Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Virol ; 98(6): e0164123, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38690874

RESUMEN

Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galß1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Polisacáridos , Receptores Virales , Proteínas Virales de Fusión , Acoplamiento Viral , Humanos , Línea Celular , Metapneumovirus/metabolismo , Metapneumovirus/fisiología , Infecciones por Paramyxoviridae/virología , Infecciones por Paramyxoviridae/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Interacciones Microbiota-Huesped , Proteoglicanos de Heparán Sulfato/metabolismo
2.
mBio ; 15(1): e0212223, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38117059

RESUMEN

IMPORTANCE: Human metapneumovirus (hMPV) is an important respiratory pathogen for which no licensed antivirals or vaccines exist. Single-domain antibodies represent promising antiviral biologics that can be easily produced and formatted. We describe the isolation and detailed characterization of two hMPV-neutralizing single-domain antibodies that are directed against the fusion protein F. One of these single-domain antibodies broadly neutralizes hMPV A and B strains, can prevent proteolytic maturation of F, and binds to an epitope in the F trimer interface. This suggests that hMPV pre-F undergoes trimer opening or "breathing" on infectious virions, exposing a vulnerable site for neutralizing antibodies. Finally, we show that this single-domain antibody, fused to a human IgG1 Fc, can protect cotton rats against hMPV replication, an important finding for potential future clinical applications.


Asunto(s)
Metapneumovirus , Anticuerpos de Dominio Único , Humanos , Metapneumovirus/genética , Metapneumovirus/metabolismo , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Epítopos , Proteínas Virales de Fusión/metabolismo
3.
Curr Opin Virol ; 61: 101337, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37544710

RESUMEN

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) continue to be a global burden to infants, the elderly, and immunocompromised individuals. In the past ten years, there has been substantial progress in the development of new vaccine candidates and therapies against these viruses. These advancements were guided by the structural elucidation of the major surface glycoproteins for these viruses, the fusion (F) protein and attachment (G) protein. The identification of immunodominant epitopes on the RSV F and hMPV F proteins has expanded current knowledge on antibody-mediated immune responses, which has led to new approaches for vaccine and therapeutic development through the stabilization of pre-fusion constructs of the F protein and pre-fusion-specific monoclonal antibodies with high potency and efficacy. In this review, we describe structural characteristics of known antigenic sites on the RSV and hMPV proteins, their influence on the immune response, and current progress in vaccine and therapeutic development.


Asunto(s)
Metapneumovirus , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Anciano , Metapneumovirus/metabolismo , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Proteínas Virales de Fusión/química , Infecciones por Virus Sincitial Respiratorio/prevención & control
4.
Cell Host Microbe ; 31(8): 1288-1300.e6, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37516111

RESUMEN

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections pose a significant health burden. Using pre-fusion conformation fusion (F) proteins, we isolated a panel of anti-F antibodies from a human donor. One antibody (RSV-199) potently cross-neutralized 8 RSV and hMPV strains by recognizing antigenic site III, which is partially conserved in RSV and hMPV F. Next, we determined the cryoelectron microscopy (cryo-EM) structures of RSV-199 bound to RSV F trimers, hMPV F monomers, and an unexpected dimeric form of hMPV F. These structures revealed how RSV-199 engages both RSV and hMPV F proteins through conserved interactions of the antibody heavy-chain variable region and how variability within heavy-chain complementarity-determining region 3 (HCDR3) can be accommodated at the F protein interface in site-III-directed antibodies. Furthermore, RSV-199 offered enhanced protection against RSV A and B strains and hMPV in cotton rats. These findings highlight the mechanisms of broad neutralization and therapeutic potential of RSV-199.


Asunto(s)
Metapneumovirus , Virus Sincitial Respiratorio Humano , Humanos , Metapneumovirus/metabolismo , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Región Variable de Inmunoglobulina , Proteínas Virales de Fusión
5.
Commun Biol ; 6(1): 649, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337079

RESUMEN

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.


Asunto(s)
Metapneumovirus , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Lactante , Adulto , Humanos , Anciano , Metapneumovirus/genética , Metapneumovirus/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Mensajero
6.
Microbiol Spectr ; 11(1): e0341322, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36537793

RESUMEN

Avian metapneumovirus subgroup C (aMPV/C) is an important pathogen that causes upper respiratory symptoms and egg production decline in turkeys and chickens. aMPV/C infection leads to inhibition of the host antiviral immune response. However, our understanding of the molecular mechanisms underlying host immune response antagonized by aMPV/C infection is limited. In this study, we demonstrated that the aMPV/C phosphoprotein (P) inhibits the IFN antiviral signaling pathway triggered by melanoma differentiation gene 5 (MDA5) and reduces interferon ß (IFN-ß) production and IFN-stimulated genes (ISGs) by targeting IFN regulatory factor 7 (IRF7) but not nuclear factor κB (NF-κB) in DF-1 cells. Moreover, we found that aMPV/C P protein only blocks the nuclear translocation of IRF3 by interacting with IRF3 in HEK-293T cells, instead of affecting IRF3 phosphorylation and inducing IRF3 degradation, which suppresses IRF3 signaling activation and results in a decrease in IFN-ß production. Collectively, these results reveal a novel mechanism by which aMPV/C infection disrupts IFN-ß production in the host. IMPORTANCE The innate immune response is the first defense line of host cells and organisms against viral infections. When RNA viruses infect cells, viral RNA induces activation of retinoic acid-induced gene I and melanoma differentiation gene 5, which initiates downstream molecules and finally produces type I interferon (IFN-I) to regulate antiviral immune responses. The mechanism for avian metapneumovirus (aMPV) modulating IFN-I production to benefit its replication remains unknown. Here, we demonstrate that phosphoprotein of aMPV subgroup C (aMPV/C) selectively inhibits the nuclear translocation of interferon regulatory 3 (IRF3), instead of affecting the expression and phosphorylation of IRF3, which finally downregulates IFN-I production. This study showed a novel mechanism for aMPV/C infection antagonizing the host IFN response.


Asunto(s)
Factor 3 Regulador del Interferón , Interferón Tipo I , Metapneumovirus , Fosfoproteínas , Animales , Pollos , Interacciones Huésped-Patógeno , Factor 3 Regulador del Interferón/genética , Interferón Tipo I/metabolismo , Interferón beta , Metapneumovirus/metabolismo , Metapneumovirus/patogenicidad , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo
7.
J Virol ; 96(17): e0072322, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35975999

RESUMEN

The production of type I interferon (IFN) is the hallmark of the innate immune response. Most, if not all, mammalian viruses have a way to circumvent this response. Fundamental knowledge on viral evasion of innate immune responses may facilitate the design of novel antiviral therapies. To investigate how human metapneumovirus (HMPV) interacts with the innate immune response, recombinant viruses lacking G, short hydrophobic (SH), or M2-2 protein expression were assessed for IFN induction in A549 cells. HMPV lacking G or SH protein expression induced similarly low levels of IFN, compared to the wild-type virus, whereas HMPV lacking M2-2 expression induced significantly more IFN than the wild-type virus. However, sequence analysis of the genomes of M2-2 mutant viruses revealed large numbers of mutations throughout the genome. Over 70% of these nucleotide substitutions were A-to-G and T-to-C mutations, consistent with the properties of the adenosine deaminase acting on RNA (ADAR) protein family. Knockdown of ADAR1 by CRISPR interference confirmed the role of ADAR1 in the editing of M2-2 deletion mutant virus genomes. More importantly, Northern blot analyses revealed the presence of defective interfering RNAs (DIs) in M2-2 mutant viruses and not in the wild-type virus or G and SH deletion mutant viruses. DIs are known to be potent inducers of the IFN response. The presence of DIs in M2-2 mutant virus stocks and hypermutated virus genomes interfere with studies on HMPV and the innate immune response and should be addressed in future studies. IMPORTANCE Understanding the interaction between viruses and the innate immune response is one of the barriers to the design of antiviral therapies. Here, we investigated the role of the G, SH, and M2-2 proteins of HMPV as type I IFN antagonists. In contrast to other studies, no IFN-antagonistic functions could be observed for the G and SH proteins. HMPV with a deletion of the M2-2 protein did induce type I IFN production upon infection of airway epithelial cells. However, during generation of virus stocks, these viruses rapidly accumulated DIs, which are strong activators of the type I IFN response. Additionally, the genomes of these viruses were hypermutated, which was prevented by generating stocks in ADAR knockdown cells, confirming a role for ADAR in hypermutation of HMPV genomes or DIs. These data indicate that a role of the HMPV M2-2 protein as a bona fide IFN antagonist remains elusive.


Asunto(s)
Inmunidad Innata , Interferón Tipo I , Metapneumovirus , Proteínas Virales , Células A549 , Adenosina Desaminasa , Antivirales/metabolismo , Humanos , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Metapneumovirus/genética , Metapneumovirus/metabolismo , Proteínas de Unión al ARN , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Viruses ; 13(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34960719

RESUMEN

Pneumoviruses include pathogenic human and animal viruses, the most known and studied being the human respiratory syncytial virus (hRSV) and the metapneumovirus (hMPV), which are the major cause of severe acute respiratory tract illness in young children worldwide, and main pathogens infecting elderly and immune-compromised people. The transcription and replication of these viruses take place in specific cytoplasmic inclusions called inclusion bodies (IBs). These activities depend on viral polymerase L, associated with its cofactor phosphoprotein P, for the recognition of the viral RNA genome encapsidated by the nucleoprotein N, forming the nucleocapsid (NC). The polymerase activities rely on diverse transient protein-protein interactions orchestrated by P playing the hub role. Among these interactions, P interacts with the NC to recruit L to the genome. The P protein also plays the role of chaperone to maintain the neosynthesized N monomeric and RNA-free (called N0) before specific encapsidation of the viral genome and antigenome. This review aims at giving an overview of recent structural information obtained for hRSV and hMPV P, N, and more specifically for P-NC and N0-P complexes that pave the way for the rational design of new antivirals against those viruses.


Asunto(s)
Antivirales , Diseño de Fármacos , Metapneumovirus/metabolismo , Proteínas de la Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales/metabolismo , Animales , Antivirales/química , Antivirales/farmacología , Humanos , Metapneumovirus/efectos de los fármacos , Metapneumovirus/genética , Modelos Moleculares , Proteínas de la Nucleocápside/química , Infecciones por Paramyxoviridae/tratamiento farmacológico , Infecciones por Paramyxoviridae/virología , Fosfoproteínas/química , Unión Proteica , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Transcripción Genética , Proteínas Virales/química , Replicación Viral
9.
Viruses ; 13(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34696420

RESUMEN

The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream recognition of viral RNA to downstream antiviral signal transduction. However, the interaction mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS decrease. We also found that the reduction in MAVS occurred at the post-translational level rather than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and 501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462 was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the ubiquitin-proteasome pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metapneumovirus/metabolismo , Mitocondrias/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Chlorocebus aethiops , Leupeptinas/farmacología , Metapneumovirus/patogenicidad , Mitocondrias/metabolismo , Mitocondrias/virología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Células Vero
10.
Virology ; 543: 43-53, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056846

RESUMEN

Viruses possessing class I fusion proteins require proteolytic activation by host cell proteases to mediate fusion with the host cell membrane. The mammalian SPINT2 gene encodes a protease inhibitor that targets trypsin-like serine proteases. Here we show the protease inhibitor, SPINT2, restricts cleavage-activation efficiently for a range of influenza viruses and for human metapneumovirus (HMPV). SPINT2 treatment resulted in the cleavage and fusion inhibition of full-length influenza A/CA/04/09 (H1N1) HA, A/Aichi/68 (H3N2) HA, A/Shanghai/2/2013 (H7N9) HA and HMPV F when activated by trypsin, recombinant matriptase or KLK5. We also demonstrate that SPINT2 was able to reduce viral growth of influenza A/CA/04/09 H1N1 and A/X31 H3N2 in cell culture by inhibiting matriptase or TMPRSS2. Moreover, inhibition efficacy did not differ whether SPINT2 was added at the time of infection or 24 h post-infection. Our data suggest that the SPINT2 inhibitor has a strong potential to serve as a novel broad-spectrum antiviral.


Asunto(s)
Virus de la Influenza A/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacología , Metapneumovirus/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Proteínas Virales de Fusión/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/fisiología , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/metabolismo , Virus de la Influenza A/fisiología , Glicoproteínas de Membrana/genética , Metapneumovirus/crecimiento & desarrollo , Metapneumovirus/metabolismo , Metapneumovirus/fisiología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes/farmacología , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Tripsina/metabolismo , Inhibidores de Tripsina/farmacología
11.
Virology ; 531: 248-254, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30946995

RESUMEN

The human metapneumovirus (HMPV) fusion protein (F) mediates fusion of the viral envelope and cellular membranes to establish infection. HMPV F from some, but not all, viral strains promotes fusion only after exposure to low pH. Previous studies have identified several key residues involved in low pH triggering, including H435 and a proposed requirement for glycine at position 294. We analyzed the different levels of fusion activity, protein expression and cleavage of three HMPV F proteins not previously examined. Interestingly, low pH-triggered fusion in the absence of G294 was identified in one F protein, while a novel histidine residue (H434) was identified that enhanced low pH promoted fusion in another. The third F protein failed to promote cell-to-cell fusion, suggesting other requirements for F protein triggering. Our results demonstrate HMPV F triggering is more complex than previously described and suggest a more intricate mechanism for fusion protein function and activation.


Asunto(s)
Metapneumovirus/metabolismo , Infecciones por Paramyxoviridae/virología , Proteínas Virales de Fusión/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Humanos , Metapneumovirus/química , Metapneumovirus/genética , Estabilidad Proteica , Alineación de Secuencia , Células Vero , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética
12.
BMC Res Notes ; 11(1): 432, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970194

RESUMEN

OBJECTIVE: Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are responsible for respiratory diseases, mostly in children. Despite the clinical and epidemiological similarities between these two pneumoviruses, they elicit different immune responses. This work aims to further our understanding of the differential immune response induced by these respiratory viruses by determining the changes of small non-coding RNAs (miRNAs), which regulate gene expression and are involved in numerous cellular processes including the immune system. RESULTS: In the present study, we analyzed the expression of miRNA transcripts of human dendritic cells infected with RSV or HMPV by high throughput sequencing using Illumina sequencing technology. Further validation of miRNA expression by quantitative polymerase chain reaction indicated that HMPV infection up-regulated the expression of 2 miRNAs (hsa-miR-182-5p and hsa-miR-4634), while RSV infection induced significant expression of 3 miRNAs (hsa-miR-4448, hsa-miR-30a-5p and hsa-miR-4634). The predominant miRNA induced by both viruses was hsa-miR-4634.


Asunto(s)
Células Dendríticas , Metapneumovirus/metabolismo , MicroARNs/metabolismo , Infecciones por Paramyxoviridae/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Niño , Humanos , Virus Sincitial Respiratorio Humano
13.
PLoS Pathog ; 14(2): e1006837, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470533

RESUMEN

Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Epítopos/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Unión Competitiva , Reacciones Cruzadas , Mapeo Epitopo , Humanos , Cinética , Metapneumovirus/inmunología , Metapneumovirus/metabolismo , Microscopía Electrónica , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/antagonistas & inhibidores , Proteínas Virales de Fusión/genética
14.
J Mol Biol ; 430(6): 777-792, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29414675

RESUMEN

RNA transcription of mononegavirales decreases gradually from the 3' leader promoter toward the 5' end of the genome, due to a decay in polymerase processivity. In the respiratory syncytial virus and metapneumovirus, the M2-1 protein ensures transcription anti-termination. Despite being a homotetramer, respiratory syncytial virus M2-1 binds two molecules of RNA of 13mer or longer per tetramer, and temperature-sensitive secondary structure in the RNA ligand is unfolded by stoichiometric interaction with M2-1. Fine quantitative analysis shows positive cooperativity, indicative of conformational asymmetry in the tetramer. RNA binds to M2-1 through a fast bimolecular association followed by slow rearrangements corresponding to an induced-fit mechanism, providing a sequential description of the time events of cooperativity. The first binding event of half of the RNA molecule to one of the sites increases the affinity of the second binding event on the adjacent contacting protomer by 15-fold, product of increased effective concentration caused by the entropic link. This mechanism allows for high-affinity binding with an otherwise relaxed sequence specificity, and instead suggests a yet undefined structural recognition signature in the RNA for modulating gene transcription. This work provides a basis for an essential event for understanding transcription antitermination in pneumoviruses and its counterpart Ebola virus VP30.


Asunto(s)
Proteínas Portadoras/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Ebolavirus/metabolismo , Regulación Viral de la Expresión Génica , Genes Virales , Cinética , Metapneumovirus/genética , Metapneumovirus/metabolismo , Modelos Moleculares , Conformación Proteica , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , Transcripción Genética , Proteínas Virales/genética
15.
Viruses ; 9(10)2017 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-29065494

RESUMEN

Human Metapneumovirus (HMPV) is a leading respiratory pathogen that causes lower respiratory tract infections worldwide. Acute HMPV infection induces an exacerbated inflammatory neutrophilic response leading to bronchiolitis and pneumonia. However, the mechanism by which the virus regulates neutrophil infiltration into the airways still remains unexplored. In this work, we used an experimental mouse model of HMPV infection to demonstrate that the attachment (G) protein of HMPV contributes to the recruitment of neutrophils into the airways and modulate the production of neutrophil chemoattractants and Type I IFN responses, specifically IFN-α. These findings provide the first evidence that the HMPV G protein contributes to the in vivo neutrophilic response to HMPV infection and furthers our understanding on virus induced inflammatory responses in the airways.


Asunto(s)
Pulmón/inmunología , Metapneumovirus/metabolismo , Infiltración Neutrófila , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular , Citocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Interferón-alfa/inmunología , Interleucina-8/inmunología , Pulmón/virología , Ratones , Replicación Viral
16.
Intervirology ; 60(5): 181-189, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29510403

RESUMEN

BACKGROUND: The families Paramyxoviridae and Pneumoviridae comprise a broad spectrum of viral pathogens that affect human health. The matrix (M) protein of these viruses has a central role in their life cycle. In line with this, molecular characteristics of the M proteins from variable viruses that circulated in Croatia were investigated. METHODS: Sequences of the M proteins of human parainfluenza virus (HPIV) 1-3 within the family Paramyxoviridae, human metapneumovirus (HMPV), and human respiratory syncytial virus from the family Pneumoviridae were obtained and analyzed. RESULTS: M proteins were very diverse among HPIVs, but highly conserved within each virus. More variability was seen in nucleotide sequences of M proteins from the Pneumoviridae family. An insertion of 8 nucleotides in the 3' untranslated region in 1 HMPV M gene sequence was discovered (HR347-12). As there are no samples with such an insertion in the database, this insertion is of interest and requires further research. CONCLUSION: While we have confirmed that M proteins were conserved among individual viruses, any changes that are observed should be given attention and further researched. Of special interest is inclusion of HPIV2 M proteins in this analysis, as these proteins have not been studied to the same extent as other paramyxoviruses.


Asunto(s)
Metapneumovirus/genética , Virus de la Parainfluenza 1 Humana/genética , ARN Viral/genética , Virus Sincitiales Respiratorios/genética , Proteínas de la Matriz Viral/genética , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Expresión Génica , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metapneumovirus/aislamiento & purificación , Metapneumovirus/metabolismo , Virus de la Parainfluenza 1 Humana/aislamiento & purificación , Virus de la Parainfluenza 1 Humana/metabolismo , Infecciones por Paramyxoviridae/virología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/aislamiento & purificación , Virus Sincitiales Respiratorios/metabolismo , Infecciones por Respirovirus/virología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Células Vero
17.
Nat Commun ; 6: 8749, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26549102

RESUMEN

The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site ((SAM)P) also contains a novel pocket ((NS)P) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the (SAM)P-adjoining site holding the nucleotides undergoing methylation ((SUB)P) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2'O and N7 positions, and also displays nucleotide triphosphatase activity.


Asunto(s)
Metapneumovirus/metabolismo , Caperuzas de ARN/metabolismo , ARN/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Sitios de Unión , Cromatografía en Capa Delgada , Cristalización , Cristalografía por Rayos X , Metilación , Mononegavirales/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Células Sf9 , Spodoptera , Proteínas Virales/química , Proteínas Virales/metabolismo
18.
Sci Rep ; 5: 15584, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26498473

RESUMEN

Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.


Asunto(s)
Metapneumovirus/metabolismo , Tripsina/metabolismo , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Cricetinae , Concentración de Iones de Hidrógeno , Fusión de Membrana , Metapneumovirus/genética , Mutagénesis , Mutación , Células Vero
19.
Arch Virol ; 160(10): 2445-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175070

RESUMEN

The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.


Asunto(s)
Variación Genética , Metapneumovirus/genética , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/virología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Humanos , Metapneumovirus/química , Metapneumovirus/clasificación , Metapneumovirus/metabolismo , Datos de Secuencia Molecular , Infecciones por Paramyxoviridae/virología , Alineación de Secuencia , Pavos/virología , Células Vero , Proteínas Virales de Fusión/genética
20.
Vet Res ; 45: 74, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25060776

RESUMEN

Subtype C avian metapneumovirus (aMPV-C), is an important pathogen that can cause egg-drop and acute respiratory diseases in poultry. To date, aMPV-C infection has not been documented in Muscovy ducks in China. Here, we isolated and characterized an aMPV-C, designated S-01, which has caused severe respiratory disease and noticeable egg drop in Muscovy duck flocks in south China since 2010. Electron microscopy showed that the isolate was an enveloped virus exhibiting multiple morphologies with a diameter of 20-500 nm. The S-01 strain was able to produce a typical cytopathic effect (CPE) on Vero cells and cause death in 10- to 11-day-old Muscovy duck embryos. In vivo infection of layer Muscovy ducks with the isolate resulted in typical clinical signs and pathological lesions similar to those seen in the original infected cases. We report the first complete genomic sequence of aMPV-C from Muscovy ducks. A phylogenetic analysis strongly suggested that the S-01 virus belongs to the aMPV-C family, sharing 92.3%-94.3% of nucleotide identity with that of aMPV-C, and was most closely related to the aMPV-C strains isolated from Muscovy ducks in France. The deduced eight main proteins (N, P, M, F, M2, SH, G and L) of the novel isolate shared higher identity with hMPV than with other aMPV (subtypes A, B and D). S-01 could bind a monoclonal antibody against the F protein of hMPV. Together, our results indicate that subtype-C aMPV has been circulating in Muscovy duck flocks in South China, and it is urgent for companies to develop new vaccines to control the spread of the virus in China.


Asunto(s)
Patos , Genoma Viral , Metapneumovirus/genética , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/virología , Animales , China , Chlorocebus aethiops , Metapneumovirus/metabolismo , Datos de Secuencia Molecular , Infecciones por Paramyxoviridae/virología , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de Proteína/veterinaria , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...