Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nature ; 631(8019): 232-239, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811722

RESUMEN

Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.


Asunto(s)
Respiración de la Célula , Complejo III de Transporte de Electrones , Complejo I de Transporte de Electrón , Mitocondrias , Animales , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/química , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/ultraestructura , Modelos Moleculares , Fosforilación Oxidativa , Porcinos , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo
2.
Annu Rev Biophys ; 53(1): 147-168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38166176

RESUMEN

Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.


Asunto(s)
Dinámicas Mitocondriales , Dinámicas Mitocondriales/fisiología , Humanos , Animales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura
3.
Nature ; 626(7997): 169-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267577

RESUMEN

To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Membranas Mitocondriales , Movimiento , Proteínas de Transporte Vesicular , Humanos , Esclerosis Amiotrófica Lateral/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Mitocondrias/química , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/ultraestructura , Microscopía Electrónica , Imagenología Tridimensional , Sitios de Unión , Difusión , Factores de Tiempo , Mutación , Homeostasis
4.
Braz. j. morphol. sci ; 23(1): 57-74, jan.-mar. 2006. ilus
Artículo en Inglés | LILACS | ID: lil-467602

RESUMEN

The importance of apoptosis as a form of programmed cell death was recognized in the 1980s, whereas the central role of mitochondria in controlling this process was identifi ed in the mid-1990s. An important event in apoptosis is the collapse of the mitochondrial transmembrane potential (ÃØm), with the ensuing loss of the selective permeability of the inner membrane resulting in swelling of the hyperosmolar mitochondrial matrix. This event is known as the mitochondrial permeability transition (MPT). After swelling of the intermembrane space, the outer membrane ruptures, exposing the permeable inner membrane. An increasingly swollen matrix covered by the inner membrane eventually herniates into the cytoplasm through the breach formed in the outer membrane (OM). The increase in surface area of the inner mitochondrial membrane (IMM) involves the unfolding of membrane stored in the cristae. This membrane movement is osmotically driven since the cytoplasm has a lower osmolality. The proteins partly embedded in the inner membrane are thus exposed to the cytoplasm. In nine out of ten electron microscopy studies of isolated mitochondria expressing the permeability transition, the existing ruptures of the OMM were overlooked. The MPT can also be recognized in individual mitochondria by using fl uorescent probes that are not retained in these organelles once the ÃØm is lost. In cases in which there is no rupture of the OMM, cytochrome c must be released from mitochondria with impermeable inner membranes. Examination of several hundred of the more than 61,000 published papers on programmed cell death revealed that the key signaling events of apoptosis, such as the onset of the MPT, mitochondrial swelling and cytochrome c release to the cytoplasm, are infl uenced by factors such as the cell type and presence of apoptogenic agents...


Asunto(s)
Apoptosis , Permeabilidad de la Membrana Celular , Citocromos c , Microscopía Electrónica de Transmisión , Membranas Mitocondriales , Membrana Celular/ultraestructura , Membranas Mitocondriales/ultraestructura , Membranas/citología , Membrana Celular , Mitocondrias , Microdominios de Membrana/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...