Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-31965988

RESUMEN

S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases (MTases) are involved in diverse cellular functions. These enzymes show little sequence conservation but have a conserved structural fold. The DNA MTases have characteristic motifs that are involved in AdoMet binding, DNA target recognition and catalysis. Motif III of these MTases have a highly conserved acidic residue, often an aspartate, whose functional significance is not clear. Here, we report a mutational study of the residue in the ß family MTase of the Type III restriction-modification enzyme EcoP15I. Replacement of this residue by alanine affects its methylation activity. We propose that this residue contributes to the affinity of the enzyme for AdoMet. Analysis of the structures of DNA, RNA and protein MTases reveal that the acidic residue is conserved in all of them, and interacts with N6 of the adenine moiety of AdoMet. Interestingly, in the SET-domain protein lysine MTases, which have a fold different from other AdoMet-dependent MTases, N6 of the adenine moiety is hydrogen bonded to the main chain carbonyl group of the histidine residue of the highly conserved motif III. Our study reveals the evolutionary conservation of a carbonyl group in DNA, RNA and protein AdoMet-dependent MTases for specific interaction by hydrogen bond with AdoMet, despite the lack of overall sequence conservation.


Asunto(s)
ADN/genética , Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/ultraestructura , Proteínas Represoras/ultraestructura , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/ultraestructura , Secuencia de Aminoácidos/genética , Secuencia Conservada/genética , ADN/ultraestructura , Metilación de ADN/genética , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/ultraestructura , Humanos , Enlace de Hidrógeno , Metiltransferasas/ultraestructura , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Conformación Proteica en Lámina beta/genética , Pliegue de Proteína , Proteína-Arginina N-Metiltransferasas/genética , ARN/genética , ARN/ultraestructura , Proteínas Represoras/genética , S-Adenosilmetionina/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
2.
Nucleic Acids Res ; 37(6): 2053-63, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223329

RESUMEN

Atomic force microscopy (AFM) allows the study of single protein-DNA interactions such as those observed with the Type I Restriction-Modification systems. The mechanisms employed by these systems are complicated and understanding them has proved problematic. It has been known for years that these enzymes translocate DNA during the restriction reaction, but more recent AFM work suggested that the archetypal EcoKI protein went through an additional dimerization stage before the onset of translocation. The results presented here extend earlier findings confirming the dimerization. Dimerization is particularly common if the DNA molecule contains two EcoKI recognition sites. DNA loops with dimers at their apex form if the DNA is sufficiently long, and also form in the presence of ATPgammaS, a non-hydrolysable analogue of the ATP required for translocation, indicating that the looping is on the reaction pathway of the enzyme. Visualization of specific DNA loops in the protein-DNA constructs was achieved by improved sample preparation and analysis techniques. The reported dimerization and looping mechanism is unlikely to be exclusive to EcoKI, and offers greater insight into the detailed functioning of this and other higher order assemblies of proteins operating by bringing distant sites on DNA into close proximity via DNA looping.


Asunto(s)
Enzimas de Restricción del ADN/ultraestructura , ADN/ultraestructura , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Interpretación Estadística de Datos , Dimerización , Microscopía de Fuerza Atómica , Unión Proteica , Multimerización de Proteína , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/ultraestructura
3.
Nucleic Acids Res ; 37(3): 762-70, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19074193

RESUMEN

Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M(2)S(1) methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.


Asunto(s)
Modelos Moleculares , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Proteínas Virales/química , ADN/química , Escherichia coli/enzimología , Imitación Molecular , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/ultraestructura , Proteínas Virales/ultraestructura
4.
Proc Natl Acad Sci U S A ; 91(23): 10957-61, 1994 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-7971991

RESUMEN

The Thermus aquaticus DNA methyltransferase M.Taq I (EC 2.1.1.72) methylates N6 of adenine in the specific double-helical DNA sequence TCGA by transfer of --CH3 from the cofactor S-adenosyl-L-methionine. The x-ray crystal structure at 2.4-A resolution of this enzyme in complex with S-adenosylmethionine shows alpha/beta folding of the polypeptide into two domains of about equal size. They are arranged in the form of a C with a wide cleft suitable to accommodate the DNA substrate. The N-terminal domain is dominated by a nine-stranded beta-sheet; it contains the two conserved segments typical for N-methyltransferases which form a pocket for cofactor binding. The C-terminal domain is formed by four small beta-sheets and alpha-helices. The three-dimensional folding of M.Taq I is similar to that of the cytosine-specific Hha I methyltransferase, where the large beta-sheet in the N-terminal domain contains all conserved segments and the enzymatically functional parts, and the smaller C-terminal domain is less structured.


Asunto(s)
Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/ultraestructura , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN/química , Sustancias Macromoleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes , S-Adenosilmetionina/química , Thermus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA