Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
PeerJ ; 12: e18106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346051

RESUMEN

The yield and concentration of secondary metabolites (SMs) in plants can vary due to numerous challenges such as dynamic environmental conditions, moisture, soil quality, soil organic matter and plant genetics. To obtain a good yield of SMs novel elicitation approaches, such as the use of biotic and abiotic stressors, genetic modifications, and optimized growth conditions, have been practiced, particularly the use of selenium nanoparticles (SeNPs) and light emitting diode (LED) interaction through employing tissue culture technique. In the present study, in vitro callus cultures of sandalwood (Santalum album L.) were subjected to elicitation with different concentrations of SeNPs with doses of 30 µg/L, 60 µg/L, and 90 µg/L in combination with green (∼550 nm), red (∼660 nm) and blue (∼460 nm) LED lights. Interaction of these treatments produced 16 treatments replicated three times in 48 test tubes. The results were analysed using two-way ANOVA and Tukey's HSD test. The study revealed that synergistic interaction between SeNPs and LED light wavelengths significantly enhanced callus growth and secondary metabolite (SM) production eliciting callus cultures with blue LED light and a dose of 90 µg/L SeNPs resulted in an increase in callus growth including fresh weight, dry weight, and the number of shoot branches per callus. This combined treatment positively influenced the functions of major bioactive antioxidants such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Furthermore, the concentrations of essential secondary metabolites, including total phenolic, total saponins, casein/BSA/PVPP-bound tannins, flavan-3-ols, and tocopherols experienced substantial elevation under the synergistic influence of SeNPs and LED light conditions. The sandalwood plants produced through the callus culturing technique using optimized SeNPs and LED lights show an enhanced yield of secondary metabolites, which will be very useful and potential for pharmaceutical, cosmetic and various other industries to discover and develop novel products.


Asunto(s)
Luz , Santalum , Selenio , Santalum/metabolismo , Selenio/farmacología , Selenio/metabolismo , Nanopartículas/química , Metabolismo Secundario/efectos de los fármacos , Técnicas de Cultivo de Tejidos/métodos , Antioxidantes/metabolismo , Antioxidantes/farmacología
2.
BMC Plant Biol ; 24(1): 872, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294576

RESUMEN

Nilgirianthus ciliatus, extensively exploited for its pharmacological properties, is now classified as vulnerable. In vitro micropropagation offers a sustainable approach for ecological conservation and rational utilization of this biodiversity resource. This study aimed to reduce endophytes during in vitro propagation and isolating antimicrobial-resistant endophytes from N. ciliatus by employing various concentrations and exposure times of Plant Preservative Mixture (PPM). Optimal results were observed when nodal explants treated with 0.3% PPM for 8 h, followed by inoculation in Murashige and Skoog (MS) medium supplemented with 3 mg/L 6-benzylaminopurine (BAP) and 0.3% PPM. This protocol achieved 82% shoot regeneration with minimal endophytic contamination, suggesting that the duration of explant exposure to PPM significantly influences endophyte reduction. Two antimicrobial-resistant endophytes were isolated and identified as Bacillus cereus and Acinetobacter pittii through 16S rDNA sequencing. These endophytes exhibited plant growth-promoting characteristics, including amylolytic, proteolytic, lipolytic activities, indole-3-acetic acid production, phosphate solubilization, and stress tolerance. In vivo application of these endophytes as bioinoculants to N. ciliatus not only improved growth parameters but also significantly increased the levels of pharmacologically important compounds, squalene, and stigmasterol, as confirmed by High-performance thin-layer chromatography (HPTLC). This study demonstrates that PPM is a promising alternative for sustainable micropropagation of N. ciliatus. Furthermore, it highlights the potential of antimicrobial-resistant endophytes as bioinoculants to improve growth and medicinal value, offering a sustainable solution for conservation and large-scale cultivation of this species.


Asunto(s)
Endófitos , Endófitos/fisiología , Regeneración/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Antiinfecciosos/farmacología
3.
Plant Physiol Biochem ; 214: 108930, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013356

RESUMEN

Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Selenioso/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Plantones/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
4.
Plant Physiol Biochem ; 214: 108876, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945097

RESUMEN

The present experiment was done to study the interactive effects of soil nitrogen (N) amendments and elevated ozone (O3) (N-O3) on a medicinal plant, lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. The experiment used two doses of inorganic soil nitrogen (N1, recommended and N2, 1.5-times recommended dose) in open-top chambers under ambient and elevated (ambient + 15 ppb and ambient + 30 ppb) O3 conditions. To analyze various characteristics, samples were collected at 45 and 90 days after transplantation (DAT). Additionally, at 110 days after transplantation (DAT), the metabolite contents of the leaves and essential oils were analyzed. The present study aims to investigate the mechanistic approach involving the crosstalk between antioxidant production and secondary metabolite biosynthesis in lemongrass upon N-O3 interactions. The present experiment showed that N amendments can be an efficient measure to manage O3 injury in plants, along with ensuring a balance between primary and secondary metabolic pathways, thus sustaining the plant defense and production of bioactive compounds, simultaneously. Under N-O3, not only the Halliwell asada pathway was stimulated resulting in the increased activities and concentrations of antioxidant pools; the shikimate, phenylpropanoid and mevalonic acid pathways were also invigorated, producing more number and contents of secondary metabolites (SMs), compared with plants that were not treated with N doses. This study suggests that soil nitrogen amendments will improve the therapeutic qualities of lemongrass, along with the strengthening of its antioxidant machinery, upon exposure to O3 stress.


Asunto(s)
Antioxidantes , Cymbopogon , Nitrógeno , Ozono , Ozono/farmacología , Nitrógeno/metabolismo , Antioxidantes/metabolismo , Cymbopogon/metabolismo , Cymbopogon/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Aceites Volátiles/metabolismo
5.
Sci Rep ; 14(1): 12759, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834771

RESUMEN

Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) µmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.


Asunto(s)
Ocimum basilicum , Hojas de la Planta , Metabolismo Secundario , Ocimum basilicum/metabolismo , Ocimum basilicum/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Metabolismo Secundario/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Metabolómica/métodos , Flavonoides/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Oxilipinas/metabolismo
6.
Plant Physiol Biochem ; 212: 108789, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850727

RESUMEN

Role of redox homeostasis in fruit ripening of Capsicum annuum L. with oxidative metabolism was studied. The research aims the ability to reduce agents during postharvest storage on fruit for delayed ripening with the regulation of oxidative stress. Thus, we applied 10 mM reduced glutathione (GSH) to fruit as pretreatment followed by 1 mM hydrogen peroxide (H2O2) as ripening-inducing treatment and observed during 7 days of storage at 25 °C. A decrease in total soluble solid and firmness under H2O2, was increased while dehydration in tissue was decreased by GSH pretreatment. Glutathione regulated the turnover of organic acids to reducing sugars with higher activity of NADP malic enzyme that sustained the fruit coat photosynthesis through chlorophyll fluorescence, pigment composition, and photosystem II activity. Malondialdehyde accumulation was inversely correlated with GSH content and antioxidative enzyme activity that reduced loss of cell viability. Conclusively, regulation of oxidative stress with GSH may be effective in the extension of shelf life under postharvest storage.


Asunto(s)
Capsicum , Frutas , Glutatión , Oxidación-Reducción , Capsicum/metabolismo , Capsicum/efectos de los fármacos , Glutatión/metabolismo , Frutas/metabolismo , Frutas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Metabolismo Secundario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Almacenamiento de Alimentos/métodos , Malondialdehído/metabolismo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
7.
BMC Plant Biol ; 24(1): 362, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702604

RESUMEN

BACKGROUND: There are numerous challenges associated with producing desired amounts of secondary metabolites (SMs), which are mostly unique and cannot be chemically synthesized. Many studies indicate that nanoparticles (NPs) can boost the production of SMs. Still, the precise manner in which NPs induce metabolic changes remains unidentified. This study examines the influence of eco-friendly silver NPs (AgNPs) on the chemical makeup and toxicity of Pimpinella anisum L. (anise). RESULTS: AgNPs were introduced into anise callus cultures at different concentrations (0, 1.0, 5.0, 10, and 20 mg/L). The induced oxidative stress was tracked over intervals of 7, 14, 28, and 35 days. Chemical composition evaluations were carried out on the 35th day. Within the first 14 days, plant stress was evident, though the plant adapted to the stress later on. Notably, the plant showed high tolerance at 1 mg/L and 5 mg/L concentrations despite increased toxicity levels. However, relatively high toxicity levels were identified at 10 and 20 mg/L. The AgNP-induced stress significantly impacted anise SMs, particularly affecting fatty acid content. In the 10 and 20 mg/L AgNP groups, essential metabolites, including palmitic and linoleic acid, showed a significant increase. Polyunsaturated (omega) and monounsaturated fatty acids, vital for the food and pharmaceutical industries, saw substantial growth in the 1 and 5 mg/L AgNP groups. For the first time, vanillyl alcohol and 4-Hydroxybenzoic acid were detected along with various phenolic compounds, such as t-anethole, Salicylic acid, and Thiamazole. CONCLUSION: AgNPs can function as an elicitor to efficiently generate essential SMs such as omegas and phenolic compounds in anise callus culture. This study explores the application of AgNPs as plant elicitors in anise SM production, offering invaluable insight into potential uses.


Asunto(s)
Nanopartículas del Metal , Pimpinella , Metabolismo Secundario , Plata , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Pimpinella/metabolismo , Pimpinella/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
8.
BMC Plant Biol ; 24(1): 466, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807068

RESUMEN

BACKGROUND: Nanotechnology has demonstrated its vital significance in all aspects of daily life. Our research was conducted to estimate the potential of primed seed with chitosan nanoparticles in seed growth and yield by inducing plant secondary metabolism of Pancratium maritimum L. one of the important medicinal plants. Petri dish and pot experiments were carried out. Seeds of Pancratium maritimum L. were soaked in Nano solution (0.1, 0.5, 1 mg/ ml) for 4, 8, 12 h. Germination parameters (germination percentage, germination velocity, speed of germination, germination energy, germination index, mean germination time, seedling shoot and root length, shoot root ratio, seedling vigor index, plant biomass and water content), alkaloids and antioxidant activity of Pancratium maritimum L. were recorded and compared between coated and uncoated seeds. RESULTS: Our results exhibited that chitosan nanopriming had a positive effect on some growth parameters, while it fluctuated on others. However, the data showed that most germination parameters were significantly affected in coated seeds compared to uncoated seeds. GC-MS analysis of Pancratium maritimum L. with different nanopriming treatments showed that the quantity of alkaloids decreased, but the amount of pancratistatin, lycorine and antioxidant content increased compared with the control. CONCLUSIONS: Applying chitosan nanoparticles in priming seeds might be a simple and effective way to improve the quantity of secondary metabolites of Pancratium maritimum L. valuable medicinal plant.


Asunto(s)
Quitosano , Germinación , Nanopartículas , Semillas , Quitosano/farmacología , Germinación/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Alcaloides/metabolismo , Antioxidantes/metabolismo , Metabolismo Secundario/efectos de los fármacos , Amaryllidaceae/crecimiento & desarrollo , Amaryllidaceae/metabolismo
9.
Environ Sci Pollut Res Int ; 31(19): 27689-27698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519614

RESUMEN

Cruciferae brassica oilseed rape is the third largest oilseed crop in the world and the first in China, as well as a fertilizer-dependent crop. With the increased application of organic fertilizers from livestock manure in agricultural production in recent years, the resulting antibiotic pollution and its ecological health effects have attracted widespread attention. In this study, typical tetracycline and sulfonamide antibiotics tetracycline (TC) and sulfamethoxazole (SMZ) were used to investigate the effects of antibiotics on rapeseed quality and oxidative stress at the level of secondary metabolism on the basis of examining the effects of the two drugs on the growth of soil-cultivated rapeseed seedlings. The results showed that both plant height and biomass of rapeseed seedlings were significantly suppressed and ROS were significantly induced in rapeseed by exposure to high concentrations (2.5 mg/kg) of TC and SMZ. Carotenoids, tocopherols, and SOD enzymes were involved in the oxidative stress response to scavenge free radicals in rapeseed, but phenolic acids and flavonoids contents were decreased, which reduced the quality of the seeds to some extent.


Asunto(s)
Antibacterianos , Estrés Oxidativo , Semillas , Estrés Oxidativo/efectos de los fármacos , Semillas/efectos de los fármacos , Brassica rapa/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Brassica napus/efectos de los fármacos , Plantones/efectos de los fármacos , China
10.
Protoplasma ; 261(4): 735-747, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38291258

RESUMEN

Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L-1; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H2O2 accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.


Asunto(s)
Antioxidantes , Sequías , MicroARNs , Selenio , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de los fármacos , MicroARNs/genética , Selenio/farmacología , Antioxidantes/metabolismo , Nanopartículas/química , Metabolismo Secundario/efectos de los fármacos , Metabolismo Secundario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Sequía
11.
An Acad Bras Cienc ; 94(4): e20201735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35830071

RESUMEN

The environmental and health risks associated with the application of synthetic chemical inputs in agriculture increased the demand for technologies that allow higher performance and quality of vegetable crops by implementing synergistic materials with the principles of sustainability. In this work, the seed coating with the biomass of Dunaliella salina incorporated in a bioplastic film of Manihot esculenta (cassava) was evaluated as an initial growth and secondary compounds stimulator of Coriandrum sativum (coriander) plants. The obtained results demonstrated that the coating stimulated an increase in the germination percentage (28.75%) and also in concentration of bioactive compounds, such as the six-fold increment of caffeic acid (13.33 mg 100 g-1). The carbohydrates, lipids, and proteins present in the microalgae biomass seem to be responsible for these increments once they are known for providing energy to the seedling development and coordinating the secondary metabolites synthesis. As conclusion, we consider the coating with biomass of D. salina an alternative for crop improvement that contributes to the development of sustainable agricultural practices.


Asunto(s)
Biomasa , Chlorophyceae , Coriandrum , Microalgas , Desarrollo de la Planta , Metabolismo Secundario , Semillas , Ácidos Cafeicos , Carbohidratos , Chlorophyceae/química , Coriandrum/química , Coriandrum/efectos de los fármacos , Coriandrum/crecimiento & desarrollo , Coriandrum/metabolismo , Producción de Cultivos/métodos , Lípidos , Manihot/química , Microalgas/química , Desarrollo de la Planta/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Semillas/química , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Desarrollo Sostenible
12.
PLoS One ; 16(12): e0259585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34882694

RESUMEN

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Asunto(s)
Helianthus/crecimiento & desarrollo , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Clorofila A/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído , Peroxidasa/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
13.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884904

RESUMEN

Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.


Asunto(s)
Antioxidantes/metabolismo , Hordeum/fisiología , Proteínas de Plantas/genética , Potasio/metabolismo , Clorofila/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Hordeum/efectos de los fármacos , Hordeum/genética , Peroxidación de Lípido/efectos de los fármacos , Osmorregulación/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Polietilenglicoles/efectos adversos , Metabolismo Secundario/efectos de los fármacos , Sodio/metabolismo , Tibet
14.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770749

RESUMEN

Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration) improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM) with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity (FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control (65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography (HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorhamnetin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74, 0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase (SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2 resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control. It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of interest for various pharmaceutical industries.


Asunto(s)
Antioxidantes/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Polifenoles/biosíntesis , Metabolismo Secundario/efectos de los fármacos , Zygophyllaceae/efectos de los fármacos , Zygophyllaceae/metabolismo , Cloruro de Aluminio/farmacología , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Activación Enzimática/efectos de los fármacos , Flavonoides/biosíntesis , Depuradores de Radicales Libres , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Fenoles/metabolismo , Polifenoles/química , Superóxido Dismutasa/metabolismo , Técnicas de Cultivo de Tejidos , Zygophyllaceae/química
15.
Molecules ; 26(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34771045

RESUMEN

The high-yielding production of pharmaceutically significant secondary metabolites in filamentous fungi is obtained by random mutagenesis; such changes may be associated with shifts in the metabolism of polyamines. We have previously shown that, in the Acremonium chrysogenum cephalosporin C high-yielding strain (HY), the content of endogenous polyamines increased by four- to five-fold. Other studies have shown that the addition of exogenous polyamines can increase the production of target secondary metabolites in highly active fungal producers, in particular, increase the biosynthesis of ß-lactams in the Penicillium chrysogenum Wis 54-1255 strain, an improved producer of penicillin G. In the current study, we demonstrate that the introduction of exogenous polyamines, such as spermidine or 1,3-diaminopropane, to A. chrysogenum wild-type (WT) and HY strains, leads to an increase in colony germination and morphological changes in a complete agar medium. The addition of 5 mM polyamines during fermentation increases the production of cephalosporin C in the A. chrysogenum HY strain by 15-20% and upregulates genes belonging to the beta-lactam biosynthetic cluster. The data obtained indicate the intersection of the metabolisms of polyamines and beta-lactams in A. chrysogenum and are important for the construction of improved producers of secondary metabolites in filamentous fungi.


Asunto(s)
Cefalosporinas/biosíntesis , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Poliaminas/farmacología , beta-Lactamas/metabolismo , Poliaminas/metabolismo , Metabolismo Secundario/efectos de los fármacos
16.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830374

RESUMEN

The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.


Asunto(s)
Queratinocitos/efectos de los fármacos , Fitoquímicos/uso terapéutico , Plantas/química , Cicatrización de Heridas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Metabolismo Secundario/efectos de los fármacos
17.
PLoS One ; 16(9): e0256905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495993

RESUMEN

Nanoscience paves the way for producing highly potent fertilizers and pesticides to meet farmer's expectations. This study investigated the physiological and molecular responses of soybean seedlings to the long-time application of zinc oxide nanoparticles (ZnO NPs) and their bulk type (BZnO) at 5 mg L-1 under the two application methods (I- foliar application; II- soil method). The ZnO NPs/BZnO treatments in a substance type- and method-dependent manner improved plant growth performance and yield. ZnO NPs transactionally upregulated the EREB gene. However, the expression of the bHLH gene displayed a contrary downward trend in response to the supplements. ZnO NPs moderately stimulated the transcription of R2R3MYB. The HSF-34 gene was also exhibited a similar upward trend in response to the nano-supplements. Moreover, the ZnONP treatments mediated significant upregulation in the WRKY1 transcription factor. Furthermore, the MAPK1 gene displayed a similar upregulation trend in response to the supplements. The foliar application of ZnONP slightly upregulated transcription of the HDA3 gene, while this gene showed a contrary slight downregulation trend in response to the supplementation of nutrient solution. The upregulation in the CAT gene also resulted from the nano-supplements. The concentrations of photosynthetic pigments exhibited an increasing trend in the ZnONP-treated seedlings. The applied treatments contributed to the upregulation in the activity of nitrate reductase and the increase in the proline concentrations. ZnO NPs induced the activity of antioxidant enzymes, including peroxidase and catalase by averages of 48.3% and 41%, respectively. The utilization of ZnO NPs mediated stimulation in the activity of phenylalanine ammonia-lyase and increase in soluble phenols. The findings further underline this view that the long-time application of ZnO NPs at low concentrations is a safe low-risk approach to meet agricultural requirements.


Asunto(s)
Antioxidantes/metabolismo , Carbono/metabolismo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Histona Desacetilasas/metabolismo , Nanopartículas/química , Nitrógeno/metabolismo , Metabolismo Secundario/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Óxido de Zinc/farmacología , Biomarcadores/metabolismo , Fertilizantes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Histona Desacetilasas/genética , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal/genética , Glycine max/genética , Glycine max/crecimiento & desarrollo , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Óxido de Zinc/efectos adversos
18.
PLoS One ; 16(8): e0254804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34415920

RESUMEN

Malaria is still a global health problem. Plasmodium is a single-cell protozoan parasite that causes malaria and is transmitted to humans through the female Anopheles mosquito. The previous study showed that Sonchus arvensis L. callus has antiplasmodial activity. Several treatments are needed for callus quality improvement for antimalarial compound production. This study aimed to examine the effect of dolomite [CaMg(CO3)2] on growth (morpho-anatomical structure and biomass), secondary metabolite production, and in vitro antiplasmodial activity of S. arvensis L. callus. In this study, leaf explants were grown in Murashige and Skoog medium with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D, one mg/L) and 6-benzyl amino purine (BAP, 0.5 mg/L) with dolomite (50, 75, 100, 150, and 200 mg/L). The 21 days callus ethanolic and methanolic extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (TLC). The antiplasmodial test was performed on a blood culture infected with Plasmodium falciparum strain 3D7 using the Rieckmann method. The results showed that dolomite significantly affected callus growth, metabolite profile, and in vitro antiplasmodial activity. Dolomite (150 mg/L) showed the highest biomass (0.590 ± 0.136 g fresh weight and 0.074 ± 0.008 g dry weight). GC-MS analysis detected four compounds from callus ethanolic extract. Pelargonic acid, decanoic acid, and hexadecanoic acid were major compounds. One new terpenoid compound is based on TLC analysis. S. arvensis L. callus has antiplasmodial activity with the IC50 value of 5.037 µg/mL. It was three times lower than leaf methanolic extract and five times lower than leaf ethanolic extract.


Asunto(s)
Antimaláricos/farmacología , Carbonato de Calcio/farmacología , Magnesio/farmacología , Plasmodium falciparum/efectos de los fármacos , Metabolismo Secundario , Sonchus/crecimiento & desarrollo , Sonchus/metabolismo , Biomasa , Metabolómica , Extractos Vegetales/farmacología , Técnicas de Embriogénesis Somática de Plantas , Metabolismo Secundario/efectos de los fármacos
19.
Molecules ; 26(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34443375

RESUMEN

The study aimed to evaluate the possible modulation of Nrf2, NF-ĸB and STAT3 signaling pathways in the colorectal cancer (CRC) cells line DLD-1 and HCT116 by secondary metabolites of lichens. An attempt was made to indicate the most promising targets in these signaling pathways. Attention was also paid to the effects of the compounds tested on CRC cells using anakoinosis-that is, simultaneous analysis of several signaling pathways. The effects of the tested natural compounds on the activity of selected transcriptional factors related to CRC were analyzed by Western blot and RT-PCR assays. The highest activity against CRC cells was shown by physodic and salazinic acids from the studied secondary metabolites of lichens. As a result, an increase in the activation of transcription factor Nrf2 and the expression of its selected target genes was observed. Physodic and salazinic acids induced the opposite effect in relation to the NF-κB and STAT3 pathways. These results confirmed our earlier observations that lichen-derived compounds have the ability to modulate signaling pathway networks. While caperatic acid affected Wnt/ß-catenin to the most extent, salazinic acid was the most potent modulator of Nrf2, NF-κB and STAT3 pathways. Physodic acid seemed to affect all the investigated pathways.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Depsidos/farmacología , Lactonas/farmacología , Líquenes/química , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Depsidos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lactonas/química , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Metabolismo Secundario/efectos de los fármacos
20.
Appl Biochem Biotechnol ; 193(11): 3496-3511, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34287751

RESUMEN

Plants have evolved a diverse array of secondary metabolite biosynthetic pathways. Undifferentiated plant cells, however, tend to biosynthesize secondary metabolites to a lesser extent and sometimes not at all. This phenomenon in cultured cells is associated with the transcriptional suppression of biosynthetic genes due to epigenetic alterations, such as low histone acetylation levels and/or high DNA methylation levels. Here, using cultured cells of bamboo (Bambusa multiplex; Bm) as a model system, we investigated the effect of histone deacetylase (HDAC) inhibitors on the activation of cryptic secondary metabolite biosynthesis. The Bm suspension cells cultured in the presence of an HDAC inhibitor, suberoyl bis-hydroxamic acid (SBHA), exhibited strong biosynthesis of some compounds that are inherently present at very low levels in Bm cells. Two major compounds induced by SBHA were isolated and were identified as 3-O-p-coumaroylquinic acid (1) and 3-O-feruloylquinic acid (2). Their productivities depended on the type of basal culture medium, initial cell density, and culture period, as well as the SBHA concentration. The biosynthesis of these two compounds was also induced by another HDAC inhibitor, trichostatin A. These results demonstrate the usefulness of HDAC inhibitors to activate cryptic secondary metabolite biosynthesis in cultured plant cells.


Asunto(s)
Bambusa , Inhibidores de Histona Desacetilasas/farmacología , Células Vegetales/metabolismo , Metabolismo Secundario/efectos de los fármacos , Bambusa/citología , Bambusa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...