Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 882
Filtrar
1.
PLoS One ; 19(5): e0301807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771844

RESUMEN

Determining SNP-SNP interaction of the disease has become important for further investigation of pathogenesis and experimental research. Although many studies have been published on the effect of MMPs gene polymorphisms on chronic obstructive pulmonary disease (COPD), there is a lack of information on SNP-SNP and SNP-environment interactions. This study aimed to investigate the interaction between the polymorphisms of MMP1, MMP2, MMP9 and MMP12 genes and its combined effect with smoking on the risk of developing COPD. Totally 181 COPD patients and 292 healthy individuals were involved. Blood samples from the participants were tested for genotyping and data were collected through questionnaires. Genotyping was performed with nested allele-specific polymerase chain reaction (AS-PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). SNP-SNP and SNP-environment interactions were investigated using multifactor dimensionality reduction and logistic regression analysis. The result showed that participants with high nicotine dependence and heavy smokers had a higher risk of COPD than non-smokers. Also, G/G genotype (cOR = 5.83; 95% CI, 1.19-28.4, p = 0.029) of MMP2 rs243864 and T/T genotype (cOR = 1.79; 95% CI, 1.16-2.76, p = 0.008) of MMP12 rs652438 independently contributes to the susceptibility of COPD. For SNP-SNP interaction, the positive interaction between rs243864 G/G genotype of MMP2 and rs652438 T/T genotype of MMP12 was found, and the combination of risk genotypes has a high risk of COPD (OR = 12.92; 95% CI, 1.46-114.4, p = 0.021). Moreover, the combination of T/T genotype of MMP12 rs652438 and smoking-related factors increases the risk of COPD approximately 4.5 to 6-fold. The results suggests that there is a combination of MMP2, MMP12, and smoking-related factors may increase the risk of developing COPD.


Asunto(s)
Predisposición Genética a la Enfermedad , Metaloproteinasa 12 de la Matriz , Metaloproteinasa 2 de la Matriz , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Metaloproteinasa 12 de la Matriz/genética , Masculino , Femenino , Metaloproteinasa 2 de la Matriz/genética , Persona de Mediana Edad , Anciano , Estudios de Casos y Controles , Fumar/efectos adversos , Genotipo , Factores de Riesgo
2.
Oncol Res ; 32(4): 737-752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560573

RESUMEN

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sulfitos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Metaloproteinasa 12 de la Matriz , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 16 de la Matriz , Pronóstico , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Riñón/metabolismo , Riñón/patología
3.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38588467

RESUMEN

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Asunto(s)
Diseño de Fármacos , Elastina , Fibrosis Pulmonar , Receptores de Superficie Celular , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Ratones , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino
4.
Eur J Med Res ; 29(1): 225, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594750

RESUMEN

BACKGROUND: Managing polytrauma victims poses a significant challenge to clinicians since applying the same therapy to patients with similar injury patterns may result in different outcomes. Using serum biomarkers hopefully allows for treating each multiple injured in the best possible individual way. Since matrix metalloproteinases (MMPs) play pivotal roles in various physiological processes, they might be a reliable tool in polytrauma care. METHODS: We evaluated 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and stayed at the intensive care unit for at least one night. We determined their MMP3, MMP8, MMP9, MMP10, MMP12, and MMP13 serum levels at admission (day 0) and on days 1, 3, 5, 7, and 10. RESULTS: Median MMP8, MMP9, and MMP12 levels immediately rose after the polytrauma occurred; however, they significantly decreased from admission to day 1 and significantly increased from day 1 to day 10, showing similar time trajectories and (very) strong correlations between each two of the three enzyme levels assessed at the same measurement point. For a two-day lag, autocorrelations were significant for MMP8 (- 0.512) and MMP9 (- 0.302) and for cross-correlations between MMP8 and MMP9 (- 0.439), MMP8 and MMP12 (- 0.416), and MMP9 and MMP12 (- 0.307). Moreover, median MMP3, MMP10, and MMP13 levels significantly increased from admission to day 3 and significantly decreased from day 3 to day 10, showing similar time trajectories and an (almost) strong association between every 2 levels until day 7. Significant cross-correlations were detected between MMP3 and MMP10 (0.414) and MMP13 and MMP10 (0.362). Finally, the MMP10 day 0 level was identified as a predictor for in-hospital mortality. Any increase of the MMP10 level by 200 pg/mL decreased the odds of dying by 28.5%. CONCLUSIONS: The time trajectories of the highly varying individual MMP levels elucidate the involvement of these enzymes in the endogenous defense response following polytrauma. Similar time courses of MMP levels might indicate similar injury causes, whereas lead-lag effects reveal causative relations between several enzyme pairs. Finally, MMP10 abundantly released into circulation after polytrauma might have a protective effect against dying.


Asunto(s)
Metaloproteinasa 8 de la Matriz , Traumatismo Múltiple , Humanos , Adulto , Metaloproteinasa 3 de la Matriz , Metaloproteinasa 10 de la Matriz , Metaloproteinasa 9 de la Matriz , Metaloproteinasa 13 de la Matriz , Proyectos Piloto , Metaloproteinasa 12 de la Matriz
5.
J Proteome Res ; 23(5): 1821-1833, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652053

RESUMEN

Epigenetic dysregulation drives aberrant transcriptional programs playing a critical role in hepatocellular carcinoma (HCC), which may provide novel insights into the heterogeneity of HCC. This study performed an integrated exploration on the epigenetic dysregulation of miRNA and methylation. We discovered and validated three patterns endowed with gene-related transcriptional traits and clinical outcomes. Specially, a stemness/epithelial-mesenchymal transition (EMT) subtype was featured by immune exhaustion and the worst prognosis. Besides, MMP12, a characteristic gene, was highly expressed in the stemness/EMT subtype, which was verified as a pivotal regulator linked to the unfavorable prognosis and further proven to promote tumor proliferation, invasion, and metastasis in vitro experiments. Proteomic analysis by mass spectrometry sequencing also indicated that the overexpression of MMP12 was significantly associated with cell proliferation and adhesion. Taken together, this study unveils innovative insights into epigenetic dysregulation and identifies a stemness/EMT subtype-specific gene, MMP12, correlated with the progression and prognosis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Epigénesis Genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Metaloproteinasa 12 de la Matriz , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Humanos , Transición Epitelial-Mesenquimal/genética , Pronóstico , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Metilación de ADN
6.
Funct Integr Genomics ; 24(3): 78, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632141

RESUMEN

Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Proteínas de Homeodominio , Neoplasias Laríngeas , Metaloproteinasa 12 de la Matriz , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Genes Homeobox , Neoplasias de Cabeza y Cuello/genética , Proteínas de Homeodominio/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patología , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Desnudos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
7.
Braz J Med Biol Res ; 57: e13351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511770

RESUMEN

The complex pathogenesis of castration-resistant prostate cancer (CRPC) makes it challenging to identify effective treatment methods. Matrix metalloproteinase (MMP)-12 can degrade elastin as well as various extracellular matrix (ECM) components, which is associated with cancer progression. However, the relationship between MMP-12 and CRPC progression is poorly understood. In this study, we observed the effect of MMP-12 on the progression of CRPC and further explored its potential mechanism of action. High levels of MMP-12 were observed in patients with CRPC. We therefore developed cell co-culture and mouse models to study the function of MMP-12. Silencing MMP-12 in CRPC cells disrupted lipid utilization and autophagy marker expression via the CD36/CPT1 and P62/LC3 pathways, respectively, leading to reduced CRPC cell migration and invasion. Moreover, animal experiments confirmed that MMP-12-knockdown CRPC xenograft tumors exhibited reduced tumor growth, and the mechanisms involved the promotion of cancer cell autophagy and the inhibition of lipid catabolism. According to our results, MMP-12 played important roles in the progression of CRPC by disrupting adipocyte maturation and regulating cancer migration and invasion via the modulation of autophagy and lipid catabolism pathways.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Animales , Ratones , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Lipólisis , Metaloproteinasa 12 de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/farmacología , Autofagia , Lípidos , Línea Celular Tumoral , Proliferación Celular
8.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542140

RESUMEN

Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Metaloproteinasa 12 de la Matriz , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Redes y Vías Metabólicas , ARN/metabolismo , Animales , Ratones
9.
Biomed Pharmacother ; 174: 116480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547765

RESUMEN

Sepsis is caused by an inadequate or dysregulated host response to infection. Enzymes causing cellular degradation are matrix metalloproteinases (MMPs). Lipopolysaccharide (LPS) is used in models of sepsis in laboratory settings The aim of the study was to measure MMP 2 and 12 concentrations in spleen and lungs in rats in which septic shock was induced by LPS. The experiment was carried out on 40 male Wistar rats (5 groups of 8): 0. controls 1. administered LPS 2. administered bestatin 3. LPS and bestatin 4.bestatin and after 6 hours LPS Animals were decapitated. Lungs and spleens were collected. Concentrations of MMP-2 and MMP-12 were determined using immunoenzymatic methods. Mean (±SD) MMP-2 in the controls was 43.57 ± 20.53 ng/ml in the lungs and 1.7 ± 0.72 ng/ml in the spleen; Group 1: 31.28 ± 13.13 ng/ml, 0.83 ± 0.8 ng/ml; Group 2: 44.24 ± 22.75 ng /ml, 1.01 ± 0.32 ng/ml; Group 3: 35.94 ± 15.13 ng/ml, 0.41 ± 0.03 ng/ml; Group 4:79.42 ± 44.70 ng/ml, 0.45 ± 0.15, respectively. Mean MMP-12 in controls was 19.79 ± 10.01 ng/ml in lungs and 41.13 ± 15.99 ng/ml in the spleen; Group 1:27.97 ± 15.1 ng/ml; 40.44 ± 11.2 ng/ml; Group 2: 37.93 ± 25.38 ng/ml 41.05 ± 18.08 ng/ml; Group 3: 40.59 ± 11.46 ng/ml, 35.16 ± 12.89 ng/ml; Group 4: 39.4 ± 17.83 ng/ml, 42.04 ± 12.35 ng/ml, respectively. CONCLUSIONS: 1. Bestatin reduces MMP 2 and 12 levels in spleen and lungs. 2. Treatment with bestatin minimizes the effect of LPS.


Asunto(s)
Modelos Animales de Enfermedad , Leucina , Leucina/análogos & derivados , Lipopolisacáridos , Pulmón , Metaloproteinasa 12 de la Matriz , Metaloproteinasa 2 de la Matriz , Ratas Wistar , Sepsis , Bazo , Animales , Bazo/efectos de los fármacos , Bazo/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/patología , Pulmón/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/inducido químicamente , Metaloproteinasa 12 de la Matriz/metabolismo , Ratas , Leucina/farmacología , Leucina/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz/farmacología
10.
J Med Chem ; 67(4): 2907-2940, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38348661

RESUMEN

The matrix metalloprotease ADAMTS7 has been identified by multiple genome-wide association studies as being involved in the development of coronary artery disease. Subsequent research revealed the proteolytic function of the enzyme to be relevant for atherogenesis and restenosis after vessel injury. Based on a publicly known dual ADAMTS4/ADAMTS5 inhibitor, we have in silico designed an ADAMTS7 inhibitor of the catalytic domain, which served as a starting point for an optimization campaign. Initially our inhibitors suffered from low selectivity vs MMP12. An X-ray cocrystal structure inspired us to exploit amino acid differences in the binding site of MMP12 and ADAMTS7 to improve selectivity. Further optimization composed of employing 5-membered heteroaromatic groups as hydantoin substituents to become more potent on ADAMTS7. Finally, fine-tuning of DMPK properties yielded BAY-9835, the first orally bioavailable ADAMTS7 inhibitor. Further optimization to improve selectivity vs ADAMTS12 seems possible, and a respective starting point could be identified.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Proteína ADAMTS7/genética , Proteína ADAMTS7/metabolismo , Estudio de Asociación del Genoma Completo , Metaloproteinasa 12 de la Matriz
11.
Adv Sci (Weinh) ; 11(16): e2306066, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350725

RESUMEN

Acetaminophen overdose is a leading cause of acute liver failure (ALF). Despite the pivotal role of the inflammatory microenvironment in the progression of advanced acetaminophen-induced liver injury (AILI), a comprehensive understanding of the underlying cellular interactions and molecular mechanisms remains elusive. Mas is a G protein-coupled receptor highly expressed by myeloid cells; however, its role in the AILI microenvironment remains to be elucidated. A multidimensional approach, including single-cell RNA sequencing, spatial transcriptomics, and hour-long intravital imaging, is employed to characterize the microenvironment in Mas1 deficient mice at the systemic and cell-specific levels. The characteristic landscape of mouse AILI models involves reciprocal cellular communication among MYC+CD63+ endothelial cells, MMP12+ macrophages, and monocytes, which is maintained by enhanced glycolysis and the NF-κB/TNF-α signaling pathway due to myeloid-Mas deficiency. Importantly, the pathogenic microenvironment is delineated in samples obtained from patients with ALF, demonstrating its clinical relevance. In summary, these findings greatly enhance the understanding of the microenvironment in advanced AILI and offer potential avenues for patient stratification and identification of novel therapeutic targets.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Modelos Animales de Enfermedad , Células Endoteliales , Macrófagos , Metaloproteinasa 12 de la Matriz , Monocitos , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Células Endoteliales/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Ratones Endogámicos C57BL , Monocitos/metabolismo
12.
Cancer Control ; 31: 10732748241235468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410859

RESUMEN

OBJECTIVE: This study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD). METHODS: Using >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly. RESULTS: MMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05). CONCLUSIONS: MMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias de la Mama , Neoplasias del Colon , Neoplasias Pulmonares , Humanos , Femenino , Metaloproteinasa 12 de la Matriz/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Pronóstico , Estudios Retrospectivos , Adenocarcinoma del Pulmón/genética , ARN Mensajero/genética , Neoplasias Pulmonares/genética
13.
BMC Pharmacol Toxicol ; 25(1): 18, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355586

RESUMEN

BACKGROUND: Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis. METHODS: In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio. RESULTS: We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-ß and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-ß in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages. CONCLUSIONS: Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-ß and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Bleomicina/toxicidad , Praziquantel/uso terapéutico , Metaloproteinasa 12 de la Matriz/farmacología , Metaloproteinasa 12 de la Matriz/uso terapéutico , Pulmón , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo , Colágeno/metabolismo , Ratones Endogámicos C57BL
14.
Sci Rep ; 14(1): 4020, 2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369593

RESUMEN

Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.


Asunto(s)
Macrófagos del Hígado , Enfermedad del Hígado Graso no Alcohólico , Niño , Humanos , Macrófagos del Hígado/metabolismo , Fructosa/metabolismo , Vía de Pentosa Fosfato , Metaloproteinasa 12 de la Matriz/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Fibrosis , Fenotipo
15.
Artículo en Inglés | MEDLINE | ID: mdl-38288346

RESUMEN

Background: Macrophage-derived matrix metalloproteinase 12 (MMP12) can cause destruction of lung tissue structure and plays a significant role in the development and progression of chronic obstructive pulmonary disease (COPD). MTOR is a serine/threonine kinase that plays a crucial role in cell growth and metabolism. The activity of MTOR in the lung tissues of COPD patients also shows significant changes. However, it is unclear whether MTOR can regulate the development and progression of COPD by controlling MMP12. This study primarily investigates whether MTOR in macrophages can affect the expression of MMP12 and participate in the progression of COPD. Methods: We tested the changes in MTOR activity in macrophages exposed to cigarette smoke (CS) both in vivo and in vitro. Additionally, we observed the effect of MTOR on the expression of MMP12 in macrophages and on lung tissue inflammation and structural damage in mice, both in vivo and in vitro, using MTOR inhibitors or gene knockout mice. Finally, we combined inhibitor treatment with gene knockout to demonstrate that MTOR primarily mediates the expression of MMP12 through the NF-κB signaling pathway. Results: Exposure to CS can enhance MTOR activity in mouse alveolar macrophages. Inhibiting the activity of MTOR or suppressing its expression leads to increased expression of MMP12. Myeloid-specific knockout of MTOR expression can promote the occurrence of CS-induced pulmonary inflammation and emphysema in mice. Inhibiting the activity of NF-κB can eliminate the effect of MTOR on MMP12. Conclusion: Macrophage MTOR can reduce the expression of MMP12 by inhibiting NF-κB, thereby inhibiting the occurrence of COPD inflammation and destruction of lung tissue structure. Activating the activity of macrophage MTOR may be beneficial for the treatment of COPD.


Asunto(s)
Fumar Cigarrillos , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Fumar Cigarrillos/efectos adversos , Inflamación/metabolismo , Pulmón , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neumonía/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/complicaciones , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Productos de Tabaco
16.
J Am Coll Cardiol ; 83(5): 577-591, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38296402

RESUMEN

BACKGROUND: Limited data exist regarding risk factors for aortic stenosis (AS). The plasma proteome is a promising phenotype for discovery of novel biomarkers and potentially causative mechanisms. OBJECTIVES: The aim of this study was to discover novel biomarkers with potentially causal associations with AS. METHODS: We measured 4,877 plasma proteins (SomaScan aptamer-affinity assay) among ARIC (Atherosclerosis Risk In Communities) study participants in mid-life (visit 3 [V3]; n = 11,430; age 60 ± 6 years) and in late-life (V5; n = 4,899; age 76 ± 5 years). We identified proteins cross-sectionally associated with aortic valve (AV) peak velocity (AVmax) and dimensionless index by echocardiography at V5 and with incident AV-related hospitalization after V3 with the use of multivariable linear and Cox proportional hazard regression. We assessed associations of candidate proteins with changes in AVmax over 6 years and with AV calcification with the use of cardiac computed tomography, replicated analysis in an independent sample, performed Mendelian randomization, and evaluated gene expression in explanted human AV tissue. RESULTS: Fifty-two proteins cross-sectionally were associated with AVmax and dimensionless index at V5 and with risk of incident AV-related hospitalization after V3. Among 3,413 participants in the Cardiovascular Health Study, 6 of those proteins were significantly associated with adjudicated moderate or severe AS, including matrix metalloproteinase 12 (MMP12), complement C1q tumor necrosis factor-related protein 1 (C1QTNF1), and growth differentiation factor-15. MMP12 was also associated with greater increase in AVmax over 6 years, greater degree of AV calcification, and greater expression in calcific compared with normal or fibrotic AV tissue. C1QTNF1 had consistent potential causal effects on both AS and AVmax according to Mendelian randomization analysis. CONCLUSIONS: These findings identify MMP12 as a potential novel circulating biomarker of AS risk and C1QTNF1 as a new putative target to prevent AS progression.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Calcinosis , Proteómica , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Metaloproteinasa 12 de la Matriz , Factores de Riesgo , Válvula Aórtica/diagnóstico por imagen , Biomarcadores
17.
Int J Surg ; 110(2): 766-776, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016292

RESUMEN

BACKGROUND: Ischemic stroke (IS) is more common every year, the condition is serious, and have a poor prognosis. New, efficient, and safe therapeutic targets are desperately needed as early treatment especially prevention and reperfusion is the key to lowering the occurrence of poorer prognosis. Generally circulating proteins are attractive therapeutic targets, this study aims to identify potential pharmacological targets among plasma and cerebrospinal fluid (CSF) proteins for the prevention and treatment of IS using a multicenter Mendelian randomization (MR) approach. METHODS: First, the genetic instruments of 734 plasma and 151 CSF proteins were assessed for causative connections with IS from MEGASTROKE consortium by MR to identify prospective therapeutic targets. Then, for additional validation, plasma proteins from the deCODE consortium and the Fenland consortium, as well as IS GWAS data from the FinnGen cohort, the ISGC consortium and UK biobank, were employed. A thorough evaluation of the aforementioned possible pharmacological targets was carried out using meta-analysis. The robustness of MR results was then confirmed through sensitivity analysis using several techniques, such as bidirectional MR analysis, Steiger filtering, and Bayesian colocalization. Finally, methods like Protein-Protein Interaction (PPI) Networking were utilized to investigate the relationship between putative drug targets and therapeutic agents. RESULTS: The authors discovered three proteins that may function as promising therapeutic targets for IS and meet the Bonferroni correction ( P <0.05/885=5.65×10 -5 ). Prekallikrein (OR=0.41, 95% CI: 0.27-0.63, P =3.61×10 -5 ), a protein found in CSF, has a 10-fold protective impact in IS, while the plasma proteins SWAP70 (OR=0.85, 95% CI: 0.80-0.91, P =1.64×10 -6 ) and MMP-12 (OR=0.92, 95% CI: 0.89-0.95, P =4.49×10 -6 ) of each SD play a protective role in IS. Prekallikrein, MMP-12, SWAP70 was replicated in the FinnGen cohort and ISGC database. MMP-12 (OR=0.93, 95% CI: 0.91-0.94, P <0.001), SWAP70 (OR=0.92, 95% CI: 0.90-0.94, P <0.001), and prekallikrein (OR=0.53, 95% CI: 0.33-0.72, P <0.001) may all be viable targets for IS, according to the combined meta-analysis results. Additionally, no evidence of reverse causality was identified, and Bayesian colocalization revealed MMP-12 (PPH 4 =0.995), SWAP70 (PPH 4 =0.987), and prekallikrein (PPH 4 =0.894) shared the same variant with IS, supporting the robustness of the aforementioned causation. Prekallikrein and MMP-12 were associated with the target protein of the current treatment of IS. Among them, Lanadelumab, a new drug whose target protein is a prekallikrein, may be a promising new drug for the treatment of IS. CONCLUSION: The prekallikrein, MMP-12, and SWAP70 are causally associated with the risk of IS. Moreover, MMP-12 and prekallikrein may be treated as promising therapeutic targets for medical intervention of IS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Proteoma , Humanos , Teorema de Bayes , Metaloproteinasa 12 de la Matriz , Análisis de la Aleatorización Mendeliana , Precalicreína , Estudios Multicéntricos como Asunto
18.
J Infect Dis ; 229(5): 1372-1381, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38109685

RESUMEN

BACKGROUND: Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS: Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS: The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS: We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.


Asunto(s)
COVID-19 , Pulmón , Metaloproteinasa 12 de la Matriz , Ratones Transgénicos , SARS-CoV-2 , Animales , COVID-19/virología , COVID-19/patología , COVID-19/metabolismo , Humanos , Ratones , Pulmón/virología , Pulmón/patología , Metaloproteinasa 12 de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Modelos Animales de Enfermedad , Remodelación de las Vías Aéreas (Respiratorias) , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Células Epiteliales/virología
19.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069304

RESUMEN

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.


Asunto(s)
Metaloproteinasa 12 de la Matriz , Fagocitosis , Humanos , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Fagocitosis/fisiología , Macrófagos/metabolismo , Inflamación/metabolismo , Regulación de la Expresión Génica , Apoptosis/fisiología
20.
Medicina (Kaunas) ; 59(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004080

RESUMEN

Background and Objectives: Diverticulosis affects a significant portion of the elderly population, with age and lifestyle being established risk factors. Additionally, genetic predisposition is gaining recognition as a contributing factor. This pilot study sought to explore the frequency of genetic variants in matrix metalloproteinases (MMPs) 3, 9, and 12 in a population of colonic diverticulosis patients. Materials and Methods: The study encompassed 134 participants: 59 diagnosed with colon diverticulosis during colonoscopy and 75 healthy controls. The cases and controls were meticulously matched in terms of age and gender. We assessed the distribution of genetic variants MMP3 rs3025058, MMP9 rs3918242, and MMP12 rs2276109 using the polymerase chain reaction-restriction fragments length polymorphism technique. Results: The MMP9 rs3918242 allele T was notably more frequent in individuals with diverticulosis when compared with the control group (p < 0.03). Furthermore, it was associated with dominant (OR = 2.62; 95% CI: 1.24-5.56; p < 0.01) and co-dominant (OR = 2.10; 95% CI: 1.06-4.13; p < 0.03) genetic models. The MMP3 rs3025058 5A/5A genotype was nearly twice as frequent in patients with diverticulosis, while the 6A/6A genotype was only half as common in this group. Conversely, no significant correlation was established between MMP12 rs2276109 and colonic diverticulosis. Conclusions: Our study offers the first insight into a potential connection between genetic variants in MMPs and colon diverticulosis. Specifically, allele T of MMP9 rs3918242 and allele 5A of MMP3 rs3025058 appear to be linked to this condition. These findings indirectly suggest a role for extracellular matrix proteins in the pathogenesis of diverticulosis.


Asunto(s)
Diverticulosis del Colon , Divertículo , Metaloproteinasa 3 de la Matriz , Metaloproteinasa 9 de la Matriz , Anciano , Humanos , Estudios de Casos y Controles , Diverticulosis del Colon/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Proyectos Piloto , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA