in innate immunity were characterized. The coding sequence of p-cGAS is 1494 bp long, encodes 497 amino acids, and is most similar (74%) to Bos taurus cGAS. p-cGAS mRNA is abundant in the spleen, duodenum, jejunum, and ileum. The subcellular distribution of p-cGAS is not only in the cytosol, but also on the endoplasmic reticulum (ER) membrane. The overexpression of wild-type p-cGAS in porcine kidney epithelial cells, but not its catalytically inactive mutants, induced IFN-ß expression, which was dependent on STING and IRF3. However, the downregulation of p-cGAS by RNA interference markedly reduced IFN-ß expression after pseudorabies virus (PRV) infection or poly(dA:dT) transfection. These results demonstrate that p-cGAS is an important DNA sensor, required for IFN-ß activation.


Asunto(s)
Retículo Endoplásmico , Regulación de la Expresión Génica/inmunología , Membranas Intracelulares/inmunología , Nucleotidiltransferasas , Porcinos , Secuencia de Aminoácidos , Animales , Bovinos , Clonación Molecular , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Interferón beta/genética , Interferón beta/inmunología , Datos de Secuencia Molecular , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Poli dA-dT/farmacología , Homología de Secuencia de Aminoácido , Porcinos/genética , Porcinos/inmunología
10.
Sci Rep ; 4: 7395, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25491663

RESUMEN

The dengue virus (DENV) circulates between humans and mosquitoes and requires no other mammals or birds for its maintenance in nature. The virus is well-adapted to humans, as reflected by high-level viraemia in patients. To investigate its high adaptability, the DENV induction of host type-I interferon (IFN) was assessed in vitro in human-derived HeLa cells and compared with that induced by the Japanese encephalitis virus (JEV), a closely related arbovirus that generally exhibits low viraemia in humans. A sustained viral spread with a poor IFN induction was observed in the DENV-infected cells, whereas the JEV infection resulted in a self-limiting and abortive infection with a high IFN induction. There was no difference between DENV and JEV double-stranded RNA (dsRNA) as IFN inducers. Instead, the dsRNA was poorly exposed in the cytosol as late as 48 h post-infection (p.i.), despite the high level of DENV replication in the infected cells. In contrast, the JEV-derived dsRNA appeared in the cytosol as early as 24 h p.i. Our results provided evidence for the first time in DENV, that concealing dsRNA in the intracellular membrane diminishes the effect of the host defence mechanism, a strategy that differs from an active suppression of IFN activity.


Asunto(s)
Virus del Dengue/inmunología , Evasión Inmune , Interferón Tipo I/inmunología , Membranas Intracelulares/inmunología , ARN Bicatenario/inmunología , ARN Viral/inmunología , Virus del Dengue/metabolismo , Virus de la Encefalitis Japonesa (Especie)/inmunología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Células HeLa , Humanos , Interferón Tipo I/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , ARN Bicatenario/metabolismo , ARN Viral/metabolismo
11.
PLoS Pathog ; 10(10): e1004449, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25356593

RESUMEN

The IRG system of IFNγ-inducible GTPases constitutes a powerful resistance mechanism in mice against Toxoplasma gondii and two Chlamydia strains but not against many other bacteria and protozoa. Why only T. gondii and Chlamydia? We hypothesized that unusual features of the entry mechanisms and intracellular replicative niches of these two organisms, neither of which resembles a phagosome, might hint at a common principle. We examined another unicellular parasitic organism of mammals, member of an early-diverging group of Fungi, that bypasses the phagocytic mechanism when it enters the host cell: the microsporidian Encephalitozoon cuniculi. Consistent with the known susceptibility of IFNγ-deficient mice to E. cuniculi infection, we found that IFNγ treatment suppresses meront development and spore formation in mouse fibroblasts in vitro, and that this effect is mediated by IRG proteins. The process resembles that previously described in T. gondii and Chlamydia resistance. Effector (GKS subfamily) IRG proteins accumulate at the parasitophorous vacuole of E. cuniculi and the meronts are eliminated. The suppression of E. cuniculi growth by IFNγ is completely reversed in cells lacking regulatory (GMS subfamily) IRG proteins, cells that effectively lack all IRG function. In addition IFNγ-induced cells infected with E. cuniculi die by necrosis as previously shown for IFNγ-induced cells resisting T. gondii infection. Thus the IRG resistance system provides cell-autonomous immunity to specific parasites from three kingdoms of life: protozoa, bacteria and fungi. The phylogenetic divergence of the three organisms whose vacuoles are now known to be involved in IRG-mediated immunity and the non-phagosomal character of the vacuoles themselves strongly suggests that the IRG system is triggered not by the presence of specific parasite components but rather by absence of specific host components on the vacuolar membrane.


Asunto(s)
Encephalitozoon cuniculi/inmunología , Encefalitozoonosis/inmunología , GTP Fosfohidrolasas/inmunología , Interferón gamma/inmunología , Animales , Supervivencia Celular , Encephalitozoon cuniculi/crecimiento & desarrollo , Encefalitozoonosis/microbiología , Fibroblastos , GTP Fosfohidrolasas/biosíntesis , GTP Fosfohidrolasas/genética , Inmunidad Innata , Membranas Intracelulares/inmunología , Ratones , Ratones Endogámicos C57BL , Necrosis , Fagosomas/inmunología , Vacuolas/inmunología
12.
Curr Opin Virol ; 9: 67-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25310497

RESUMEN

The membrane landscape of a cell often changes drastically upon infection by a virus. In the case of the well-studied positive strand RNA virus poliovirus, the short infection cycle induces vesicles and tubular structures early in infection, and double-membraned vesicles late in infection. In this review, the current understanding of membrane changes in a PV-infected cell, the host and viral factors that facilitate these changes, and how these changes may promote virus replication will be discussed. Host factors involved in membrane rearrangement during infection include components of the COPI and COPII secretory pathways, lipid kinases, and the autophagy pathway. The roles of cellular membranes include acting as a scaffold for the RNA replication complex and roles in exit of mature virus. Finally, recent studies suggesting that not all picornaviruses are truly 'non-enveloped' are discussed in the context of the field, raising the possibility that cell-derived membranes play a role in delivering poliovirus particles to the extracellular space.


Asunto(s)
Membrana Celular/virología , Interacciones Huésped-Patógeno , Membranas Intracelulares/virología , Poliovirus/fisiología , Liberación del Virus , Replicación Viral , Membrana Celular/inmunología , Membranas Intracelulares/inmunología
13.
Rev Neurol (Paris) ; 170(10): 570-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25194475

RESUMEN

Antibodies directed to intracellular neural antigens have been mainly described in paraneoplastic peripheral neuropathies and mostly includes anti-Hu and anti-CV2/CRMP5 antibodies. These antibodies occur with different patterns of neuropathy. With anti-Hu antibody, the most frequent manifestation is sensory neuronopathy with frequent autonomic involvement. With anti-CV2/CRMP5 the neuropathy is more frequently sensory and motor with an axonal or mixed demyelinating and axonal electrophysiological pattern. The clinical pattern of these neuropathies is in keeping with the cellular distribution of HuD and CRMP5 in the peripheral nervous system. Although present in high titer, these antibodies are probably not directly responsible for the neuropathy. Pathological and experimental studies indicate that cytotoxic T-cells are probably the main effectors of the immune response. These disorders contrast with those in which antibodies recognize a cell surface antigen and are probably responsible for the disease. The neuronal cell death and axonal degeneration which result from T-cell mediated immunity explains why treating these disorders remains challenging.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades del Sistema Nervioso Periférico/inmunología , Proteínas ELAV/inmunología , Humanos , Inmunidad Celular/inmunología , Membranas Intracelulares/inmunología , Neuronas/inmunología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
14.
Cytokine Growth Factor Rev ; 25(6): 641-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25007740

RESUMEN

Microbial nucleic acids induce potent innate immune responses by stimulating the expression of type I interferons. Cyclic GMP-AMP synthase (cGAS) is a cytosolic dsDNA sensor mediating the innate immunity to microbial DNA. cGAS is activated by dsDNA and catalyze the synthesis of a cyclic dinucleotide cGAMP with 2',5' and 3',5'phosphodiester linkages. cGAMP binds to the adaptor STING located on the endoplasmic reticulum membrane and mediates the recruitment and activation of the protein kinase TBK1 and transcription factor IRF3. Phosphorylated IRF3 translocates to the nucleus and initiates the transcription of the IFN-ß gene. The crystal structures of cGAS and its complex with dsDNA, STING and its complex with various cyclic dinucleotides have been determined recently. Here we summarize the results from these structural studies and provide an overview about the mechanism of cGAS activation by dsDNA, the catalytic mechanism of cGAS, and the structural basis of STING activation by cGAMP.


Asunto(s)
ADN/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Transducción de Señal/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/genética , Núcleo Celular/inmunología , ADN/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Interferón beta/genética , Interferón beta/inmunología , Membranas Intracelulares/inmunología , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Fosforilación/genética , Fosforilación/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/genética , Activación Transcripcional/genética , Activación Transcripcional/inmunología
15.
Curr Opin Immunol ; 26: 69-75, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24556403

RESUMEN

Noncanonical autophagy is utilized by phagocytes to kill and digest extracellular pathogens. This process is initiated at the cell surface by receptors that recruit elements of the autophagy machinery, like LC3, to the phagosome. Also known as LC3-associated phagocytosis, the intersection of autophagy and phagocytosis was initially described as a pathway that limits the proliferation of engulfed pathogens by expediting phagosome maturation. Emerging evidences suggest that this pathway confers previously unsuspected versatility to the immune response as it regulates functions like the interferon pathway, dead cell clearance, and antigen presentation. Here we review recent advances in understanding the functional consequences of linking the autophagy machinery to phagocytosis in innate immunity.


Asunto(s)
Autofagia/inmunología , Inmunidad Innata , Proteínas Asociadas a Microtúbulos/fisiología , Fagosomas/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Lisosomas/inmunología , Lisosomas/metabolismo , Fagosomas/metabolismo , Transducción de Señal/inmunología , Receptores Toll-Like/fisiología
16.
Curr Opin Virol ; 4: 71-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24480526

RESUMEN

Interferon inducible transmembrane (IFITM) proteins are a recently discovered family of cellular anti-viral proteins that restrict the replication of a number of enveloped and non-enveloped viruses. IFITM proteins are located in the plasma membrane and endosomal membranes, the main portals of entry for many viruses. Biochemical and membrane fusion studies suggest IFITM proteins have the ability to inhibit viral entry, possibly by modulating the fluidity of cellular membranes. Here we discuss the IFITM proteins, recent work on their mode of action, and future directions for research.


Asunto(s)
Interacciones Huésped-Patógeno , Interferones/inmunología , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Internalización del Virus , Virus/inmunología , Animales , Membrana Celular/inmunología , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo
17.
PLoS Pathog ; 9(10): e1003734, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204276

RESUMEN

Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fosfoproteínas/metabolismo , Tuberculosis/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Pared Celular/genética , Pared Celular/inmunología , Pared Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Endosomas/genética , Endosomas/inmunología , Endosomas/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Lisosomas/genética , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/microbiología , Fusión de Membrana/genética , Fusión de Membrana/inmunología , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Tuberculosis/genética , Tuberculosis/inmunología
19.
Immunology ; 139(1): 30-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23237080

RESUMEN

Phagocytes such as dendritic cells (DC) and macrophages employ phagocytosis to take up pathogenic bacteria into phagosomes, digest the bacteria and present the bacteria-derived peptide antigens to the adaptive immunity. Hence, efficient antigen presentation depends greatly on a well-regulated phagocytosis process. Lipids, particularly phosphoinositides, are critical components of the phagosomes. Phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3 ] is formed at the phagocytic cup, and as the phagosome seals off from the plasma membrane, rapid disappearance of PI(3,4,5)P3 is accompanied by high levels of phosphatidylinositol-3-phosphate (PI3P) formation. The sorting nexin (SNX) family consists of a diverse group of Phox-homology (PX) domain-containing cytoplasmic and membrane-associated proteins that are potential effectors of phosphoinositides. We hypothesized that SNX3, a small sorting nexin that contains a single PI3P lipid-binding PX domain as its only protein domain, localizes to phagosomes and regulates phagocytosis in DC. Our results show that SNX3 recruits to nascent phagosomes and silencing of SNX3 enhances phagocytic uptake of bacteria by DC. Furthermore, SNX3 competes with PI3P lipid-binding protein, early endosome antigen-1 (EEA1) recruiting to membranes. Our results indicate that SNX3 negatively regulates phagocytosis in DC possibly by modulating recruitment of essential PI3P lipid-binding proteins of the phagocytic pathways, such as EEA1, to phagosomal membranes.


Asunto(s)
Células Dendríticas/inmunología , Fagocitosis/fisiología , Fagosomas/inmunología , Nexinas de Clasificación/inmunología , Animales , Bacterias/genética , Bacterias/inmunología , Línea Celular Transformada , Línea Celular Tumoral , Células Dendríticas/citología , Humanos , Membranas Intracelulares/inmunología , Ratones , Fagosomas/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/inmunología , Estructura Terciaria de Proteína , Nexinas de Clasificación/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología
20.
J Immunol ; 189(9): 4488-95, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23002437

RESUMEN

Membranes of endolysosomal compartments in macrophages are often damaged by physical or chemical effects of particles ingested through phagocytosis or by toxins secreted by intracellular pathogens. This study identified a novel inducible activity in macrophages that increases resistance of phagosomes, late endosomes, and lysosomes to membrane damage. Pretreatment of murine macrophages with LPS, peptidoglycan, TNF-α, or IFN-γ conferred protection against subsequent damage to intracellular membranes caused by photooxidative chemistries or by phagocytosis of ground silica or silica microspheres. Phagolysosome damage was partially dependent on reactive oxygen species but was independent of the phagocyte oxidase. IFN-γ-stimulated macrophages from mice lacking the phagocyte oxidase inhibited escape from vacuoles by the intracellular pathogen Listeria monocytogenes, which suggested a role for this inducible renitence (resistance to pressure) in macrophage resistance to infection by pathogens that damage intracellular membranes. Renitence and inhibition of L. monocytogenes escape were partially attributable to heat shock protein-70. Thus, renitence is a novel, inducible activity of macrophages that maintains or restores the integrity of endolysosomal membranes.


Asunto(s)
Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Macrófagos/inmunología , Macrófagos/microbiología , Vacuolas/inmunología , Vacuolas/microbiología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/microbiología , Endosomas/inmunología , Endosomas/microbiología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/inmunología , Membranas Intracelulares/microbiología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fagosomas/inmunología , Fagosomas/microbiología , Presión/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...