Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.029
Filtrar
1.
Nat Commun ; 15(1): 8547, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358374

RESUMEN

Human induced pluripotent stem cells (iPSCs) have great potential in research, but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here, we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (CNMD, NANOG, SPP1), endoderm (CER1, EOMES, GATA6), mesoderm (APLNR, HAND1, HOXB7), and ectoderm (HES5, PAMR1, PAX6). Using these genes, we develop a machine learning-based scoring system, "hiPSCore", trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time, subjectivity, and resource use, thus enhancing iPSC quality for scientific and medical applications.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Control de Calidad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Diferenciación Celular/genética , Biomarcadores/metabolismo , Aprendizaje Automático , Endodermo/citología , Endodermo/metabolismo , Transcriptoma , Mesodermo/metabolismo , Mesodermo/citología , Línea Celular , Ectodermo/metabolismo , Ectodermo/citología , Organoides/metabolismo , Perfilación de la Expresión Génica/métodos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas de Dominio T Box
2.
Commun Biol ; 7(1): 1277, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375515

RESUMEN

Intestinal smooth muscle differentiation is a complex physico-biological process involving several different pathways. Here, we investigate the properties of Ca2+ waves in the developing intestinal mesenchyme using GCamp6f expressing mouse embryos and investigate their relationship with smooth muscle differentiation. We find that Ca2+ waves are absent in the pre-differentiation mesenchyme and start propagating immediately following α-SMA expression. Ca2+ waves are abrogated by CaV1.2 and gap-junction blockers, but are independent of the Rho pathway. The myosine light-chain kinase inhibitor ML-7 strongly disorganized or abolished Ca2+ waves, showing that perturbation of the contractile machinery at the myosine level also affected the upstream Ca2+ handling chain. Inhibiting Ca2+ waves and contractility with CaV1.2 blockers did not perturb circular smooth muscle differentiation at early stages. At later stages, CaV1.2 blockers abolished intestinal elongation and differentiation of the longitudinal smooth muscle, leading instead to the emergence of KIT-expressing interstitial cells of Cajal at the gut periphery. CaV1.2 blockers also drove apoptosis of already differentiated, CaV1.2-expressing smooth muscle and enteric neural cells. We provide fundamental new data on Ca2+ waves in the developing murine gut and their relation to myogenesis in this organ.


Asunto(s)
Señalización del Calcio , Diferenciación Celular , Mesodermo , Músculo Liso , Animales , Ratones , Músculo Liso/metabolismo , Músculo Liso/embriología , Mesodermo/metabolismo , Mesodermo/embriología , Mesodermo/citología , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Desarrollo de Músculos , Intestinos/embriología , Intestinos/citología
3.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39221968

RESUMEN

The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.


Asunto(s)
Células Endoteliales , Linfangiogénesis , Vasos Linfáticos , Factores de Transcripción , Animales , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citología , Ratones , Linfangiogénesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Movimiento Celular/genética , Proliferación Celular , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Mesodermo/metabolismo , Mesodermo/citología , Regulación del Desarrollo de la Expresión Génica , Linaje de la Célula
4.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39315665

RESUMEN

The intricate dynamics of Hes expression across diverse cell types in the developing vertebrate embryonic tail have remained elusive. To address this, we have developed an endogenously tagged Hes1-Achilles mouse line, enabling precise quantification of dynamics at the single-cell resolution across various tissues. Our findings reveal striking disparities in Hes1 dynamics between presomitic mesoderm (PSM) and preneural tube (pre-NT) cells. While pre-NT cells display variable, low-amplitude oscillations, PSM cells exhibit synchronized, high-amplitude oscillations. Upon the induction of differentiation, the oscillation amplitude increases in pre-NT cells. Additionally, our study of Notch inhibition on Hes1 oscillations unveils distinct responses in PSM and pre-NT cells, corresponding to differential Notch ligand expression dynamics. These findings suggest the involvement of separate mechanisms driving Hes1 oscillations. Thus, Hes1 demonstrates dynamic behaviour across adjacent tissues of the embryonic tail, yet the varying oscillation parameters imply differences in the information that can be transmitted by these dynamics.


Asunto(s)
Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Análisis de la Célula Individual , Factor de Transcripción HES-1 , Animales , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Ratones , Mesodermo/metabolismo , Mesodermo/citología , Mesodermo/embriología , Embrión de Mamíferos/metabolismo , Receptores Notch/metabolismo , Diferenciación Celular , Tipificación del Cuerpo , Somitos/metabolismo , Somitos/embriología , Desarrollo Embrionario/genética , Cola (estructura animal)/embriología
5.
Stem Cell Res Ther ; 15(1): 273, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218985

RESUMEN

BACKGROUND: Chronic lung disease of prematurity, called bronchopulmonary dysplasia (BPD), lacks effective therapies, stressing the need for preclinical testing systems that reflect human pathology for identifying causal pathways and testing novel compounds. Alveolar organoids derived from human pluripotent stem cells (hPSC) are promising test platforms for studying distal airway diseases like BPD, but current protocols do not accurately replicate the distal niche environment of the native lung. Herein, we investigated the contributions of cellular constituents of the alveolus and fetal respiratory movements on hPSC-derived alveolar organoid formation. METHODS: Human PSCs were differentiated in 2D culture into lung progenitor cells (LPC) which were then further differentiated into alveolar organoids before and after removal of co-developing mesodermal cells. LPCs were also differentiated in Transwell® co-cultures with and without human fetal lung fibroblast. Forming organoids were subjected to phasic mechanical strain using a Flexcell® system. Differentiation within organoids and Transwell® cultures was assessed by flow cytometry, immunofluorescence, and qPCR for lung epithelial and alveolar markers of differentiation including GATA binding protein 6 (GATA 6), E-cadherin (CDH1), NK2 Homeobox 1 (NKX2-1), HT2-280, surfactant proteins B (SFTPB) and C (SFTPC). RESULTS: We observed that co-developing mesenchymal progenitors promote alveolar epithelial type 2 cell (AEC2) differentiation within hPSC-derived lung organoids. This mesenchymal effect on AEC2 differentiation was corroborated by co-culturing hPSC-NKX2-1+ lung progenitors with human embryonic lung fibroblasts. The stimulatory effect did not require direct contact between fibroblasts and NKX2-1+ lung progenitors. Additionally, we demonstrate that episodic mechanical deformation of hPSC-derived lung organoids, mimicking in situ fetal respiratory movements, increased AEC2 differentiation without affecting proximal epithelial differentiation. CONCLUSION: Our data suggest that biophysical and mesenchymal components promote AEC2 differentiation within hPSC-derived distal organoids in vitro.


Asunto(s)
Diferenciación Celular , Pulmón , Organoides , Humanos , Organoides/citología , Organoides/metabolismo , Pulmón/citología , Pulmón/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Técnicas de Cocultivo/métodos , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo
6.
Nature ; 632(8027): 1101-1109, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112711

RESUMEN

The mouse small intestine shows profound variability in gene expression along the crypt-villus axis1,2. Whether similar spatial heterogeneity exists in the adult human gut remains unclear. Here we use spatial transcriptomics, spatial proteomics and single-molecule fluorescence in situ hybridization to reconstruct a comprehensive spatial expression atlas of the adult human proximal small intestine. We describe zonated expression and cell type representation for epithelial, mesenchymal and immune cell types. We find that migrating enterocytes switch from lipid droplet assembly and iron uptake at the villus bottom to chylomicron biosynthesis and iron release at the tip. Villus tip cells are pro-immunogenic, recruiting γδ T cells and macrophages to the tip, in contrast to their immunosuppressive roles in mouse. We also show that the human small intestine contains abundant serrated and branched villi that are enriched at the tops of circular folds. Our study presents a detailed resource for understanding the biology of the adult human small intestine.


Asunto(s)
Biología Celular , Perfilación de la Expresión Génica , Intestino Delgado , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Movimiento Celular , Quilomicrones/biosíntesis , Enterocitos/metabolismo , Enterocitos/citología , Células Epiteliales , Hibridación Fluorescente in Situ , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Hierro/metabolismo , Gotas Lipídicas/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Proteómica , Imagen Individual de Molécula , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcriptoma
7.
Stem Cell Reports ; 19(9): 1304-1319, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39178847

RESUMEN

Effective lineage-specific differentiation is essential to fulfilling the great potentials of human pluripotent stem cells (hPSCs). In this report, we investigate how modulation of medium pH and associated metabolic changes influence mesendoderm differentiation from hPSCs. We show that daily medium pH fluctuations are critical for the heterogeneity of cell fates in the absence of exogenous inducers. Acidic environment alone leads to cardiomyocyte generation without other signaling modulators. In contrast, medium alkalinization is inhibitory to cardiac fate even in the presence of classic cardiac inducers. We then demonstrate that acidic environment suppresses glycolysis to facilitate cardiac differentiation, while alkaline condition promotes glycolysis and diverts the differentiation toward other cell types. We further show that glycolysis inhibition or AMPK activation can rescue cardiac differentiation under alkalinization, and glycolysis inhibition alone can drive cardiac cell fate. This study highlights that pH changes remodel metabolic patterns and modulate signaling pathways to control cell fate.


Asunto(s)
Diferenciación Celular , Glucólisis , Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Acidosis/metabolismo , Endodermo/citología , Endodermo/metabolismo , Linaje de la Célula/efectos de los fármacos , Mesodermo/citología , Mesodermo/metabolismo , Medios de Cultivo/farmacología , Medios de Cultivo/química , Transducción de Señal/efectos de los fármacos , Línea Celular , Proteínas Quinasas Activadas por AMP/metabolismo
8.
Nat Commun ; 15(1): 6948, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138165

RESUMEN

Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.


Asunto(s)
Proteínas Morfogenéticas Óseas , Suturas Craneales , Mesodermo , Osteogénesis , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/genética , Suturas Craneales/metabolismo , Suturas Craneales/embriología , Suturas Craneales/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Mesodermo/metabolismo , Mesodermo/embriología , Mesodermo/citología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Cráneo/embriología , Análisis de la Célula Individual , Mutación
9.
Biol Open ; 13(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39162010

RESUMEN

Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.


Asunto(s)
Movimiento Celular , Modelos Biológicos , Xenopus , Animales , Xenopus/embriología , Mesodermo/citología , Mesodermo/embriología , Adhesión Celular , Xenopus laevis/embriología , Simulación por Computador
10.
Dev Cell ; 59(16): 2118-2133.e8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39106861

RESUMEN

Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.


Asunto(s)
Diferenciación Celular , Mitocondrias , Células Madre Embrionarias de Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno , Vía de Señalización Wnt , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Diferenciación Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Histonas/metabolismo , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo
11.
Cell Stem Cell ; 31(9): 1315-1326.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996472

RESUMEN

Recent advances have made modeling human small intestines in vitro possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an in vivo-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.


Asunto(s)
Intestino Delgado , Ingeniería de Tejidos , Humanos , Intestino Delgado/citología , Ingeniería de Tejidos/métodos , Diferenciación Celular , Mesodermo/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
12.
Adv Biol (Weinh) ; 8(10): e2400081, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38977421

RESUMEN

Embryoid bodies (EB) are sensitive to changes in the culture conditions. Recent studies show that the addition of PEG 300 to culture medium affects cell growth and differentiation; however, its effect on the embryoid body is unclear. This study aims to understand the role of PEG 300 in the process of EB formation and germ layer differentiation. EBs formed more efficiently and differentiated toward the mesoderm when cultured in a medium supplemented with appropriate concentrations of PEG 300. The expression of T/Bry, a marker of mesodermal differentiation, increases in EBs in the PEG group, and the expression of TUBB3 generally decreases, showing a quantitative relationship with PEG. Furthermore, further differentiation of PEG-pretreated EB into vascular smooth muscle cells (VSMCs) by directional induction shows that PEG 300-pretreated induced VSMCs have higher expression of phenotypic markers and greater secretory and contractile functions. This study highlights the role of PEG 300 in the culture medium during EB differentiation, which can significantly enhance mesodermal gene expression and the efficiency of subsequent differentiation into smooth muscle cells and other target cells.


Asunto(s)
Diferenciación Celular , Cuerpos Embrioides , Células Madre Pluripotentes Inducidas , Mesodermo , Cuerpos Embrioides/efectos de los fármacos , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Diferenciación Celular/efectos de los fármacos , Mesodermo/citología , Mesodermo/metabolismo , Mesodermo/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Polietilenglicoles/farmacología , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Animales , Medios de Cultivo/farmacología
13.
Exp Hematol ; 138: 104587, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074529

RESUMEN

A diverse array of protocols have been established for the directed differentiation of human pluripotent stem cells (hPSCs) into a variety of cell types, including blood cells, for modeling development and disease, and for the development of cell-based therapeutics. These protocols recapitulate various signaling requirements essential for the establishment of the hematopoietic systems during embryonic development. However, in many instances, the functional properties of those progenitors, and their relevance to human development, remains unclear. The human embryo, much like other vertebrate model organisms, generates hematopoietic cells via successive anatomical location- and time-specific waves, each yielding cells with distinct functional and molecular characteristics. Each of these progenitor "waves" is characterized at the time of emergence of the direct hematopoietic progenitor in the vasculature, the hemogenic endothelial cell (HEC). Critically, despite decades of study in model organisms, the origins of each of these HEC populations remain unclear. Fortunately, through the directed differentiation of hPSCs, recent insights have been made into the earliest origins of each HEC population, revealing that each arises from transcriptionally and phenotypically distinct subsets of nascent mesoderm. Here, we outline the protocols to generate each mesodermal and HEC population via the formation of embryoid bodies and subsequent stage-specific signal manipulation. Through implementation of these discrete signal manipulations, it is possible to obtain human HEC populations that are exclusively extraembryonic-like or exclusively intraembryonic-like, enabling comparative developmental biology studies or specific translational applications.


Asunto(s)
Diferenciación Celular , Hemangioblastos , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Hemangioblastos/citología , Hemangioblastos/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Mesodermo/citología , Hematopoyesis , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo
14.
Cell Stem Cell ; 31(8): 1113-1126.e6, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981471

RESUMEN

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Herein, we develop a human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on the PSM tissues cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and the PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the biochemical and biomechanical events that guide somite formation.


Asunto(s)
Microfluídica , Modelos Biológicos , Células Madre Pluripotentes , Somitos , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Somitos/citología , Somitos/metabolismo , Microfluídica/métodos , Desarrollo Embrionario , Mesodermo/citología , Diferenciación Celular
15.
Sci Adv ; 10(29): eadl6366, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028807

RESUMEN

Physical processes ultimately shape tissue during development. Two emerging proposals are that cells migrate toward stiffer tissue (durotaxis) and that the extent of cell rearrangements reflects tissue phase, but it is unclear whether and how these concepts are related. Here, we identify fibronectin-dependent tissue stiffness as a control variable that underlies and unifies these phenomena in vivo. In murine limb bud mesoderm, cells are either caged, move directionally, or intercalate as a function of their location along a stiffness gradient. A modified Landau phase equation that incorporates tissue stiffness accurately predicts cell diffusivity upon loss or gain of fibronectin. Fibronectin is regulated by WNT5A-YAP feedback that controls cell movements, tissue shape, and skeletal pattern. The results identify a key determinant of phase transition and show how fibronectin-dependent directional cell movement emerges in a mixed-phase environment in vivo.


Asunto(s)
Movimiento Celular , Fibronectinas , Mesodermo , Fibronectinas/metabolismo , Animales , Mesodermo/metabolismo , Mesodermo/citología , Ratones , Proteína Wnt-5a/metabolismo
16.
Dev Growth Differ ; 66(5): 320-328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38925637

RESUMEN

During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.


Asunto(s)
Placa Neural , Tubo Neural , Xenopus laevis , Animales , Tubo Neural/embriología , Tubo Neural/citología , Tubo Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Placa Neural/citología , Xenopus laevis/embriología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Microscopía de Fuerza Atómica , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología
17.
Curr Top Dev Biol ; 160: 1-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38937029

RESUMEN

The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.


Asunto(s)
Morfogénesis , Glándulas Salivales , Glándulas Salivales/embriología , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Animales , Humanos , Membrana Basal/metabolismo , Movimiento Celular , Fenómenos Biomecánicos , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Adhesión Celular
18.
Nat Commun ; 15(1): 5210, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890321

RESUMEN

Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.


Asunto(s)
Embrión de Mamíferos , Endodermo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Análisis de la Célula Individual , Animales , Endodermo/citología , Endodermo/metabolismo , Endodermo/embriología , Porcinos , Ratones , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Diferenciación Celular , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Transcriptoma , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Linaje de la Célula , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Transición Epitelial-Mesenquimal/genética
19.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856082

RESUMEN

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.


Asunto(s)
Proliferación Celular , Mesodermo , Modelos Biológicos , Morfogénesis , Tubo Neural , Animales , Mesodermo/embriología , Mesodermo/citología , Tubo Neural/embriología , Tubo Neural/citología , Codorniz/embriología , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Viscosidad
20.
Dev Cell ; 59(12): 1487-1488, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889690

RESUMEN

In this issue of Developmental Cell, Bolondi et al. systematically assesses neuro-mesodermal progenitor (NMP) dynamics by combining a mouse stem-cell-based embryo model with molecular recording of single cells, shedding light on the dynamics of neural tube and paraxial mesoderm formation during mammalian development.


Asunto(s)
Mesodermo , Animales , Ratones , Mesodermo/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Tubo Neural/citología , Tubo Neural/embriología , Diferenciación Celular/fisiología , Células Madre/citología , Células Madre/metabolismo , Tipificación del Cuerpo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...