Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631442

RESUMEN

Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.


Asunto(s)
Coenzimas , Proteínas Hierro-Azufre , Metaloproteínas , Cofactores de Molibdeno , Pteridinas , Metaloproteínas/metabolismo , Metaloproteínas/genética , Metaloproteínas/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Coenzimas/metabolismo , Coenzimas/biosíntesis , Coenzimas/genética , Pteridinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Hierro/metabolismo , Azufre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/genética , Regulación Bacteriana de la Expresión Génica , Operón , Isomerasas
2.
Biochimie ; 184: 143-157, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33675854

RESUMEN

There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Coenzimas/biosíntesis , Cisteína/metabolismo , Metaloproteínas/biosíntesis , Estrés Oxidativo , S-Adenosilmetionina/metabolismo , Encéfalo , Humanos , Cofactores de Molibdeno , Pteridinas
3.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118883, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017596

RESUMEN

The molybdenum cofactor (Moco) represents an ancient metal­sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.


Asunto(s)
Coenzimas/genética , Eucariontes/genética , Metaloproteínas/genética , Molibdeno/metabolismo , Coenzimas/biosíntesis , Coenzimas/clasificación , Fusión Génica/genética , Humanos , Metaloproteínas/biosíntesis , Metaloproteínas/clasificación , Cofactores de Molibdeno , Pteridinas/clasificación , Especificidad por Sustrato
4.
Environ Microbiol ; 22(6): 2007-2026, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239579

RESUMEN

The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.


Asunto(s)
Coenzimas/biosíntesis , Escherichia coli/metabolismo , Metaloproteínas/biosíntesis , Coenzimas/química , Metaloproteínas/química , Molibdeno/metabolismo , Cofactores de Molibdeno , Compuestos Organofosforados , Pteridinas/química , Pterinas/química
5.
FEBS Lett ; 594(6): 1101-1111, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31785160

RESUMEN

Proteins with a CyaB, thiamine triphosphatase domain (CYTH domain) may play a central role at the interface between nucleotide and polyphosphate metabolism. One of the plant CYTH domain-containing proteins from Brachypodium distachyon, BdTTM3, is annotated in NCBI databases as an 'adenylyl cyclase (AC)' or a 'triphosphate tunnel metalloenzyme'. The divergent nomenclature and the search for plant ACs induced us to experimentally confirm the enzymatic activity of BdTTM3. Based on in vitro analysis, we have shown that the recombinant form of BdTTM3 is a protein with high triphosphatase activity (binding both tripolyphosphate and ATP) and low AC activity. Furthermore, the analysis of BdTTM3 transcriptional activity indicates its involvement in the mechanism underlying responses to wounding stress in B. distachyon leaves.


Asunto(s)
Ácido Anhídrido Hidrolasas/biosíntesis , Adenilil Ciclasas/biosíntesis , Brachypodium/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaloproteínas/biosíntesis , Proteínas de Plantas/biosíntesis , Regulación hacia Arriba , Ácido Anhídrido Hidrolasas/genética , Adenilil Ciclasas/genética , Brachypodium/genética , Metaloproteínas/genética , Proteínas de Plantas/genética
6.
Protein Expr Purif ; 167: 105541, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31756376

RESUMEN

Polyhistidine tags (His-tags) are commonly employed in protein purification strategies due to the high affinity and specificity for metal-NTA columns, the relative simplicity of such protocols, and the assumption that His-tags do not affect the native activities of proteins. However, there is a growing body of evidence that such tags can modulate protein structure and function. In this study, we demonstrate that a His-tag impacts DNA complex formation by the C-terminal domain of the α-subunit (αCTD) of Helicobacter pylori RNA polymerase in a metal-dependent fashion. The αCTD was purified with a cleavable His-tag, and complex formation between αCTD, the nickel-responsive metalloregulator HpNikR, and DNA was investigated using electrophoretic mobility shift assays. An interaction between His-tagged αCTD (HisαCTD) and the HpNikR-DNA complex was observed; however, this interaction was not observed upon removal of the His-tag. Further analysis revealed that complex formation between HisαCTD and DNA is non-specific and dependent on the type of metal ions present. Overall, the results indicate that a histidine tag is able to modulate DNA-binding activity and suggests that the impact of metal affinity tags should be considered when analyzing the in vitro biomolecular interactions of metalloproteins.


Asunto(s)
Proteínas de Unión al ADN , Etiquetas de Secuencia Expresada/química , Helicobacter pylori , ARN Polimerasa III/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histidina/genética , Iones/metabolismo , Metaloproteínas/biosíntesis , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Metales/metabolismo , Níquel/metabolismo , ARN Polimerasa III/biosíntesis , ARN Polimerasa III/química , ARN Polimerasa III/genética
7.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235512

RESUMEN

Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the l-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the l-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production.IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.


Asunto(s)
Coenzimas/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Hierro/metabolismo , Metaloproteínas/biosíntesis , Proteínas de Escherichia coli/genética , Cofactores de Molibdeno , Proteómica , Pteridinas
8.
Protein Expr Purif ; 158: 27-35, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30776426

RESUMEN

PbrD is a lead (II) binding protein encoded by the pbr lead resistance operon found exclusively in Cupriavidus metallidurans CH34. Its ability to sequester Pb(II) shows potential for it to be developed as a biosorbent for Pb in the bioremediation of contaminated wastewaters. In this study the pbrD gene from C. metallidurans CH34 was transformed and overexpressed in Escherichia coli BL21 (DE3) using the pET32 Xa/Lic vector. Optimal expression of recombinant (r)PbrD (∼50 kDa) was achieved post-induction with IPTG within inclusion bodies (IBs). Inclusion bodies were solubilised by denaturation and purified by Ni-NTA affinity chromatography. The purified denatured protein containing the N-terminal Trx•Tag™, His•Tag® and S®Tag™ was refolded in vitro via dialysis to a biologically functional form. Circular dichroism spectra of refolded rPbrD-fusion protein indicated a high degree of turns, ß-sheets and 310 helices content and tryptophan fluorescence showed a structural conformational change in the presence of Pb(II). Refolded rPbrD-fusion protein bound 99.7% of Pb(II) when mixed with lead nitrate in ten-fold increasing concentrations. Adsorption isotherms including Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models were applied to determine the biosorption mechanism. A biologically functional rPbrD-fusion protein has potential application in the development of a biosorbent for remediation of Pb(II) from wastewater.


Asunto(s)
Cupriavidus/química , Plomo/química , Metaloproteínas , Chaperonas Moleculares , Cupriavidus/genética , Metaloproteínas/biosíntesis , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
9.
Mol Brain ; 12(1): 1, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606245

RESUMEN

Natural aggressiveness is commonly observed in all animal species, and is displayed frequently when animals compete for food, territory and mating. Aggression is an innate behaviour, and is influenced by both environmental and genetic factors. However, the genetics of aggression remains largely unclear. In this study, we identify the peacefulness (pfs) gene as a novel player in the control of male-male aggression in Drosophila. Mutations in pfs decreased intermale aggressiveness, but did not affect locomotor activity, olfactory avoidance response and sexual behaviours. pfs encodes for the evolutionarily conserved molybdenum cofactor (MoCo) synthesis 1 protein (Mocs1), which catalyzes the first step in the MoCo biosynthesis pathway. Neuronal-specific knockdown of pfs decreased aggressiveness. By contrast, overexpression of pfs greatly increased aggressiveness. Knocking down Cinnamon (Cin) catalyzing the final step in the MoCo synthesis pathway, caused a pfs-like aggression phenotype. In humans, inhibition of MoCo-dependent enzymes displays anti-aggressive effects. Thus, the control of aggression by Pfs-dependent MoCo pathways may be conserved throughout evolution.


Asunto(s)
Agresión/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Genes de Insecto , Proteínas Nucleares/genética , Animales , Reacción de Prevención , Encéfalo/metabolismo , Liasas de Carbono-Carbono , Coenzimas/biosíntesis , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamiento del Gen , Masculino , Metaloproteínas/biosíntesis , Cofactores de Molibdeno , Actividad Motora , Mutagénesis Insercional/genética , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Pteridinas , Conducta Sexual Animal , Olfato/fisiología
10.
New Phytol ; 222(1): 275-285, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30471121

RESUMEN

In cereal crops, ABA deficiency during seed maturation phase causes pre-harvest sprouting (PHS), and molybdenum cofactor (MoCo) is required for ABA biosynthesis. Here, two rice PHS mutants F254 and F5-1 were characterized. In addition to the PHS, these mutants showed pleiotropic phenotypes such as twisting and slender leaves, and then died when the seedling developed to four or five leaves. Map-based cloning showed that OsCNX6 and OsCNX1 encoding homologs of MoaE and MoeA were responsible for F254 and F5-1 mutants, respectively. Genetic complementation indicated that OsCNX6 not only rescued the PHS and seedling lethal phenotype of the cnx6 mutant, but also recovered the MoCo-dependent enzyme activities such as xanthine dehydrogenase (XDH), aldehyde oxidase (AO), nitrate reductase (NR) and sulfite oxidase (SO). Expression pattern showed that OsCNX6 was richly expressed in seed during embryo maturation by quantitative reverse transcriptase PCR and RNA in situ hybridization. Furthermore, the OsCNX6 overexpression plants can significantly enhance the MoCo-dependent enzyme activities, and improved the osmotic and salt stress tolerance without unfavorable phenotypes. Collectively, these data indicated that OsCNX6 participated in MoCo biosynthesis, and is essential for rice development, especially for seed dormancy and germination, and OsCNX6 could be an effective target for improving abiotic stress tolerance in rice.


Asunto(s)
Vías Biosintéticas , Coenzimas/biosíntesis , Metaloproteínas/biosíntesis , Mutación/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Cofactores de Molibdeno , Oryza/fisiología , Ósmosis , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pteridinas , Estrés Salino/genética , Estrés Fisiológico/genética
11.
Molecules ; 23(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30545001

RESUMEN

All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.


Asunto(s)
Coenzimas/metabolismo , Enzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Animales , Miosinas Cardíacas/metabolismo , Coenzimas/biosíntesis , Enzimas/química , Enzimas/genética , Células Eucariotas/metabolismo , Mamíferos , Redes y Vías Metabólicas , Metaloproteínas/biosíntesis , Molibdeno/metabolismo , Cofactores de Molibdeno , Cadenas Ligeras de Miosina/metabolismo , Nitrato-Reductasa/metabolismo , Nitritos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
12.
Methods Enzymol ; 606: 485-522, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097104

RESUMEN

MoaA is one of the founding members of the radical S-adenosyl-L-methionine (SAM) superfamily, and together with the second enzyme, MoaC, catalyzes the construction of the pyranopterin backbone structure of the molybdenum cofactor (Moco). However, the exact functions of both MoaA and MoaC had remained ambiguous for more than 2 decades. Recently, their functions were finally elucidated through successful characterization of the MoaA product as 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP), which was shown to be converted to cyclic pyranopterin monophosphate (cPMP) by MoaC. 3',8-cH2GTP was produced in a small quantity and was highly oxygen sensitive, which explains why this compound had previously eluded characterization. This chapter describes the methodologies for the characterization of MoaA, MoaC, and 3',8-cH2GTP, which together significantly altered the view of the mechanism of the pyranopterin backbone construction during the Moco biosynthesis. Through this chapter, we hope to share not only the protocols to study the first step of Moco biosynthesis but also the lessons we learned from the characterization of the chemically labile biosynthetic intermediate, which would be informative for the study of many other metabolic pathways and enzymes.


Asunto(s)
Coenzimas/biosíntesis , Pruebas de Enzimas/métodos , Proteínas de Escherichia coli/metabolismo , Hidrolasas/metabolismo , Metaloproteínas/biosíntesis , Proteínas de Escherichia coli/aislamiento & purificación , Hidrolasas/aislamiento & purificación , Redes y Vías Metabólicas , Cofactores de Molibdeno , Compuestos Organofosforados/metabolismo , Pteridinas , Pterinas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
13.
Insect Biochem Mol Biol ; 99: 11-16, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29803701

RESUMEN

Translucency of the larval integument in Bombyx mori is caused by a lack of uric acid in the epidermis. Hime'nichi translucent (ohi) is a unique mutation causing intermediate translucency of the larval integument and male-specific flaccid paralysis. To determine the gene associated with the ohi mutation, the ohi locus was mapped to a 400-kb region containing 29 predicted genes. Among the genes in this region, we focused on Bombyx homolog of mammalian Gephyrin (BmGphn), which regulates molybdenum cofactor (MoCo) biosynthesis, because MoCo is indispensable for the activity of xanthine dehydrogenase (XDH), a key enzyme in uric acid biosynthesis. The translucent integument of ohi larvae turned opaque after injection of bovine xanthine oxidase, which is a mammalian equivalent to XDH, indicating that XDH activity is defective in ohi larvae. RT-PCR and sequencing analysis showed that (i) in ohi larvae, expression of the BmGphn gene was repressed in the fat body where uric acid is synthesized, and (ii) there was no amino acid substitution in the ohi mutant allele. Finally, we obtained BmGphn knockout alleles (hereafter denoted as BmGphnΔ) by using CRISPR/Cas9. The resulting ohi/BmGphnΔ larvae had translucent integuments, demonstrating that BmGphn is the gene responsible for the ohi phenotype. Our results show that repressed expression of BmGphn is a causative factor for the defective MoCo biosynthesis and XDH activity observed in ohi larvae. Interestingly, all male BmGphnΔ homozygotes died before pupation and showed a flaccid paralysis phenotype. The genetic and physiological mechanisms underlying this flaccid paralysis phenotype are also discussed.


Asunto(s)
Bombyx , Coenzimas , Edición Génica , Proteínas de Insectos , Metaloproteínas , Pteridinas , Animales , Bombyx/genética , Bombyx/metabolismo , Coenzimas/biosíntesis , Coenzimas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva , Metaloproteínas/biosíntesis , Metaloproteínas/genética , Cofactores de Molibdeno
14.
Biochemistry ; 57(4): 390-402, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29072833

RESUMEN

The radical SAM (S-adenosyl-l-methionine) superfamily is one of the largest group of enzymes with >113000 annotated sequences [Landgraf, B. J., et al. (2016) Annu. Rev. Biochem. 85, 485-514]. Members of this superfamily catalyze the reductive cleavage of SAM using an oxygen sensitive 4Fe-4S cluster to transiently generate 5'-deoxyadenosyl radical that is subsequently used to initiate diverse free radical-mediated reactions. Because of the unique reactivity of free radicals, radical SAM enzymes frequently catalyze chemically challenging reactions critical for the biosynthesis of unique structures of cofactors and natural products. In this Perspective, I will discuss the impact of characterizing novel functions in radical SAM enzymes on our understanding of biosynthetic pathways and use two recent examples from my own group with a particular emphasis on two radical SAM enzymes that are responsible for carbon skeleton formation during the biosynthesis of a cofactor and natural products.


Asunto(s)
Productos Biológicos , Coenzimas/biosíntesis , Proteínas de Escherichia coli/metabolismo , Isomerasas/metabolismo , Metaloproteínas/biosíntesis , Proteínas Nucleares/metabolismo , Compuestos Organofosforados/metabolismo , Pterinas/metabolismo , Liasas de Carbono-Carbono , Cristalografía por Rayos X , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Cofactores de Molibdeno , Conformación Proteica , Pteridinas , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo
15.
Biochem J ; 475(2): 495-509, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29247140

RESUMEN

Mitochondria play a key role in the biosynthesis of two metal cofactors, iron-sulfur (FeS) clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but a scarcity of mutants has hindered studies to better understand these links. We screened a collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3 (ABC transporter of the mitochondria 3), encoding the ATP-binding cassette transporter of the mitochondria 3 (systematic name ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco biosynthesis. We also identified a mutant allele in CNX2, cofactor of nitrate reductase and xanthine dehydrogenase 2, encoding GTP 3',8-cyclase, the first step in Moco biosynthesis which is localized in the mitochondria. A single-nucleotide polymorphism in cnx2-2 leads to substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are small and chlorotic, with severely decreased Moco enzyme activities, but they performed better than a cnx2-1 knockout mutant, which could only survive with ammonia as a nitrogen source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC-MS/MS showed that this Moco intermediate was below the limit of detection in both cnx2-1 and cnx2-2, and accumulated more than 10-fold in seedlings mutated in the downstream gene CNX5 Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous reports of a similar decrease in nitrate reductase activity. Taken together, our data functionally characterize CNX2 and suggest that ATM3 is indirectly required for cPMP synthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Compuestos Organofosforados/metabolismo , Pterinas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Amoníaco/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Coenzimas/biosíntesis , Eliminación de Gen , Metaloproteínas/biosíntesis , Mitocondrias/ultraestructura , Cofactores de Molibdeno , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pteridinas , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Espectrometría de Masas en Tándem
16.
PLoS Pathog ; 13(11): e1006752, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29176894

RESUMEN

The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.


Asunto(s)
Coenzimas/biosíntesis , Transferencia de Gen Horizontal , Metaloproteínas/biosíntesis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxígeno/metabolismo , Tuberculosis/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Hipoxia/metabolismo , Hipoxia/microbiología , Ratones , Ratones Endogámicos C57BL , Cofactores de Molibdeno , Mycobacterium/genética , Mycobacterium/metabolismo , Nitratos/metabolismo , Pteridinas , Tuberculosis/metabolismo
17.
Methods Enzymol ; 595: 261-302, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882203

RESUMEN

Nitrogenase is a metalloenzyme system that plays a critical role in biological nitrogen fixation, and the study of how its metallocenters are assembled into functional entities to facilitate the catalytic reduction of dinitrogen to ammonia is an active area of interest. The diazotroph Azotobacter vinelandii is especially amenable to culturing and genetic manipulation, and this organism has provided the basis for many insights into the assembly of nitrogenase proteins and their respective metallocofactors. This chapter will cover the basic procedures necessary for growing A. vinelandii cultures and subsequent recombinant transformation and protein expression techniques. Furthermore, protocols for nitrogenase protein purification and substrate reduction activity assays are described. These methods provide a solid framework for the assessment of nitrogenase assembly and catalysis.


Asunto(s)
Azotobacter vinelandii/enzimología , Metaloproteínas/biosíntesis , Metaloproteínas/química , Nitrogenasa/biosíntesis , Nitrogenasa/química , Amoníaco/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Hierro/metabolismo , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Nitrógeno/metabolismo , Nitrogenasa/genética , Nitrogenasa/aislamiento & purificación , Conformación Proteica
18.
Biochemistry ; 56(34): 4592-4605, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28766335

RESUMEN

The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron-sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human l-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of ∼60%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm5s2U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.


Asunto(s)
Liasas de Carbono-Azufre , Coenzimas , Escherichia coli , Prueba de Complementación Genética , Metaloproteínas , Pteridinas , Sitios de Unión , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Coenzimas/biosíntesis , Coenzimas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Metaloproteínas/biosíntesis , Metaloproteínas/genética , Cofactores de Molibdeno , Nucleotidiltransferasas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Sulfurtransferasas/metabolismo
19.
PLoS One ; 12(6): e0179996, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28650996

RESUMEN

Tuberculosis remains one of the most difficult to control infectious diseases in the world. Many different factors contribute to the complexity of this disease. These include the ability of the host to control the infection which may directly relate to nutritional status, presence of co-morbidities and genetic predisposition. Pathogen factors, in particular the ability of different Mycobacterium tuberculosis strains to respond to the harsh environment of the host granuloma, which includes low oxygen and nutrient availability and the presence of damaging radical oxygen and nitrogen species, also play an important role in the success of different strains to cause disease. In this study we evaluated the impact of a naturally occurring 12 gene 15 Kb genomic deletion on the physiology and virulence of M. tuberculosis. The strains denominated ON-A WT (wild type) and ON-A NM (natural mutant) were isolated from a previously reported TB outbreak in an inner city under-housed population in Toronto, Canada. Here we subjected these isogenic strains to transcriptomic (via RNA-seq) and proteomic analyses and identified several gene clusters with differential expression in the natural mutant, including the DosR regulon and the molybdenum cofactor biosynthesis genes, both of which were found in lower abundance in the natural mutant. We also demonstrated lesser virulence of the natural mutant in the guinea pig animal model. Overall, our findings suggest that the ON-A natural mutant is less fit to cause disease, but nevertheless has the potential to cause extended transmission in at-risk populations.


Asunto(s)
Eliminación de Gen , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Coenzimas/biosíntesis , Coenzimas/genética , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Cobayas , Humanos , Metabolismo de los Lípidos/genética , Metaloproteínas/biosíntesis , Metaloproteínas/genética , Cofactores de Molibdeno , Familia de Multigenes , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Proteínas Quinasas/genética , Proteómica , Pteridinas , Regulón , Tuberculosis Pulmonar/microbiología , Virulencia/genética
20.
Infect Dis (Lond) ; 49(9): 680-688, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28535727

RESUMEN

BACKGROUND: The Rangipo strain of Mycobacterium tuberculosis achieved notoriety in New Zealand due to its role in several tuberculosis (TB) outbreaks. Why this strain should be the source of relatively large clusters of the disease is unknown. In this work, we performed an in-depth analysis of the genome of the Rangipo strain to determine whether it offers clues to understanding its prevalence. METHODS: Next-generation sequencing was performed on nine isolates which matched the Rangipo genotypic profile. Sequence reads were assembled against the H37Rv reference genome and single-locus variants identified. Unmapped reads were compared against the genome sequences of other M. tuberculosis strains, in particular CDC1551, Haarlem and Erdman. RESULTS: Across the nine Rangipo strains, a total of 727 single-locus variants were identified with respect to H37Rv, of which 700 were common to all Rangipo strains sequenced. Within the common variants, 386 were non-synonymous, with 12 occurring in genes associated with M. tuberculosis virulence. Next-generation and Sanger sequencing determined the presence of three genes in the Rangipo isolates, which are absent in H37Rv, but which have been reported to be important for the pathogenicity of M. tuberculosis. The differentially encoded Rangipo genes consisted of transcriptional regulator EmbR2, and molybdopterin cofactor biosynthesis proteins A and B. The Rangipo strain also harbours an extended DNA helicase and an additional adenylate cyclase. CONCLUSIONS: Our study provides new insights into the genomic content of the New Zealand Rangipo strain of M. tuberculosis and highlights the presence of additional virulence-related loci not found in H37Rv.


Asunto(s)
Portador Sano/microbiología , Brotes de Enfermedades , Sitios Genéticos , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Proteínas Bacterianas/genética , Coenzimas/biosíntesis , Coenzimas/genética , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metaloproteínas/biosíntesis , Metaloproteínas/genética , Cofactores de Molibdeno , Nueva Zelanda/epidemiología , Pteridinas , Tuberculosis/epidemiología , Virulencia/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA