Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.186
Filtrar
1.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999186

RESUMEN

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Asunto(s)
Metabolómica , Micorrizas , Panax notoginseng , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triterpenos , Panax notoginseng/microbiología , Panax notoginseng/química , Triterpenos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Micorrizas/metabolismo , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Saponinas/metabolismo , Saponinas/química , Análisis de Componente Principal , Metaboloma
2.
Plant Physiol Biochem ; 214: 108921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991594

RESUMEN

The use of halophytes in conjunction with arbuscular mycorrhizal (AM) fungi has been found to enhance the removal efficacy of heavy metals and salts in heavy metals contaminated saline soil. The mechanisms of AM fungi on promoting halophyte growth and regulating metabolism remain unclear. In this study, combinations of 0 g kg-1 NaCl and 3 mg kg-1 Cd (S0Cd3), 6 g kg-1 NaCl and 3 mg kg-1 Cd (S6Cd3), and 12 g kg-1 NaCl and 3 mg kg-1 Cd (S12Cd3) were employed to explore the impact of Funneliformis mosseae on the growth and metabolism of Suaeda salsa. The results showed that AM fungi increased the biomass and the P, K+, Ca2+, and Mg2+ accumulations, reduced the Cd and Na+ concentrations in S0Cd3 and S6Cd3, and increased the Cd concentrations in S12Cd3. AM fungi inoculation reduced the Cd and Na+ transfer factors and increased the Cd and Na+ accumulations in S6Cd3. The metabolomics of S6Cd3 showed that AM fungi upregulated the expression of 5-hydroxy-L-tryptophan and 3-indoleacid acid in tryptophan metabolism, potentially acting as crucial antioxidants enabling plants to actively cope with abiotic stresses. AM fungi upregulated the expression of arbutin in glycolysis process, enhancing the plants' osmoregulation capacity. AM fungi upregulated the expression of 2-hydroxycinnamic acid in phenylalanine metabolism and dopaquinone in tyrosine metabolism. These two metabolites help effectively remove reactive oxygen species. Correspondingly, AM fungi decreased MDA content and increased soluble sugar content. These results indicate that AM fungi improve the stress resistance of S. salsa by increasing nutrient uptake and regulating physiological and metabolic changes.


Asunto(s)
Aminoácidos , Cadmio , Chenopodiaceae , Glucólisis , Micorrizas , Reguladores del Crecimiento de las Plantas , Micorrizas/fisiología , Micorrizas/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Chenopodiaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Aminoácidos/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/microbiología , Hongos
3.
J Agric Food Chem ; 72(30): 16603-16613, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38943592

RESUMEN

Arbuscular mycorrhizal fungi (AMF) influence silicon (Si) uptake by plants, but the mechanisms remain unclear. This study investigated the mechanisms of AMF-mediated Si uptake by rice, a model Si-accumulating plant, and explored the tripartite interactions among AMF, Si, and phosphorus (P). AMF inoculation increased shoot Si content by 97% when supplied with silicic acid and by 29% with calcium silicate and upregulated expression of Si transporters Lsi1 and Lsi2 in roots. Supplying Si only to AMF hyphae increased the root Si content by 113%, indicating direct Si uptake by hyphae. Mechanisms of AMF-induced Si uptake were elucidated: 1) direct Si uptake by hyphae, 2) increased silicate dissolution, and 3) upregulation of Si transporters. Silicon application also increased AMF colonization by 28%, and the absence of interactions was observed on P uptake. Altogether, AMF support Si acquisition and Si fosters AMF colonization in rice, whereas the P uptake depends more on AMF than on Si.


Asunto(s)
Micorrizas , Oryza , Proteínas de Plantas , Raíces de Plantas , Silicio , Oryza/metabolismo , Oryza/microbiología , Micorrizas/metabolismo , Micorrizas/fisiología , Silicio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fósforo/metabolismo , Transporte Biológico
4.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916255

RESUMEN

Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 µM Pi, low phosphate [LP]: 0.64 µM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.


Asunto(s)
Micorrizas , Fósforo , Populus , Micorrizas/fisiología , Micorrizas/metabolismo , Populus/microbiología , Populus/crecimiento & desarrollo , Populus/metabolismo , Fósforo/metabolismo , Basidiomycota/fisiología , Basidiomycota/crecimiento & desarrollo , Basidiomycota/metabolismo , Laccaria/crecimiento & desarrollo , Laccaria/metabolismo , Laccaria/fisiología , Fosfatos/metabolismo
5.
mSystems ; 9(7): e0135223, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38837330

RESUMEN

Interactions between arbuscular mycorrhizal fungi (AMF), plants, and the soil microbial community have the potential to increase the availability and uptake of phosphorus (P) and nitrogen (N) in agricultural systems. Nutrient exchange between plant roots, AMF, and the adjacent soil microbes occurs at the interface between roots colonized by mycorrhizal fungi and soil, referred to as the mycorrhizosphere. Research on the P exchange focuses on plant-AMF or AMF-microbe interactions, lacking a holistic view of P exchange between the plants, AMF, and other microbes. Recently, N exchange at both interfaces revealed the synergistic role of AMF and bacterial community in N uptake by the host plant. Here, we highlight work carried out on each interface and build upon it by emphasizing research involving all members of the tripartite network. Both nutrient systems are challenging to study due to the complex chemical and biological nature of the mycorrhizosphere. We discuss some of the effective methods to identify important nutrient processes and the tripartite members involved in these processes. The extrapolation of in vitro studies into the field is often fraught with contradiction and noise. Therefore, we also suggest some approaches that can potentially bridge the gap between laboratory-generated data and their extrapolation to the field, improving the applicability and contextual relevance of data within the field of mycorrhizosphere interactions. Overall, we argue that the research community needs to adopt a holistic tripartite approach and that we have the means to increase the applicability and accuracy of in vitro data in the field.


Asunto(s)
Micorrizas , Nitrógeno , Fósforo , Microbiología del Suelo , Micorrizas/fisiología , Micorrizas/metabolismo , Fósforo/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Plantas/microbiología , Plantas/metabolismo
6.
Folia Microbiol (Praha) ; 69(4): 697-712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937405

RESUMEN

Phosphate-solubilising fungi (PSF) are beneficial microorganisms that play a pivotal role in plant growth by increasing the availability of phosphorus (P) in soil. Although phosphorus is an essential nutrient for plants, it often becomes inaccessible as it binds into insoluble forms. PSF effectively facilitate the release of this bound phosphorus through diverse mechanisms. Numerous fungal species demonstrate the ability to solubilise various types of phosphate compounds. Among the commonly researched PSF are Penicillium, Aspergillus, Rhizopus, Fusarium, Trichoderma, and Sclerotium. Moreover, yeasts such as Saccharomyces cerevisiae can potentially be leveraged as PSF. PSF secrete organic acids that chelate phosphate ions, thereby increasing their solubility in the soil. Moreover, PSF contribute to the decomposition of organic phosphorus compounds in soil by employing enzymes such as phosphatases, phytases, and phosphonatases. Furthermore, PSF can interact with other soil microorganisms, including nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AM-fungi), fostering synergistic effects that further enhance plant growth and nutrient absorption. The utilisation of PSF as biofertilisers offers numerous advantages over chemical fertilisers, including environmental friendliness, cost-effectiveness, and enhanced fertiliser utilisation efficiency. Furthermore, PSF can prove beneficial in challenging environments characterised by high phosphate sorption. Hence, this review serves as an updated study aimed at broadening the understanding of PSF and its potential applications in P solubilisation. This review also focuses on the diversity of PSF, the mechanisms underlying solubilisation, ecological roles of PSF in soil microbiome, and the benefits of sustainable agriculture. By delving into the ecological roles of PSF and their potential as biofertilisers, this study contributes to a deeper understanding of sustainable agriculture practices and addresses challenges in phosphate-scarce environments.


Asunto(s)
Agricultura , Fertilizantes , Hongos , Fosfatos , Desarrollo de la Planta , Microbiología del Suelo , Fosfatos/metabolismo , Hongos/metabolismo , Hongos/crecimiento & desarrollo , Agricultura/métodos , Fertilizantes/análisis , Suelo/química , Micorrizas/metabolismo , Micorrizas/fisiología , Fósforo/metabolismo
7.
Nat Microbiol ; 9(8): 1993-2005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886584

RESUMEN

Cyst nematodes are the most damaging species of plant-parasitic nematodes. They antagonize the colonization of beneficial microbial symbionts that are important for nutrient acquisition of plants. The molecular mechanism of the antagonism, however, remains elusive. Here, through biochemical combined with structural analysis, we reveal that Heterodera glycines, the most notorious soybean cyst nematode, suppresses symbiosis by secreting an enzyme named HgCht2 to hydrolyse the key symbiotic signalling molecules, lipochitooligosaccharides (LCOs). We solved the three-dimensional structures of apo HgCht2, as well as its chitooligosaccharide-bound and LCO-bound forms. These structures elucidated the substrate binding and hydrolysing mechanism of the enzyme. We designed an HgCht2 inhibitor, 1516b, which successfully suppresses the antagonism of cyst nematodes towards nitrogen-fixing rhizobia and phosphorus-absorbing arbuscular mycorrhizal symbioses. As HgCht2 is phylogenetically conserved across all cyst nematodes, our study revealed a molecular mechanism by which parasitic cyst nematodes antagonize the establishment of microbial symbiosis and provided a small-molecule solution.


Asunto(s)
Glycine max , Lipopolisacáridos , Micorrizas , Simbiosis , Tylenchoidea , Animales , Glycine max/parasitología , Glycine max/microbiología , Tylenchoidea/enzimología , Micorrizas/metabolismo , Micorrizas/enzimología , Lipopolisacáridos/metabolismo , Oligosacáridos/metabolismo , Rhizobium/metabolismo , Rhizobium/enzimología , Rhizobium/genética , Filogenia , Quitina/metabolismo , Hidrólisis , Quitosano/metabolismo
8.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822535

RESUMEN

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Asunto(s)
Micorrizas , Nitrógeno , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Micorrizas/metabolismo , Nitrógeno/metabolismo , Suelo/química , Plantas/metabolismo , Plantas/microbiología , Ecosistema
9.
Plant Physiol Biochem ; 213: 108808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865805

RESUMEN

The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.


Asunto(s)
Biodegradación Ambiental , Manganeso , Micorrizas , Plantas , Micorrizas/metabolismo , Micorrizas/fisiología , Manganeso/metabolismo , Manganeso/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
10.
Plant Physiol Biochem ; 213: 108834, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879988

RESUMEN

Selenium (Se) is one of the fifteen essential nutrients required by the human body. Mycorrhizal microorganisms play a crucial role in enhancing selenium availability in plants. However, limited research exists on the impact of arbuscular mycorrhizal fungi (AMF) on selenium accumulation and transport in pepper plants. This study employed a pot experiment to investigate the changes in pepper plant growth, selenium accumulation, and transformation following inoculation with AMF and varying concentrations of exogenous selenium. The results indicate that exogenous selenium application in pepper has dual effects. At low concentrations (≤8 mg L⁻1), it promotes growth and nutrient accumulation, whereas high concentrations (>16 mg L⁻1) inhibit these processes. AMF inoculation positively influences selenium accumulation and transport in peppers, significantly increasing yield per plant by 17.89%, vitamin C content by 67.36%, flavonoid content by 43.26%, capsaicin content by 14.82%, DPPH radical scavenging rate by 18.18%, and ABTS radical scavenging rate by 27.81%. Additionally, it significantly reduces selenocysteine methyltransferase (SMT) enzyme activity, while minimally affecting ATP sulfurylase (ATPS) and adenosyl sulfate reductase (APR) enzyme activities. The combined treatment of AMF and 8 mg L⁻1 exogenous selenium has been proven to be the most effective for selenium enrichment in peppers, offering new insights into utilizing exogenous selenium and AMF inoculation to enhance selenium content in peppers.


Asunto(s)
Capsicum , Selenio , Capsicum/metabolismo , Capsicum/microbiología , Capsicum/efectos de los fármacos , Selenio/metabolismo , Micorrizas/fisiología , Micorrizas/metabolismo , Glomeromycota/fisiología , Ácido Ascórbico/metabolismo
11.
Sci Total Environ ; 945: 174030, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885698

RESUMEN

Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.


Asunto(s)
Biodegradación Ambiental , Micorrizas , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Micorrizas/fisiología , Micorrizas/metabolismo , Suelo/química , Metales Pesados/metabolismo , Triticum/metabolismo , Simbiosis
12.
Chem Biodivers ; 21(7): e202400208, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713365

RESUMEN

Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.


Asunto(s)
Frutas , Micorrizas , Solanum nigrum , Simbiosis , Solanum nigrum/química , Solanum nigrum/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Micorrizas/metabolismo , Micorrizas/química , Cromatografía de Gases y Espectrometría de Masas , Metabolismo Secundario , Glomeromycota/metabolismo , Glomeromycota/química , Glomeromycota/fisiología
13.
Plant Physiol Biochem ; 210: 108648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653094

RESUMEN

This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.


Asunto(s)
Sequías , Micorrizas , Nitrógeno , Populus , Simbiosis , Populus/microbiología , Populus/metabolismo , Populus/genética , Populus/fisiología , Micorrizas/fisiología , Micorrizas/metabolismo , Nitrógeno/metabolismo , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fotosíntesis/fisiología , Resistencia a la Sequía
14.
Sci Rep ; 14(1): 8633, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622240

RESUMEN

The study aimed to find the best Arbuscular Mycorrhizal Fungi (AMF) strain for cotton growth in Xinjiang's salinity and alkali conditions. Cotton (Xinluzao 45) was treated with Funneliformis mosseae (GM), Rhizophagus irregularis (GI), and Claroideoglomus etunicatum (GE) as treatments, while untreated cotton served as the control (CK). Salinity stress was applied post-3-leaf stage in cotton. The study analyzed cotton's reactions to diverse saline-alkali stresses, focusing on nutrient processes and metabolism. By analyzing the growth and photosynthetic characteristics of plants inoculated with Funneliformis mosseae to evaluate its salt tolerance. Saline-alkali stress reduced chlorophyll and hindered photosynthesis, hampering cotton growth. However, AMF inoculation mitigated these effects, enhancing photosynthetic rates, CO2 concentration, transpiration, energy use efficiency, and overall cotton growth under similar stress levels. GM and GE treatments yielded similar positive effects. AMF inoculation enhanced cotton plant height and biomass. In GM treatment, cotton exhibited notably higher root length than other treatments, showing superior growth under various conditions. In summary, GM-treated cotton had the highest infection rate, followed by GE-treated cotton, with GI-treated cotton having the lowest rate (GM averaging 0.95). Cotton inoculated with Funneliformis mosseae, Rhizophagus irregularis, and Claroideoglomus etunicatum juvenile showed enhanced chlorophyll and photosynthetic levels, reducing salinity effects. Funneliformis mosseae had the most significant positive impact.


Asunto(s)
Hongos , Micorrizas , Micorrizas/metabolismo , Plantones , Gossypium/metabolismo , Álcalis , Fotosíntesis , Clorofila/metabolismo , Solución Salina
15.
Methods Mol Biol ; 2756: 291-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427300

RESUMEN

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Asunto(s)
Micorrizas , Nematodos , Animales , Agentes de Control Biológico/metabolismo , Enfermedades de las Plantas/genética , Raíces de Plantas/metabolismo , Nematodos/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Productos Agrícolas/metabolismo , Suelo
16.
Biosystems ; 238: 105194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513884

RESUMEN

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.


Asunto(s)
Laccaria , Micorrizas , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Papaína/metabolismo , Pepsina A/metabolismo , Ácido Aspártico/metabolismo , Cisteína/metabolismo , Simulación del Acoplamiento Molecular , Simbiosis , Inhibidores de Proteasas/metabolismo
17.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466444

RESUMEN

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Asunto(s)
Arsénico , Basidiomycota , Metales Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metales Pesados/metabolismo , Micorrizas/metabolismo , Productos Agrícolas/metabolismo , Raíces de Plantas/metabolismo
18.
Environ Sci Technol ; 58(14): 6258-6273, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38450439

RESUMEN

Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.


Asunto(s)
Micorrizas , Micorrizas/metabolismo , Microplásticos , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Hifa , Ecosistema , Expresión Génica
19.
J Environ Manage ; 356: 120754, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522280

RESUMEN

Afforestation on degraded croplands has been proposed as an effective measure to promote ecosystem functions including soil organic carbon (SOC) sequestration. Glomalin-related soil protein (GRSP) plays a crucial role in promoting the accumulation and stability of SOC. Nevertheless, mechanisms underlying the effects of afforestation on GRSP accumulation have not been well elucidated. In the present study, 14 pairs of maize fields and plantation forests were selected using a paired-site approach in a karst region of southwest China. By measuring soil GRSP and a variety of soil biotic and abiotic variables, the pattern of and controls on GRSP accumulation in response to afforestation were explored. The average content of total GRSP (T-GRSP) and its contribution to SOC in the maize field were 5.22 ± 0.29 mg g-1 and 42.33 ± 2.25%, and those in the plantation forest were 6.59 ± 0.32 mg g-1 and 25.77 ± 1.17%, respectively. T-GRSP content was increased by 26.4% on average, but its contribution to SOC was decreased by 39.1% following afforestation. T-GRSP content decreased as soil depth increased regardless of afforestation or not. Afforestation increased T-GRSP indirectly via its positive effects on arbuscular mycorrhizal fungi biomass, which was stimulated by afforestation through elevating fine root biomass or increasing the availability of labile C and N. The suppressed contribution of T-GRSP to SOC following afforestation was due to the relatively higher increase in other SOC components than T-GRSP and the significant increase of soil C:N ratio. Our study reveals the mechanisms underlying the effects of afforestation on T-GRSP accumulation, and is conducive to improving the mechanistic understanding of microbial control on SOC sequestration following afforestation.


Asunto(s)
Micorrizas , Suelo , Ecosistema , Carbono/análisis , Proteínas Fúngicas , Glicoproteínas/metabolismo , Micorrizas/química , Micorrizas/metabolismo , China
20.
Ecotoxicol Environ Saf ; 273: 116157, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430578

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.


Asunto(s)
Género Iris , Micorrizas , Micorrizas/metabolismo , Cromo/metabolismo , Género Iris/genética , Plantas , Bacterias , Suelo/química , Nitrógeno/metabolismo , Raíces de Plantas , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...