Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.111
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731602

RESUMEN

Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.


Asunto(s)
Ingeniería Metabólica , Plantas , Metabolismo Secundario , Plantas/metabolismo , Ingeniería Metabólica/métodos , Biología Sintética/métodos
2.
Molecules ; 29(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38731634

RESUMEN

Cellular slime molds are excellent model organisms in the field of cell and developmental biology because of their simple developmental patterns. During our studies on the identification of bioactive molecules from secondary metabolites of cellular slime molds toward the development of novel pharmaceuticals, we revealed the structural diversity of secondary metabolites. Cellular slime molds grow by feeding on bacteria, such as Klebsiella aerogenes and Escherichia coli, without using medium components. Although changing the feeding bacteria is expected to affect dramatically the secondary metabolite production, the effect of the feeding bacteria on the production of secondary metabolites is not known. Herein, we report the isolation and structure elucidation of clavapyrone (1) from Dictyostelium clavatum, intermedipyrone (2) from D. magnum, and magnumiol (3) from D. intermedium. These compounds are not obtained from usual cultural conditions with Klebsiella aerogenes but obtained from coincubated conditions with Pseudomonas spp. The results demonstrate the diversity of the secondary metabolites of cellular slime molds and suggest that widening the range of feeding bacteria for cellular slime molds would increase their application potential in drug discovery.


Asunto(s)
Dictyostelium , Pseudomonas , Pironas , Pironas/química , Pironas/farmacología , Pseudomonas/metabolismo , Pseudomonas/química , Estructura Molecular , Metabolismo Secundario
3.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734756

RESUMEN

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Asunto(s)
Chaetomium , Histona Desacetilasas , Familia de Multigenes , Policétidos , Metabolismo Secundario , Chaetomium/genética , Chaetomium/enzimología , Chaetomium/metabolismo , Metabolismo Secundario/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Policétidos/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Vías Biosintéticas/genética , Epigénesis Genética
4.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717668

RESUMEN

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Asunto(s)
Sedimentos Geológicos , Familia de Multigenes , Filogenia , Microbiología del Suelo , Regiones Antárticas , Sedimentos Geológicos/microbiología , Metabolismo Secundario/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/clasificación , Genoma Bacteriano , Biotecnología/métodos , Vías Biosintéticas/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo
5.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760710

RESUMEN

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Rosa , Rosa/genética , Rosa/metabolismo , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Metabolismo Secundario/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis
6.
Adv Appl Microbiol ; 127: 143-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763527

RESUMEN

Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.


Asunto(s)
Penicilinas , Penicillium chrysogenum , Penicillium chrysogenum/metabolismo , Penicillium chrysogenum/genética , Penicilinas/biosíntesis , Penicilinas/metabolismo , Biotecnología , Biodegradación Ambiental , Metabolismo Secundario , Microbiología Industrial
7.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732208

RESUMEN

The current study investigated the impact of cold stress on the morphological, physiological, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures. The study revealed significant stress-induced changes in the production of secondary antioxidant metabolites. According to gas chromatography-mass spectrometry (GC-MS) analyses, the stress conditions profoundly altered the metabolism of J. regia microclones. Although the overall spectrum of metabolites was reduced, the production of key secondary antioxidant metabolites significantly increased. Notably, there was a sevenfold (7×) increase in juglone concentration. These findings are crucial for advancing walnut metabolomics and enhancing our understanding of plant responses to abiotic stress factors. Additionally, study results aid in identifying the role of individual metabolites in these processes, which is essential for developing strategies to improve plant resilience and tolerance to adverse conditions.


Asunto(s)
Antioxidantes , Respuesta al Choque por Frío , Juglans , Fitoquímicos , Juglans/metabolismo , Juglans/química , Fitoquímicos/metabolismo , Antioxidantes/metabolismo , Metabolismo Secundario , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Naftoquinonas
8.
Sci Total Environ ; 932: 173023, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719060

RESUMEN

This study addresses the increasing concern regarding cyanotoxin contamination of water bodies, highlighting the diversity of these toxins and their potential health implications. Cyanobacteria, which are prevalent in aquatic environments, produce toxic metabolites, raising concerns regarding human exposure and associated health risks, including a potential increase in cancer risk. Although existing research has primarily focused on well-known cyanotoxins, recent technological advancements have revealed numerous unknown cyanotoxins, necessitating a comprehensive assessment of multiple toxin categories. To enhance the cyanotoxin databases, we optimized the CyanoMetDB cyanobacterial secondary metabolites database by incorporating secondary fragmentation patterns using the Mass Frontier fragmentation data prediction software. Water samples from diverse locations in Shanghai were analyzed using high-resolution mass spectrometry. Subsequently, the toxicity of cyanobacterial metabolites in the water samples was examined through acute toxicity assays using the crustacean Thamnocephalus platyurus. After 24 h of exposure, the semi-lethal concentrations (LC50) of the water samples ranged from 0.31 mg L-1 to 1.78 mg L-1 (MC-LR equivalent concentration). Our findings revealed a critical correlation between the overall concentration of cyanobacterial metabolites and toxicity. The robust framework and insights of this study underscore the need for an inclusive approach to water quality management, emphasizing continuous efforts to refine detection methods and comprehend the broader ecological impact of cyanobacterial blooms on aquatic ecosystems.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Cianobacterias/metabolismo , China , Contaminantes Químicos del Agua/análisis , Microcistinas/análisis , Microcistinas/metabolismo , Toxinas Bacterianas/análisis , Animales , Metabolismo Secundario , Toxinas Marinas/análisis , Toxinas de Cianobacterias , Ciudades
9.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693487

RESUMEN

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Genoma Fúngico , Familia de Multigenes , Metabolismo Secundario , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo , Metabolismo Secundario/genética , Zea mays/microbiología , Zea mays/genética , Estudio de Asociación del Genoma Completo , Genes Fúngicos , Secuenciación Completa del Genoma , Variación Genética
10.
BMC Plant Biol ; 24(1): 362, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702604

RESUMEN

BACKGROUND: There are numerous challenges associated with producing desired amounts of secondary metabolites (SMs), which are mostly unique and cannot be chemically synthesized. Many studies indicate that nanoparticles (NPs) can boost the production of SMs. Still, the precise manner in which NPs induce metabolic changes remains unidentified. This study examines the influence of eco-friendly silver NPs (AgNPs) on the chemical makeup and toxicity of Pimpinella anisum L. (anise). RESULTS: AgNPs were introduced into anise callus cultures at different concentrations (0, 1.0, 5.0, 10, and 20 mg/L). The induced oxidative stress was tracked over intervals of 7, 14, 28, and 35 days. Chemical composition evaluations were carried out on the 35th day. Within the first 14 days, plant stress was evident, though the plant adapted to the stress later on. Notably, the plant showed high tolerance at 1 mg/L and 5 mg/L concentrations despite increased toxicity levels. However, relatively high toxicity levels were identified at 10 and 20 mg/L. The AgNP-induced stress significantly impacted anise SMs, particularly affecting fatty acid content. In the 10 and 20 mg/L AgNP groups, essential metabolites, including palmitic and linoleic acid, showed a significant increase. Polyunsaturated (omega) and monounsaturated fatty acids, vital for the food and pharmaceutical industries, saw substantial growth in the 1 and 5 mg/L AgNP groups. For the first time, vanillyl alcohol and 4-Hydroxybenzoic acid were detected along with various phenolic compounds, such as t-anethole, Salicylic acid, and Thiamazole. CONCLUSION: AgNPs can function as an elicitor to efficiently generate essential SMs such as omegas and phenolic compounds in anise callus culture. This study explores the application of AgNPs as plant elicitors in anise SM production, offering invaluable insight into potential uses.


Asunto(s)
Nanopartículas del Metal , Pimpinella , Metabolismo Secundario , Plata , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Pimpinella/metabolismo , Pimpinella/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
11.
Arch Microbiol ; 206(6): 268, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762847

RESUMEN

Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.


Asunto(s)
Actinobacteria , Agricultura , Control Biológico de Vectores , Actinobacteria/metabolismo , Animales , Agentes de Control Biológico/metabolismo , Metabolismo Secundario , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Plaguicidas/metabolismo , Spodoptera/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Nematodos/microbiología , Endófitos/metabolismo
12.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611713

RESUMEN

This study provides a comprehensive computational exploration of the inhibitory activity and metabolic pathways of 8-methoxypsoralen (8-MP), a furocoumarin derivative used for treating various skin disorders, on cytochrome P450 (P450). Employing quantum chemical DFT calculations, molecular docking, and molecular dynamics (MD) simulations analyses, the biotransformation mechanisms and the active site binding profile of 8-MP in CYP1B1 were investigated. Three plausible inactivation mechanisms were minutely scrutinized. Further analysis explored the formation of reactive metabolites in subsequent P450 metabolic processes, including covalent adduct formation through nucleophilic addition to the epoxide, 8-MP epoxide hydrolysis, and non-CYP-catalyzed epoxide ring opening. Special attention was paid to the catalytic effect of residue Phe268 on the mechanism-based inactivation (MBI) of P450 by 8-MP. Energetic profiles and facilitating conditions revealed a slight preference for the C4'=C5' epoxidation pathway, while recognizing a potential kinetic competition with the 8-OMe demethylation pathway due to comparable energy demands. The formation of covalent adducts via nucleophilic addition, particularly by phenylalanine, and the generation of potentially harmful reactive metabolites through autocatalyzed ring cleavage are likely to contribute significantly to P450 metabolism of 8-MP. Our findings highlight the key role of Phe268 in retaining 8-MP within the active site of CYP1B1, thereby facilitating initial oxygen addition transition states. This research offers crucial molecular-level insights that may guide the early stages of drug discovery and risk assessment related to the use of 8-MP.


Asunto(s)
Furocumarinas , Metoxaleno , Metoxaleno/farmacología , Simulación del Acoplamiento Molecular , Metabolismo Secundario , Furocumarinas/farmacología , Compuestos Epoxi
13.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612446

RESUMEN

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Asunto(s)
Camellia sinensis , Catequina , Humanos , Metabolismo Secundario , Exones , Cromosomas Humanos Par 15 , Camellia sinensis/genética ,
14.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612520

RESUMEN

Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.


Asunto(s)
Arabidopsis , Genes myb , Factores de Transcripción/genética , Filogenia , Metabolismo Secundario , Arabidopsis/genética , Flavonoides
15.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656376

RESUMEN

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces coelicolor , Antraquinonas/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoisocromanquinonas , Represión Catabólica , Glucosa/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Prodigiosina/metabolismo , Metabolismo Secundario/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
mSystems ; 9(5): e0033924, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38619244

RESUMEN

Pseudomonas aeruginosa is a ubiquitous Gram-negative opportunistic pathogen with remarkable phylogenetic and phenotypic variabilities. In this work, we applied classical molecular networking analysis to secondary metabolite profiling data from seven Pseudomonas aeruginosa strains, including five clinical isolates from the lung secretions of people with cystic fibrosis (CF). We provide three vignettes illustrating how secondary metabolite profiling aids in the identification of rare genomics traits in P. aeruginosa. First, we describe the identification of a previously unreported class of acyl putrescines produced by isolate mFLRO1. Secondary analysis of publicly available metabolomics data revealed that acyl putrescines are produced by <5% of P. aeruginosa strains. Second, we show that isolate SH3A does not produce di-rhamnolipids. Whole-genome sequencing and comparative genomics revealed that SH3A cannot produce di-rhamnolipids because its genome belongs to clade 5 of the P. aeruginosa phylogenetic tree. Previous phylogenetic analysis of thousands of P. aeruginosa strains concluded that <1% of publicly available genome sequences contribute to this clade. Last, we show that isolate SH1B does not produce the phenazine pyocyanin or rhamnolipids because it has a one-base insertion frameshift mutation (678insC) in the gene rhlR, which disrupts rhl-driven quorum sensing. Secondary analysis of the tens of thousands of publicly available genomes in the National Center for Biotechnology Information (NCBI) and the Pseudomonas Genome Database revealed that this mutation was present in only four P. aeruginosa genomes. Taken together, this study highlights that secondary metabolite profiling combined with genomic analysis can identify rare genetic traits of P. aeruginosa isolates.IMPORTANCESecondary metabolite profiling of five Pseudomonas aeruginosa isolates from cystic fibrosis sputum captured three traits present in <1%-5% of publicly available data, pointing to how our current library of P. aeruginosa strains may not represent the diversity within this species or the genetic variance that occurs in the CF lung.


Asunto(s)
Fibrosis Quística , Genoma Bacteriano , Filogenia , Pseudomonas aeruginosa , Metabolismo Secundario , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/aislamiento & purificación , Humanos , Genoma Bacteriano/genética , Fibrosis Quística/microbiología , Metabolismo Secundario/genética , Glucolípidos/metabolismo , Genómica , Infecciones por Pseudomonas/microbiología , Metabolómica , Metaboloma
17.
Artículo en Inglés | MEDLINE | ID: mdl-38643812

RESUMEN

Interspecific interactions are central to ecological research. Plants produce toxic plant secondary metabolites (PSMs) as a defense mechanism against herbivore overgrazing, prompting their gradual adaptation to toxic substances for tolerance or detoxification. P450 enzymes in herbivore livers bind to PSMs, whereas UDP-glucuronosyltransferase and glutathione S-transferase increase the hydrophobicity of the bound PSMs for detoxification. Intestinal microorganisms such as Bacteroidetes metabolize cellulase and other macromolecules to break down toxic components. However, detoxification is an overall response of the animal body, necessitating coordination among various organs to detoxify ingested PSMs. PSMs undergo detoxification metabolism through the liver and gut microbiota, evidenced by increased signaling processes of bile acids, inflammatory signaling molecules, and aromatic hydrocarbon receptors. In this context, we offer a succinct overview of how metabolites from the liver and gut microbiota of herbivores contribute to enhancing metabolic PSMs. We focused mainly on elucidating the molecular communication between the liver and gut microbiota involving endocrine, immune, and metabolic processes in detoxification. We have also discussed the potential for future alterations in the gut of herbivores to enhance the metabolic effects of the liver and boost the detoxification and metabolic abilities of PSMs.


Asunto(s)
Microbioma Gastrointestinal , Herbivoria , Hígado , Plantas , Microbioma Gastrointestinal/fisiología , Animales , Hígado/metabolismo , Plantas/metabolismo , Inactivación Metabólica , Metabolismo Secundario
18.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668807

RESUMEN

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Glicósido Hidrolasas , Histonas , Lisina , Familia de Multigenes , Penicillium , Metabolismo Secundario , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Histonas/genética , Lisina/metabolismo , Lisina/biosíntesis , Metilación , Penicillium/genética , Penicillium/enzimología , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Reproducción Asexuada/genética , Metabolismo Secundario/genética
19.
Methods Mol Biol ; 2788: 171-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656514

RESUMEN

Plants produce diverse specialized metabolites (SMs) that do not participate in plant growth and development but help them adapt to various environmental conditions. In addition to aiding in plant adaptation, different SMs serve as active ingredients for pharmaceutical and cosmetics products. However, despite their significant role in plant adaptation and industrial importance, the genes involved in the biosynthesis and regulation of many SMs remain largely unknown. This hinders deciphering the specific role of SMs in plant adaptation and limits their industrial utilization. Since many SMs pathway genes are expected to act in tight association with each other within a coexpression network, the network biology approach, such as weighted gene coexpression network analysis, could be used to identify the unknown genes. This chapter describes a workflow for constructing a gene coexpression network to identify genes that could be associated with the biosynthesis and regulation of SMs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Plantas , Metabolismo Secundario , Metabolismo Secundario/genética , Plantas/genética , Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Genes de Plantas
20.
World J Microbiol Biotechnol ; 40(5): 156, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587708

RESUMEN

In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.


Asunto(s)
Streptomyces , Streptomyces/genética , Metabolismo Secundario/genética , Mapeo Cromosómico , Biología Computacional , Ingeniería Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA