Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 21207, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707123

RESUMEN

Synthesis of cytochrome c oxidase (Scox) is a Drosophila homolog of human SCO2 encoding a metallochaperone that transports copper to cytochrome c, and is an essential protein for the assembly of cytochrome c oxidase in the mitochondrial respiratory chain complex. SCO2 is highly conserved in a wide variety of species across prokaryotes and eukaryotes, and mutations in SCO2 are known to cause mitochondrial diseases such as fatal infantile cardioencephalomyopathy, Leigh syndrome, and Charcot-Marie-Tooth disease, a neurodegenerative disorder. These diseases have a common symptom of locomotive dysfunction. However, the mechanisms of their pathogenesis remain unknown, and no fundamental medications or therapies have been established for these diseases. In this study, we demonstrated that the glial cell-specific knockdown of Scox perturbs the mitochondrial morphology and function, and locomotive behavior in Drosophila. In addition, the morphology and function of synapses were impaired in the glial cell-specific Scox knockdown. Furthermore, Scox knockdown in ensheathing glia, one type of glial cell in Drosophila, resulted in larval and adult locomotive dysfunction. This study suggests that the impairment of Scox in glial cells in the Drosophila CNS mimics the pathological phenotypes observed by mutations in the SCO2 gene in humans.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Locomoción , Metalochaperonas , Neuroglía/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Metalochaperonas/genética , Metalochaperonas/fisiología , Mitocondrias/metabolismo , Mitocondrias/patología , Sinapsis/metabolismo
2.
Plant J ; 105(1): 22-33, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098600

RESUMEN

Plants experience temperature fluctuations during the course of the daily cycle, and although stem growth responds rapidly to these changes we largely ignore whether there is a short-term memory of previous conditions. Here we show that nighttime temperatures affect the growth of the hypocotyl of Arabidopsis thaliana seedlings not only during the night but also during the subsequent photoperiod. Active phytochrome B (phyB) represses nighttime growth and warm temperatures reduce active phyB via thermal reversion. The function of PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1) is to stabilise active phyB in nuclear bodies but, surprisingly, warmth reduces PCH1 gene expression and PCH1 stability. When phyB was active at the beginning of the night, warm night temperatures enhanced the levels of nuclear phyB and reduced hypocotyl growth rate during the following day. However, when end-of-day far-red light minimised phyB activity, warm night temperatures reduced the levels of nuclear phyB and enhanced the hypocotyl growth rate during the following day. This complex growth pattern was absent in the phyB mutant. We propose that temperature-induced changes in the levels of PCH1 and in the size of the physiologically relevant nuclear pool of phyB amplify the impact of phyB-mediated temperature sensing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metalochaperonas/metabolismo , Fitocromo B/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Metalochaperonas/fisiología , Fotoperiodo , Fitocromo B/fisiología , Plantones/metabolismo , Plantones/fisiología , Temperatura
3.
J Biol Inorg Chem ; 19(3): 427-38, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24445997

RESUMEN

Owing to its cytotoxicity, free copper is chelated by protein side chains and does not exist in vivo. Several chaperones transport copper to various cell compartments, but none have been identified that traffic copper to the nucleus. Copper-64 decays by ß (+) and ß (-) emission, allowing positron emission tomography and targeted radionuclide therapy for cancer. Because the delivery of (64)Cu to the cell nucleus may enhance the therapeutic effect of copper radiopharmaceuticals, elucidation of the pathway(s) involved in transporting copper to the tumor cell nucleus is important for optimizing treatment. We identified Atox1 as one of the proteins that binds copper in the nucleus. Mouse embryonic fibroblast cells, positive and negative for Atox1, were used to determine the role of Atox1 in (64)Cu transport to the nucleus. Mouse embryonic fibroblast Atox1(+/+) cells accumulated more (64)Cu in the nucleus than did Atox1(-/-) cells. HCT 116 colorectal cancer cells expressing p53 (+/+) and not expressing p53 (-/-) were used to evaluate the role of this tumor suppressor protein in (64)Cu transport. In cells treated with cisplatin, the uptake of (64)Cu in the nucleus of HCT 116 p53(+/+) cells was greater than that in HCT 116 p53(-/-) cells. Atox1 expression increased in HCT 116 p53(+/+) and p53(-/-) cells treated with cisplatin; however, Atox1 localized to the nuclei of p53(+/+) cells more than in the p53(-/-) cells. The data presented here indicate that Atox1 is involved in copper transport to the nucleus, and cisplatin affects nuclear transport of (64)Cu in HCT 116 cells by upregulating the expression and the nuclear localization of Atox1.


Asunto(s)
Núcleo Celular/metabolismo , Radioisótopos de Cobre/metabolismo , Genes p53/fisiología , Metalochaperonas/fisiología , Animales , Proteínas Transportadoras de Cobre , Fibroblastos/metabolismo , Células HCT116 , Humanos , Ratones , Chaperonas Moleculares , Transporte de Proteínas/fisiología
4.
PLoS Comput Biol ; 9(1): e1002880, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349626

RESUMEN

Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.


Asunto(s)
Cobre/metabolismo , Metalochaperonas/fisiología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Halobacterium salinarum/metabolismo , Halobacterium salinarum/fisiología , Homeostasis , Transporte Iónico , Espectrometría de Masas , Metalochaperonas/genética , Modelos Teóricos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...