Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.078
Filtrar
1.
Anim Sci J ; 95(1): e13980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39054255

RESUMEN

This study evaluated the effects of supplementation of rumen-protected methionine (RPM) on body thermoregulation and conception rate of Nelore cows exposed to high temperature-humidity index (THI). On -31 days before the artificial insemination protocol, 562 lactating, multiparous cows were assigned to receive (MG) or not (CG) RPM supplementation (3 g/cow mixed into 100 g of mineral supplement). Both groups remained in tropical pastures and received supplementation for 77 days. A subset of cows (n = 142) remained with an intravaginal thermometer collecting intravaginal temperature (IT). The respective minimum, average, and maximum environmental THI were 72.8, 78.0, and 83.3. Effects of treatment × hour of the day were detected (P < 0.0001) for IT. From 1330 to 1730 h and 1830 to 1900 h, IT was higher (P < 0.05) for CG versus MG cows when exposed to moderate and high THI. The supplementation with RPM did not affect conception rate (CG = 64.4% vs. MG = 58.2%; P > 0.05). In conclusion, 3 g of RPM supplementation lowered internal body temperature and possibly altered critical THI threshold in Nelore cows with no impact on reproduction.


Asunto(s)
Temperatura Corporal , Suplementos Dietéticos , Metionina , Rumen , Animales , Bovinos/fisiología , Metionina/administración & dosificación , Metionina/farmacología , Femenino , Rumen/metabolismo , Temperatura Corporal/efectos de los fármacos , Calor/efectos adversos , Factores de Tiempo , Trastornos de Estrés por Calor/veterinaria , Trastornos de Estrés por Calor/prevención & control , Regulación de la Temperatura Corporal/efectos de los fármacos , Humedad , Respuesta al Choque Térmico/efectos de los fármacos , Fertilización/efectos de los fármacos , Alimentación Animal , Dieta/veterinaria , Inseminación Artificial/veterinaria , Inseminación Artificial/métodos
2.
Food Funct ; 15(15): 8053-8069, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38989659

RESUMEN

Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.


Asunto(s)
Microbioma Gastrointestinal , Hígado , Metionina , Ratones Endogámicos C57BL , Animales , Metionina/metabolismo , Metionina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Hígado/metabolismo , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos
3.
Cells ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891069

RESUMEN

N-acetyl-selenomethionine (NASeLM), a representative of the selenium compounds, failed to convince in clinical studies and cell cultures that it neither inhibits cancer growth nor has a chemoprotective effect. This study aims to find out whether NASeLM shows a growth-inhibiting property compared to the carrier substance N-Acetyl-L-methionine (NALM) on two different cancer cells, namely Jurkat cells and MTC-SK cells. METHODS: Jurkat and MTC-SK cells were cultured in the absence or presence of varying concentrations (0-500 µg/mL) of NASeLM and NALM solutions. After 0, 24, 48, and 72 h, mitochondrial activity, cancer cell membrane CP levels, cell growth, and caspase-3 activity were assessed in aliquots of Jurkat and MTC-SK cells. RESULTS: Both substances, NASeLM and NALM, were similarly able to inhibit cell growth and mitochondrial activity of Jurkat cells in a concentration-dependent and time-dependent manner up to 70%. Only the determination of caspase activity showed that only NASeLM was able to increase this to almost 40% compared to the control as well as the same lack of NALM. However, the experiments on MTC-SK cells showed a clear difference in favor of NASeLM compared to NALM. While NASeLM was able to reduce cell growth to up to 55%, the same amount of NALM was only at around 15%, which turned out to be highly significant (p < 0.001). The same could also be measured for the reduction in MTC-SK mitochondrial activity. Time dependence could also be recognized: the longer both substances, NASeLM and NALM, were incubated, the higher the effect on cell growth and mitochondrial activity, in favour of NASeLM. Only NASeLM was able to increase caspase-3 activity in MTC-SK cells: at 250 µg/mL NASeLM, caspase-3 activity increased significantly to 28% after 24 and 48 h compared to the control (14%) or the same NALM concentration (14%). After 72 h, this could still increase to 37%. A further increase in the NASeLM concentration did not result in higher caspase-3 activity. CONCLUSION: NASeLM could clearly increase caspase-3 activity in both cell types, Jurkat or MTC-SK cells, and thus induce cell death. NALM and NASeLM showed a reduction in cell growth and mitochondrial activity in both cell lines: While NALM and NASeLM showed almost identical measurements on Jurkat cells, NASeLM was much more effective on MTC-SK than the non-selenium-containing carrier, indicating that it has additional anti-chemoprotective effects.


Asunto(s)
Proliferación Celular , Metionina , Selenometionina , Humanos , Selenometionina/farmacología , Células Jurkat , Metionina/análogos & derivados , Metionina/farmacología , Metionina/metabolismo , Proliferación Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos
4.
Cancer Genomics Proteomics ; 21(4): 395-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944421

RESUMEN

BACKGROUND/AIM: It has been recently demonstrated that a methionine-restricted diet increases the response to immune checkpoint inhibitors (ICIs) via an increase in PD-L1 in a syngeneic mouse colorectal-cancer model. Our laboratory has developed recombinant methioninase (rMETase) to restrict methionine. The aim of the present study was to determine if rMETase can increase PD-L1 expression in a human colorectal cancer cell line in vitro. MATERIALS AND METHODS: We evaluated the half-maximal inhibitory concentration (IC50) value of rMETase on HCT-116 human colorectal cancer cells. HCT-116 cells were treated with rMETase at the IC50 Western immunoblotting was used to compare PD-L1 expression in HCT-116 cells treated with and without rMETase. RESULTS: The IC50 value of rMETase on HCT-116 was 0.79 U/ml. Methionine restriction using rMETase increased PD-L1 expression compared to the untreated control (p<0.05). CONCLUSION: Methionine restriction with rMETase up-regulates PD-L1 expression in human colorectal cancer cells and the combination of rMETase and ICIs may have the potential to improve immunotherapy in human colorectal cancer.


Asunto(s)
Antígeno B7-H1 , Liasas de Carbono-Azufre , Neoplasias Colorrectales , Metionina , Proteínas Recombinantes , Humanos , Liasas de Carbono-Azufre/metabolismo , Metionina/farmacología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Proteínas Recombinantes/farmacología , Células HCT116
5.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834972

RESUMEN

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Asunto(s)
Antioxidantes , Glucólisis , Hígado , Metionina , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Glucólisis/efectos de los fármacos , Antioxidantes/metabolismo , Ovinos , Metionina/farmacología , Metionina/administración & dosificación , Metionina/metabolismo , Lisina/metabolismo , Dieta con Restricción de Proteínas/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Masculino
6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928022

RESUMEN

Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.


Asunto(s)
Botrytis , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Metionina , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Metionina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Pseudomonas syringae/patogenicidad , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Oxilipinas/farmacología , Oxilipinas/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/inmunología , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
7.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38864402

RESUMEN

Fetal programming research conducted in sheep has reported sexually dimorphic responses on growth of the progeny born to in-utero methionine or omega-3 fatty acids supplementation. However, the biological mechanism behind the nutrient by sex interaction as a source of variation in offspring body weight is still unknown. A high-throughput RNA sequencing data of hypothalamus samples from 17 lambs were used in the current study to identify differentially expressed genes (DEGs) between males and females born to dams supplemented with different nutrients during late-gestation. Ewes received a basal diet without omega-3 fatty acids or methionine supplementation as the control (CONT); omega-3 fatty acids supplementation (FAS), or methionine supplementation (METS). A list of regulated genes was generated. Data were compared as CONT vs. FAS and CONT vs. METS. For CONT vs. METS, a treatment by sex interaction was found (adjusted P-value < 0.05) on 121 DEGs (112 upregulated and 9 downregulated) on female lambs born to METS compared with METS males. Importantly, with the sex interaction term, more than 100 genes were upregulated in female lamb's hypothalamuses born to METS. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) were performed using the DEGs from female lambs. Terms under biological process (related to morphogenesis, organism, and tissue development), cellular component (related to chromatin, extracellular components), and molecular function (involved in chromatin structure and transcription and factors linked to binding DNA) were presented (adjusted P-value < 0.05) for GO. For the IPA, the top-scoring network was developmental disorder, endocrine system development and function, and organ morphology. Only a few differences were observed in the comparison between the interaction of sex and treatment for the CONT vs. FAS comparison. The markedly increased number of DEGs substantially involved in developmental and growth processes indicates the extent to which maternal methionine supplementation causes the sexually dimorphic effects observed in the offspring.


Feeding dams during gestation affects the development of the offspring for their entire life. The objective of the current experiment was to evaluate the changes of the transcriptome in the hypothalamus of the offspring lambs born from dams supplemented with (i) a control diet (without lipids or methionine supplementation), (ii) an omega-3 fatty acid supplementation, or (iii) a methionine supplementation. The supplementation took place in the last third of gestation and the hypothalamus of male and female offspring was collected after being on a fattening diet for 54 d. Hypothalamus samples were used to extract RNA and analyzed using RNA sequencing. There was an interaction due to sex and methionine supplementation. The pathways that were modified were chromatin structure, developmental processes, and organ morphology. The modification observed on these pathways could explain the sex by treatment interaction differences previously observed in growth. There were few sex by omega-3 fatty acid interactions on the hypothalamus transcriptome. Therefore, the sexual dimorphism observed by methionine supplementation may be regulated by the hypothalamus.


Asunto(s)
Peso Corporal , Dieta , Suplementos Dietéticos , Ácidos Grasos Omega-3 , Hipotálamo , Metionina , Animales , Femenino , Metionina/administración & dosificación , Metionina/farmacología , Masculino , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Ovinos/fisiología , Ovinos/crecimiento & desarrollo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Embarazo , Dieta/veterinaria , Alimentación Animal/análisis , Transcriptoma , Perfilación de la Expresión Génica , Caracteres Sexuales , Factores Sexuales , Fenómenos Fisiológicos Nutricionales de los Animales
8.
Eur J Med Chem ; 271: 116456, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691890

RESUMEN

Since last century, peptides have emerged as potential drugs with >90 FDA approvals for various targets with several in the pipeline. Sulphur, in peptides is present either as thiol (-SH) from Cys or thioether from Met. In this review, all the peptides approved by FDA since 2000 containing sulphur have been included. Among them ∼50 % contains disulphide bridges. This clearly demonstrates the significance of disulphide bonds in peptide drugs. This can be achieved synthetically by using orthogonal protecting groups (PGs) for -SH. These PGs are compatible with Solid Phase Peptide Synthesis (SPPS), which is still the method of choice for peptide synthesis. The orthogonal PGs used for Cys thiol side chain protecting for disulphide bond formation have been included which are currently in use both by academia and industry from small scale to large scale synthesis. In addition, the details of the FDA approved drugs containing Cys and Met (or both) have also been discussed.


Asunto(s)
Cisteína , Metionina , Péptidos , Cisteína/química , Cisteína/farmacología , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Metionina/química , Metionina/farmacología , Humanos , Animales , Estructura Molecular
9.
Food Chem ; 454: 139801, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810456

RESUMEN

Photodynamic inactivation (PDI) could utilize light to activate reactive oxygen species (ROS) produced by photosensitizers to kill bacteria for preservation. To delve into the complex effects arising during the post-harvest PDI processing, we conducted experiments using Pseudomonas reinekei, a food spoilage bacteria extracted from rotten Pakchoi. Through analyzing the metabolomics results, we discovered that methionine (Met) and glutamate (Glu) exhibited significant inhibitory effects during the PDI process. The oxidative stress generated by light treatment resulted in a reduction of 30.31% and 36.37% in the levels of Met and Glu, respectively. The data also showed that exogenous Met and Glu reduced intracellular oxidative stress levels, increased peroxidase activity, and prevented the damage of intracellular material and cell membrane deformation. That amino acids could inhibit the effect of PDI by hindering oxidative stress. Therefore, the amino acid content should be considered when applying PDI to treat Met- or Glu-rich foods.


Asunto(s)
Aminoácidos , Estrés Oxidativo , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Aminoácidos/farmacología , Aminoácidos/metabolismo , Aminoácidos/química , Especies Reactivas de Oxígeno/metabolismo , Luz , Pseudomonas/metabolismo , Metionina/metabolismo , Metionina/farmacología , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación
10.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38770669

RESUMEN

The objective of this study was to determine the dose-dependent response of one-carbon metabolite (OCM: methionine, choline, folate, and vitamin B12) supplementation on heifer dry matter intake on fixed gain, organ mass, hematology, cytokine concentration, pancreatic and jejunal enzyme activity, and muscle hydrogen peroxide production. Angus heifers (n = 30; body weight [BW] = 392.6 ±â€…12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: total mixed ration (TMR) and saline injections at days 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen-protected methionine (MET) fed at 0.08% of the diet dry matter, rumen-protected choline (CHOL) fed at 60 g/d, and saline injections at days 0 and 7, 0.5X: TMR, MET, CHOL, 5-mg B12, and 80-mg folate injections at days 0 and 7, 1X: TMR, MET CHOL, 10-mg vitamin B12, and 160-mg folate at days 0 and 7, and 2X: TMR, MET, CHOL, 20-mg vitamin B12, and 320-mg folate at days 0 and 7. All heifers were estrus synchronized but not bred, and blood samples were collected on days 0, 7, and at slaughter (day 14) during which tissues were collected. By design, heifer ADG did not differ (P = 0.96). Spleen weight and uterine weight were affected cubically (P = 0.03) decreasing from 0XPOS to 0.5X. Ovarian weight decreased linearly (P < 0.01) with increasing folate and B12 injection. Hemoglobin and hematocrit percentage were decreased (P < 0.01) in the 0.5X treatment compared with all other treatments. Plasma glucose, histotroph protein, and pancreatic α-amylase were decreased (P ≤ 0.04) in the 0.5X treatment. Heifers on the 2X treatment had greater pancreatic α-amylase compared with 0XNEG and 0.5X treatment. Interleukin-6 in plasma tended (P = 0.08) to be greater in the 0XPOS heifers compared with all other treatments. Lastly, 0XPOS-treated heifers had reduced (P ≤ 0.07) hydrogen peroxide production in muscle compared with 0XNEG heifers. These data imply that while certain doses of OCM do not improve whole animal physiology, OCM supplementation doses that disrupt one-carbon metabolism, such as that of the 0.5X treatment, can induce a negative systemic response that results in negative effects in both the dam and the conceptus during early gestation. Therefore, it is necessary to simultaneously establish an optimal OCM dose that increases circulating concentrations for use by the dam and the conceptus, while avoiding potential negative side effects of a disruptive OCM, to evaluate the long-term impacts of OCM supplementation of offspring programming.


The feeding of one-carbon metabolites (including methionine and B vitamins) has been shown to improve fetal growth and milk production in species such as mice, sheep, and dairy cattle. Extending this to beef cattle around the time of breeding is a growing area of research. Our group previously determined that one-carbon metabolite supplementation to beef heifers altered the abundance of circulating methionine-folate cycle intermediates in a dose-dependent manner. Therefore, we aimed to determine a whole-body response to one-carbon metabolite supplementation in heifers by measuring the effects on specific physiological systems as well as a total systemic response. We determined that treatments that negatively altered the methionine-folate cycle yielded a fundamental negative whole-body response to supplementation.


Asunto(s)
Alimentación Animal , Colina , Dieta , Suplementos Dietéticos , Ácido Fólico , Metionina , Vitamina B 12 , Animales , Femenino , Bovinos/fisiología , Bovinos/metabolismo , Metionina/administración & dosificación , Metionina/metabolismo , Metionina/farmacología , Dieta/veterinaria , Vitamina B 12/administración & dosificación , Vitamina B 12/metabolismo , Vitamina B 12/farmacología , Ácido Fólico/administración & dosificación , Ácido Fólico/metabolismo , Alimentación Animal/análisis , Colina/administración & dosificación , Colina/metabolismo
11.
J Agric Food Chem ; 72(20): 11733-11745, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38725145

RESUMEN

Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.


Asunto(s)
Células Epiteliales , Leucina , Metionina , Leche , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Bovinos , Femenino , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Leucina/farmacología , Leucina/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Metionina/metabolismo , Metionina/farmacología , Leche/química , Leche/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613029

RESUMEN

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Asunto(s)
Neoplasias Colorrectales , Metionina , Humanos , Metionina/farmacología , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Vitamina B 12/farmacología , Homocistina , Racemetionina , Línea Celular , Homocisteína , Neoplasias Colorrectales/tratamiento farmacológico
13.
PLoS One ; 19(4): e0299002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626086

RESUMEN

Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.


Asunto(s)
Antiprotozoarios , Naftoquinonas , Parásitos , Theileria annulata , Theileriosis , Garrapatas , Animales , Bovinos , Theileriosis/tratamiento farmacológico , Theileriosis/parasitología , Theileria annulata/genética , Citocromos b/genética , Isoleucina/farmacología , Metionina/farmacología , Antiprotozoarios/farmacología , Mutación , Racemetionina/farmacología , Antiparasitarios/farmacología , Garrapatas/parasitología
14.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621978

RESUMEN

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Metionina/metabolismo , Metionina/farmacología , Interleucina-10/genética , Colina/metabolismo , Colina/farmacología , Colina/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Hígado , Racemetionina/metabolismo , Racemetionina/farmacología , Dieta , ARN Mensajero/metabolismo
15.
PLoS One ; 19(4): e0301205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625974

RESUMEN

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Asunto(s)
Bagres , Lisina , Animales , Aminoácidos , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Lisina/farmacología , Metionina/farmacología , Racemetionina , Staphylococcus aureus , Triptófano/farmacología
16.
Poult Sci ; 103(7): 103731, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669817

RESUMEN

Methionine is one of the most frequently supplemented amino acids in raising of poultry. However, an overdose of methionine can cause hyperhomocysteinemia. Folic acid, taking part in the process of homocysteine remethylation, is a factor affecting the reduction of the concentration of this amino acid. The study was carried out in 2 stages. The experiment of step I was to investigate the effect of methionine and/or folic acid administration in ovo in the early stage of embryogenesis (E4), and the experiment of the second stage - in the late stage of embryogenesis (E17) on the following biochemical parameters of chicken blood: glucose concentration in whole blood and concentration of homocysteine and uric acid in plasma of domestic chickens (Gallus gallus domesticus). Our results confirm that methionine supplementation may increase the concentration of uric acid and homocysteine. Moreover, we demonstrated that folic acid administered during embryogenesis decreased homocysteine concentration, also in groups simultaneously supplemented with methionine, especially in the initial stage of postnatal life of the bird.


Asunto(s)
Pollos , Ácido Fólico , Homocisteína , Metionina , Animales , Metionina/administración & dosificación , Metionina/farmacología , Ácido Fólico/administración & dosificación , Ácido Fólico/farmacología , Pollos/sangre , Pollos/crecimiento & desarrollo , Homocisteína/sangre , Embrión de Pollo/efectos de los fármacos , Suplementos Dietéticos/análisis , Ácido Úrico/sangre , Glucemia/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos
17.
Nutrients ; 16(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542805

RESUMEN

Caffeine (1,3,7-trimethylxanthine) is a widely consumed bioactive substance worldwide. Our recent study showed that a reduction in both reproduction and yolk protein production (vitellogenesis) caused by caffeine intake were improved by vitamin B12 supplementation, which is an essential co-factor in methionine metabolism. In the current study, we investigated the role of methionine in the reproduction of caffeine-ingested animals (CIAs). We assessed the effect of methionine metabolism on CIAs and found that caffeine intake decreased both methionine levels and essential enzymes related to the methionine cycle. Furthermore, we found that the caffeine-induced impairment of methionine metabolism decreased vitellogenesis and increased germ cell apoptosis in an LIN-35/RB-dependent manner. Interestingly, the increased germ cell apoptosis was restored to normal levels by methionine supplementation in CIAs. These results indicate that methionine supplementation plays a beneficial role in germ cell health and offspring development by regulating vitellogenesis.


Asunto(s)
Caenorhabditis elegans , Metionina , Animales , Metionina/farmacología , Metionina/metabolismo , Cafeína/farmacología , Cafeína/metabolismo , Apoptosis , Células Germinativas , Racemetionina/metabolismo , Suplementos Dietéticos
18.
Toxicol Appl Pharmacol ; 485: 116907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521369

RESUMEN

Adenocarcinoma, the predominant subtype of non-small cell lung cancer (NSCLC), poses a significant clinical challenge due to its prevalence and aggressive nature. Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor is often susceptible to development of resistance despite being the preferred treatment option for NSCLC. In this study, we investigated the potential of L-Methionine in enhancing the cytotoxicity of Gefitinib and preventing resistance development. In vitro experiment employing the H1975 cell line demonstrated a notable enhancement in cytotoxic efficacy when L-Methionine (10 mM) was combined with Gefitinib, as indicated by a substantial reduction in IC50 values (155.854 ± 1.87 µM vs 45.83 ± 4.83 µM). Complementary in vivo investigations in a lung cancer model corroborated these findings. Co-administration of L-Methionine (100 mg/kg and 400 mg/kg) with Gefitinib (15 mg/kg) for 21 days exhibited marked improvements in therapeutic efficacy, which was observed by macroscopic and histopathological assessments. Mechanistic insights revealed that the enhanced cytotoxicity of the combination stemmed from the inhibition of the EGFR, modulating the downstream cascade of ERK/AKT and AMPK pathways. Concurrently inhibition of p-AMPK-α by the combination also disrupted metabolic homeostasis, leading to the increased production of reactive oxygen species (ROS). Notably, L-Methionine, functioning as a methyl group donor, elevated the expression of H3K36me2 (an activation mark), while reducing the p-ERK activity. Our study provides the first evidence supporting L-Methionine supplementation as a novel strategy to enhance Gefitinib chemosensitivity against pulmonary adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Receptores ErbB , Gefitinib , Histonas , Neoplasias Pulmonares , Metionina , Proteínas Proto-Oncogénicas c-akt , Gefitinib/farmacología , Humanos , Receptores ErbB/metabolismo , Metionina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Animales , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Histonas/metabolismo , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Sinergismo Farmacológico , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
19.
J Comp Physiol B ; 194(2): 179-189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520538

RESUMEN

Embryonic development is one of the most sensitive and critical stages when maternal effects may influence the offspring's phenotype. In birds and other oviparous species, embryonic development is confined to the eggs, therefore females must deposit resources into the eggs to prepare the offspring for the prevailing post-natal conditions. However, the mechanisms of such phenotypic adjustments remain poorly understood. We simulated a maternal nutritional transfer by injecting 1 mg of L-methionine solution into Japanese quail eggs before the onset of incubation. The increase in early methionine concentration in eggs activated the insulin/insulin-like signalling and mechanistic target of rapamycin (IIS/mTOR) signalling pathways and affected post-natal developmental trajectories. Chicks from methionine-supplemented eggs had higher expression of liver IGF1 and mTOR genes at hatching but were similar in size, and the phenotypic effects of increased growth became apparent only a week later and remained up to three weeks. Circulating levels of insulin-like growth factor-1 (IGF-1) and expression of ribosomal protein serine 6 kinase 1 (RPS6K1), the mTOR downstream effector, were elevated only three weeks after hatching. These results show that specific nutritional cues may have phenotypic programming effects by sequentially activating specific nutrient-sensing pathways and achieving transgenerational phenotypic plasticity.


Asunto(s)
Coturnix , Factor I del Crecimiento Similar a la Insulina , Metionina , Serina-Treonina Quinasas TOR , Animales , Metionina/administración & dosificación , Metionina/farmacología , Coturnix/crecimiento & desarrollo , Coturnix/embriología , Coturnix/metabolismo , Coturnix/genética , Femenino , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Transducción de Señal , Hígado/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo , Embrión no Mamífero
20.
Poult Sci ; 103(5): 103580, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428354

RESUMEN

Despite the acknowledged significance of nutrition in bone development, effects of methionine (Met) and cysteine (Cys) on bone quality remain under-researched, particularly during Eimeria challenge. We investigated the effects of different supplemental Met to Cys ratios (MCR) on bone quality of broilers under Eimeria challenge. A total of 720 fourteen-day old Cobb500 broilers were allocated into a 5 × 2 factorial arrangement. Five diets with Met and Cys supplemented at MCR of 100:0, 75:25, 50:50, 25:75, and 0:100 were fed to the birds with or without Eimeria challenge. Body composition was measured by dual energy x-ray absorptiometry, and the femur bone characteristics were assessed by microtomography. Data were analyzed by two-way ANOVA and orthogonal polynomial contrast. The results reaffirmed the detrimental effects of Eimeria challenge on bone quality. On 9 d post inoculation (DPI), significant interaction effects were found for whole body bone mineral content (BMC), lean tissue weight, and body weight (P < 0.05); in the nonchallenged group (NCG), these parameters linearly decreased as MCR decreased (P < 0.05). In the challenged group (CG), body weight and lean tissue weight were unaffected by MCR, and BMC linearly increased as MCR decreased (P < 0.05). For the cortical bone of femoral metaphysis on 6 DPI, bone mineral density (BMD) linearly increased as MCR decreased (P < 0.05). Bone volume to tissue volume ratio (BV/TV) in the CG linearly increased as MCR decreased (P < 0.05). On 9 DPI, BMC and TV linearly increased as MCR decreased (P < 0.05) in the NCG. BMD and BV/TV changed quadratically as MCR decreased (P < 0.05). For the trabecular bone of femoral metaphysis on 9 DPI, BV/TV, and trabecular number linearly increased as MCR decreased (P < 0.05) in the NCG. For the femoral diaphysis, BV, TV, BMC on 6 DPI, and BMD on 9 DPI linearly increased as MCR decreased (P < 0.05). In conclusion, this study showed that both Eimeria challenge and varying supplemental MCR could influence bone quality of broilers.


Asunto(s)
Absorciometría de Fotón , Alimentación Animal , Densidad Ósea , Pollos , Coccidiosis , Cisteína , Dieta , Suplementos Dietéticos , Eimeria , Metionina , Enfermedades de las Aves de Corral , Animales , Pollos/fisiología , Eimeria/fisiología , Alimentación Animal/análisis , Metionina/administración & dosificación , Metionina/farmacología , Metionina/análogos & derivados , Coccidiosis/veterinaria , Coccidiosis/parasitología , Absorciometría de Fotón/veterinaria , Suplementos Dietéticos/análisis , Dieta/veterinaria , Densidad Ósea/efectos de los fármacos , Enfermedades de las Aves de Corral/parasitología , Cisteína/farmacología , Cisteína/administración & dosificación , Cisteína/análogos & derivados , Microtomografía por Rayos X/veterinaria , Masculino , Relación Dosis-Respuesta a Droga , Fémur/efectos de los fármacos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...