Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Mol Med ; 30(1): 105, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030525

RESUMEN

Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Probióticos , Radioterapia , Humanos , Microbioma Gastrointestinal/efectos de la radiación , Neoplasias/radioterapia , Neoplasias/microbiología , Neoplasias/inmunología , Neoplasias/terapia , Probióticos/uso terapéutico , Radioterapia/efectos adversos , Radioterapia/métodos , Animales , Microbiota/efectos de la radiación , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/terapia , Traumatismos por Radiación/etiología , Resultado del Tratamiento
2.
EBioMedicine ; 106: 105246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029427

RESUMEN

BACKGROUND: The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS: Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS: Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION: We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING: Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).


Asunto(s)
Microbioma Gastrointestinal , Neoplasias de la Próstata , Traumatismos por Radiación , Humanos , Masculino , Microbioma Gastrointestinal/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Anciano , Traumatismos por Radiación/etiología , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/diagnóstico , Persona de Mediana Edad , Metagenómica/métodos , Heces/microbiología , ARN Ribosómico 16S/genética , Radioterapia/efectos adversos , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de la radiación , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/microbiología , Metagenoma
3.
Microbiol Res ; 286: 127821, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941923

RESUMEN

Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy. In this study, we investigated the potential protective effect of Lactobacillus rhamnosus GG (LGG) on radiation-induced intestinal injury and its underlying mechanisms. Mice were assigned to a control group, a 10 Gy total abdominal irradiation (TAI) group, or a group pretreated with 108 CFU LGG for three days before TAI. Small intestine and gut microbiota were analyzed 3.5 days post-exposure. LGG intervention improved intestinal structure, reduced jejunal DNA damage, and inhibited the inflammatory cGAS/STING pathway. Furthermore, LGG reduced M1 proinflammatory macrophage and CD8+ T cell infiltration, restoring the balance between Th17 and Treg cells in the inflamed jejunum. LGG also partially restored the gut microbiota. These findings suggest the possible therapeutic radioprotective effect of probiotics LGG in alleviating radiation-induced intestinal injury by maintaining immune homeostasis and reshaping gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Ratones Endogámicos C57BL , Probióticos , Animales , Microbioma Gastrointestinal/efectos de la radiación , Ratones , Probióticos/administración & dosificación , Traumatismos por Radiación/inmunología , Macrófagos/inmunología , Intestinos/microbiología , Intestinos/efectos de la radiación , Intestinos/inmunología , Daño del ADN , Linfocitos T CD8-positivos/inmunología , Proteínas de la Membrana/metabolismo , Linfocitos T Reguladores/inmunología , Masculino , Células Th17/inmunología , Yeyuno/efectos de la radiación , Yeyuno/inmunología , Yeyuno/microbiología , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Traumatismos Experimentales por Radiación/inmunología , Traumatismos Experimentales por Radiación/prevención & control , Nucleotidiltransferasas
4.
Front Public Health ; 12: 1365161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807988

RESUMEN

Introduction: Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods: The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results: No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion: This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.


Asunto(s)
Ciprofloxacina , Microbioma Gastrointestinal , Animales , Ciprofloxacina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Ratones , Antibacterianos/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Rayos gamma , Masculino , Femenino
5.
J Integr Neurosci ; 23(5): 92, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812393

RESUMEN

The evidence of brain-gut interconnections in Alzheimer's disease (AD) opens novel avenues for the treatment of a pathology for which no definitive treatment exists. Gut microbiota and bacterial translocation may produce peripheral inflammation and immune modulation, contributing to brain amyloidosis, neurodegeneration, and cognitive deficits in AD. The gut microbiota can be used as a potential therapeutic target in AD. In particular, photobiomodulation (PBM) can affect the interaction between the microbiota and the immune system, providing a potential explanation for its restorative properties in AD-associated dysbiosis. PBM is a safe, non-invasive, non-ionizing, and non-thermal therapy that uses red or near-infrared light to stimulate the cytochrome c oxidase (CCO, complex IV), the terminal enzyme of the mitochondrial electron transport chain, resulting in adenosine triphosphate synthesis. The association of the direct application of PBM to the head with an abscopal and a systemic treatment through simultaneous application to the abdomen provides an innovative therapeutic approach to AD by targeting various components of this highly complex pathology. As a hypothesis, PBM might have a significant role in the therapeutic options available for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Eje Cerebro-Intestino , Microbioma Gastrointestinal , Terapia por Luz de Baja Intensidad , Enfermedad de Alzheimer/radioterapia , Enfermedad de Alzheimer/metabolismo , Humanos , Terapia por Luz de Baja Intensidad/métodos , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de la radiación , Eje Cerebro-Intestino/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/efectos de la radiación
6.
World J Gastroenterol ; 30(19): 2603-2611, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38817661

RESUMEN

BACKGROUND: The gut microbiota is strongly associated with radiation-induced gut damage. This study aimed to assess the effectiveness and safety of intestinal microecological transplantation for treating patients with chronic radiation enteritis. CASE SUMMARY: A 64-year-old female with cervical cancer developed abdominal pain, diarrhea, and blood in the stool 1 year after radiotherapy. An electronic colonoscopy was performed to diagnose chronic radiation enteritis. Two courses of intestinal microecological transplantation and full-length 16S rRNA microbiological analysis were performed. The patient experienced short- and long-term relief from symptoms without adverse effects. Whole 16S rRNA sequencing revealed significant differences in the intestinal flora's composition between patient and healthy donors. Pathogenic bacteria, such as Escherichia fergusonii and Romboutsia timonensis, were more in the patient. Beneficial bacteria such as Faecalibacterium prausnitzii, Fusicatenibacter saccharivorans, Ruminococcus bromii, and Bifidobacterium longum were more in the healthy donors. Intestinal microbiota transplantation resulted in a significant change in the patient's intestinal flora composition. The composition converged with the donor's flora, with an increase in core beneficial intestinal bacteria, such as Eubacterium rectale, and a decrease in pathogenic bacteria. Changes in the intestinal flora corresponded with the patients' alleviating clinical symptoms. CONCLUSION: Intestinal microecological transplantation is an effective treatment for relieving the clinical symptoms of chronic radiation enteritis by altering the composition of the intestinal flora. This study provides a new approach for treating patients with chronic radiation enteritis.


Asunto(s)
Enteritis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Traumatismos por Radiación , Neoplasias del Cuello Uterino , Humanos , Femenino , Persona de Mediana Edad , Enteritis/microbiología , Enteritis/diagnóstico , Enteritis/etiología , Enteritis/terapia , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/etiología , Traumatismos por Radiación/cirugía , Microbioma Gastrointestinal/efectos de la radiación , Trasplante de Microbiota Fecal/métodos , Neoplasias del Cuello Uterino/radioterapia , ARN Ribosómico 16S/genética , Resultado del Tratamiento , Enfermedad Crónica , Colonoscopía , Intestinos/microbiología , Intestinos/efectos de la radiación , Heces/microbiología , Radioterapia/efectos adversos
7.
Eur J Nucl Med Mol Imaging ; 51(8): 2395-2408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561516

RESUMEN

BACKGROUND: Despite the potential radiotoxicity in differentiated thyroid cancer (DTC) patients with high-dose 131I therapy, the alterations and regulatory mechanisms dependent on intestinal microecology remain poorly understood. We aimed to identify the characteristics of the gut microbiota and metabolites in DTC patients suffering from high-dose 131I therapy and explore the radioprotective mechanisms underlying arachidonic acid (ARA) treatment. METHODS: A total of 102 patients with DTC were recruited, with fecal samples collected before and after 131I therapy for microbiome and untargeted and targeted metabolomic analyses. Mice were exposed to total body irradiation with ARA replenishment and antibiotic pretreatment and were subjected to metagenomic, metabolomic, and proteomic analyses. RESULTS: 131I therapy significantly changed the structure of gut microbiota and metabolite composition in patients with DTC. Lachnospiraceae were the most dominant bacteria after 131I treatment, and metabolites with decreased levels and pathways related to ARA and linoleic acid were observed. In an irradiation mouse model, ARA supplementation not only improved quality of life and recovered hematopoietic and gastrointestinal systems but also ameliorated oxidative stress and inflammation and preserved enteric microecology composition. Additionally, antibiotic intervention eliminated the radioprotective effects of ARA. Proteomic analysis and ursolic acid pretreatment showed that ARA therapy greatly influenced intestinal lipid metabolism in mice subjected to irradiation by upregulating the expression of hydroxy-3-methylglutaryl-coenzyme A synthase 1. CONCLUSION: These findings highlight that ARA, as a key metabolite, substantially contributes to radioprotection. Our study provides novel insights into the pivotal role that the microbiota-metabolite axis plays in radionuclide protection and offers effective biological targets for treating radiation-induced adverse effects.


Asunto(s)
Ácido Araquidónico , Microbioma Gastrointestinal , Radioisótopos de Yodo , Protectores contra Radiación , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Radioisótopos de Yodo/efectos adversos , Ratones , Protectores contra Radiación/farmacología , Humanos , Ácido Araquidónico/metabolismo , Masculino , Femenino , Adulto , Neoplasias de la Tiroides/radioterapia , Persona de Mediana Edad , Suplementos Dietéticos , Irradiación Corporal Total/efectos adversos
8.
J Hazard Mater ; 470: 134209, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581880

RESUMEN

Weathered microplastics (MPs) exhibit different physicochemical properties compared to pristine MPs, thus, their effects on the environment and living organisms may also differ. In the present study, we investigated the gut-toxic effects of virgin polypropylene MPs (PP) and UV-weathered PP MPs (UV-PP) on zebrafish. The zebrafish were exposed to the two types of PP MPs at a concentration of 50 mg/L each for 14 days. After exposure, MPs accumulated primarily within the gastrointestinal tract, with UV-PP exhibiting a higher accumulation than PP. The ingestion of PP and UV-PP induced gut damage in zebrafish and increased the gene expression and levels of enzymes related to oxidative stress and inflammation, with no significant differences between the two MPs. Analysis of the microbial community confirmed alterations in the abundance and diversity of zebrafish gut microorganisms in the PP and UV-PP groups, with more pronounced changes in the PP-exposed group. Moreover, the Kyoto Encyclopedia of Genes and Genomes pathway analysis confirmed the association between changes in the gut microorganisms at the phylum and genus levels with cellular responses, such as oxidative stress, inflammation, and tissue damage. This study provides valuable insights regarding the environmental impact of MPs on organisms.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Polipropilenos , Rayos Ultravioleta , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microplásticos/toxicidad , Polipropilenos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de la radiación
9.
Radiat Res ; 201(6): 572-585, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555945

RESUMEN

Radiation enteritis is a common complication of abdominal and pelvic radiotherapy. Several previous studies showed that fecal microbiota transplantation (FMT) could alleviate radiation enteritis. In this study, we investigated the efficacy of FMT in alleviating radiation enteritis and explored the mechanisms by multi-omics approaches. Briefly, C57BL/6J mice were subjected to 9 Gy irradiation to the localized abdominal field, and randomized received FMT from healthy donor mice or saline. H&E staining of harvested small intestine showed FMT decreased epithelial injury. Radiation-induced microbiota dysbiosis, characterized by a decrease in beneficial bacteria Lactobacillaceae and Lachnospiraceae, while these bacteria were restored by FMT. Fecal metabolomics analysis revealed that FMT modulated metabolic dysregulation. Two tryptophan pathway metabolites, indole-3-acetaldehyde and N-Acetyl-5-hydroxytryptamine were decreased after irradiation, whereas these metabolites showed a pronounced recovery in mice receiving FMT. Proteomics analysis of small intestine indicated that radiation enteritis triggered immune-inflammatory responses, which were potentially mitigated by FMT. In 21 patients receiving pelvic radiotherapy for cervical cancer, those who developed enteritis (n = 15) had higher abundance in Lachnospiraceae. Moreover, Indole-3-acetaldehyde was reduced after irradiation. These findings provide insights into the therapeutic effects of FMT in radiation enteritis and highlight Lachnospiraceae and the tryptophan metabolite, Indole-3-acetaldehyde may protect against radiation enteritis.


Asunto(s)
Enteritis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Triptófano , Animales , Triptófano/metabolismo , Enteritis/terapia , Enteritis/metabolismo , Enteritis/microbiología , Enteritis/etiología , Microbioma Gastrointestinal/efectos de la radiación , Ratones , Femenino , Humanos , Traumatismos por Radiación/terapia , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/microbiología , Masculino
10.
Am J Clin Oncol ; 47(5): 246-252, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193365

RESUMEN

Chronic diarrhea and abdominal pain after radiotherapy continue to be a problem in cancer survivors. Gut microbiomes are essential for preventing intestinal inflammation, maintaining intestinal integrity, maintaining enterohepatic circulation, regulating bile acid metabolism, and absorption of nutrients, including fat-soluble vitamins. Gut microbiome dysbiosis is expected to cause inflammation, bile acid malabsorption, malnutrition, and associated symptoms. Postradiotherapy, Firmicutes and Bacteroidetes phylum are significantly decreased while Fusobacteria and other unclassified bacteria are increased. Available evidence suggests harmful bacteria Veillonella, Erysipelotrichaceae, and Ruminococcus are sensitive to Metronidazole or Ciprofloxacin. Beneficial bacteria lactobacillus and Bifidobacterium are relatively resistant to metronidazole. We hypothesize and provide an evidence-based review that short-course targeted antibiotics followed by specific probiotics may lead to alleviation of radiation enteritis.


Asunto(s)
Antibacterianos , Enteritis , Microbioma Gastrointestinal , Probióticos , Humanos , Probióticos/uso terapéutico , Enteritis/microbiología , Enteritis/etiología , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/etiología , Enfermedad Crónica , Radioterapia/efectos adversos , Disbiosis/microbiología
11.
Radiat Res ; 201(2): 160-173, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38124379

RESUMEN

The effect of ionizing radiation on the gastrointestinal tract is a common complication of abdominal and pelvic radiotherapy. However, the pathological features of radiation enteropathy and its effective medical intervention regimen is still a global challenge. Here, we explored the role and mechanism of enteric alpha-defensins (EαDs) in protecting against radiation enteropathy. To address this, we utilized EαDs-deficiency mice, in which the matrix metallopeptidase 7 to activate Paneth cell α-defensins was knockout (KO) mice, and the complementary wild-type (WT) control mice for this study. Remarkably, the KO mice were more susceptible to 5.0 Gy total-body irradiation, resulting in worse clinic scores and lower survival rate, compared with the wild-type mice. Histological examination indicated that the KO mice were subjected to slow recovery of intestinal villus and mucosa function, characterized by the reduced expression of TFF3, Glut1 and Muc2. In addition, compared with the wild-type controls, the KO mice experienced serious inflammation response in intestinal tissue, indicated by the remarkably increased expression level of IL-1ß, IL-6 and IL-12. Using high-throughput sequencing analysis, we found that the intestinal bacterial community of the KO mice was more prone to dysbiosis than that of the WT mice, with significantly increased abundance of opportunistic pathogenic bacteria, such as Streptococcus sp. and Escherichia-Shigella sp., whereas remarkably decreased probiotics harboring Lactobacillus sp., Desulfovibrio sp. etc. Fecal metabolomics analysis indicated that the relative abundance of 31 metabolites arose significantly different between WT and KO mice on day 10 after radiation exposure. A subset of differential metabolites to regulate host metabolism and immunity, such as acetic acid, acetate, butanoic acid, was negatively correlated with the alteration of gut microbiota in the irradiated KO mice. This study provides new insight into EαDs contribution to the recovery of radiation-induced intestinal damage, and suggests a potential novel target to prevent the adverse effects of radiotherapy.


Asunto(s)
Microbioma Gastrointestinal , Traumatismos por Radiación , alfa-Defensinas , Ratones , Animales , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Microbioma Gastrointestinal/efectos de la radiación , Intestinos , Mucosa Intestinal/metabolismo , Heces/microbiología , Traumatismos por Radiación/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
12.
Int J Radiat Biol ; 99(12): 1865-1878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37531370

RESUMEN

PURPOSE: Radiation-induced gastrointestinal injury (RIGI) is a serious side effect of abdominal and pelvic radiotherapy, which often limits the treatment of gastrointestinal and gynaecological cancers. RIGI is also observed during accidental radiological or nuclear scenarios with no approved agents available till date to prevent or mitigate RIGI in humans. Trichostatin A (TSA), an epigenetic modulator, has been currently in clinical trials for cancer treatment and is also well known for its antibiotic and antifungal properties. METHODS: In this study, partial body (abdominal) irradiation mice model was used to investigate the mitigative effect of TSA against gastrointestinal toxicity caused by gamma radiation. Mice were checked for alterations in mean body weight, diarrheal incidence, disease activity index and survival against 15 Gy radiation. Structural abnormalities in intestine and changes in microbiota composition were studied by histopathology and 16S rRNA sequencing of fecal samples respectively. Immunoblotting and biochemical assays were performed to check protein nitrosylation, expression of inflammatory mediators, infiltration of inflammatory cells and changes in pro-inflammatory cytokine. RESULTS: TSA administration to C57Bl/6 mice improved radiation induced mean body weight loss, maintained better health score, reduced disease activity index and promoted survival. The 16S rRNA sequencing of fecal DNA demonstrated that TSA influenced the fecal microbiota dynamics with significant alterations in the Firmicutes/Bacteriodetes ratio. TSA effectively mitigated intestinal injury, down-regulated NF-κB, Cox-2, iNOS expression, inhibited PGE2 and protein nitrosylation levels in irradiated intestine. The upregulation of NLRP3-inflammasome complex and infiltrations of inflammatory cells in the inflamed intestine were also prevented by TSA. Subsequently, the myeloperoxidase activity in intestine alongwith serum IL-18 levels was found reduced. CONCLUSION: These findings provide evidence that TSA inhibits inflammatory mediators, alleviates gut dysbiosis, and promotes structural restoration of the irradiated intestine. TSA, therefore, can be considered as a potential agent for mitigation of RIGI in humans.


Asunto(s)
Microbioma Gastrointestinal , Traumatismos por Radiación , Humanos , Animales , Ratones , Microbioma Gastrointestinal/efectos de la radiación , ARN Ribosómico 16S/genética , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo , Antiinflamatorios , Mediadores de Inflamación , Ratones Endogámicos C57BL
13.
Ecotoxicol Environ Saf ; 249: 114351, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508818

RESUMEN

Environmental and occupational low-dose radiation (LDR) exposure may be harmful for health but the previous reports regarding effect of LDR on cognition are contradictory. Here we investigated the effect of long-term LDR exposure on cognition. In this study, male Balb/c mice' cognitive functions were tested at 15 weeks after being exposed to 0.5 Gy LDR in 10 fractions at each dose of 0.05 Gy. The results demonstrated that long-term LDR exposure increases escape latency and the time spent in finding exits in mice compared with non LDR exposure. Meanwhile, the inflammation-related proteins including NFκB and p38 also increased. Lipopolysaccharide (LPS) increased and short-chain fatty acid (SCFA) levels decreased following long term LDR exposure. Treatment with microbiota-derived LPS and SCFAs reversed these effects in mice. Furthermore, the gut barrier integrity was damaged in a time-dependent manner with the decreased expression of intestinal epithelial-related biomarkers such as ZO-1 and occludin. Mechanistically, long after exposure to LDR, increased LPS levels may cause cognitive impairment through the regulation of Akt/mTOR signaling in the mouse hippocampus. These findings provide new insight into the clinical applications of LDR and suggest that the gut microbiota-plasma LPS and SCFAs-brain axis may underlie long-term LDR-induced cognition effects.


Asunto(s)
Eje Cerebro-Intestino , Disfunción Cognitiva , Microbioma Gastrointestinal , Exposición a la Radiación , Traumatismos por Radiación , Animales , Masculino , Ratones , Eje Cerebro-Intestino/efectos de la radiación , Disfunción Cognitiva/etiología , Microbioma Gastrointestinal/efectos de la radiación , Lipopolisacáridos/metabolismo , Lipopolisacáridos/efectos de la radiación , Ratones Endogámicos C57BL , Relación Dosis-Respuesta en la Radiación
14.
Nutrients ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36615706

RESUMEN

Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Microbioma Gastrointestinal/efectos de la radiación , Neoplasias/radioterapia , Tolerancia a Radiación
15.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768867

RESUMEN

Radiation-induced cardiopulmonary injuries are the most common and intractable side effects that are entwined with radiotherapy for thorax cancers. However, the therapeutic options for such complications have yielded disappointing results in clinical applications. Here, we reported that gut microbiota-derived l-Histidine and its secondary metabolite imidazole propionate (ImP) fought against radiation-induced cardiopulmonary injury in an entiric flora-dependent manner in mouse models. Local chest irradiation decreased the level of l-Histidine in fecal pellets, which was increased following fecal microbiota transplantation. l-Histidine replenishment via an oral route retarded the pathological process of lung and heart tissues and improved lung respiratory and heart systolic function following radiation exposure. l-Histidine preserved the gut bacterial taxonomic proportions shifted by total chest irradiation but failed to perform radioprotection in gut microbiota-deleted mice. ImP, the downstream metabolite of l-Histidine, accumulated in peripheral blood and lung tissues following l-Histidine replenishment and protected against radiation-induced lung and heart toxicity. Orally gavaged ImP could not enter into the circulatory system in mice through an antibiotic cocktail treatment. Importantly, ImP inhibited pyroptosis to nudge lung cell proliferation after radiation challenge. Together, our findings pave a novel method of protection against cardiopulmonary complications intertwined with radiotherapy in pre-clinical settings and underpin the idea that gut microbiota-produced l-Histidine and ImP are promising radioprotective agents.


Asunto(s)
Histidina/farmacología , Imidazoles/farmacología , Traumatismos por Radiación/prevención & control , Animales , Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de la radiación , Histidina/metabolismo , Imidazoles/metabolismo , Lesión Pulmonar/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos por Radiación/terapia , Protectores contra Radiación/farmacología , Neoplasias Torácicas/microbiología , Neoplasias Torácicas/radioterapia
16.
J Cell Mol Med ; 25(21): 10306-10312, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34595829

RESUMEN

Ionizing radiation (IR)-induced intestinal damage is the major and common injury of patients receiving radiotherapy. Urolithin A (UroA) is a metabolite of the intestinal flora of ellagitannin, a compound found in fruits and nuts such as pomegranates, strawberries and walnuts. UroA shows the immunomodulatory and anti-inflammatory capacity in various metabolic diseases. To evaluate the radioprotective effects, UroA(0.4, 2 and 10 mg/kg) were intraperitoneally injected to C57BL/6 male mice 48, 24, 1 h prior to and 24 h after 9.0Gy TBI. The results showed that UroA markedly upregulated the survival of irradiated mice, especially at concentration of 2 mg/kg. UroA improved the intestine morphology architecture and the regeneration ability of enterocytes in irradiated mice. Then, UroA significantly decreased the apoptosis of enterocytes induced by radiation. Additionally, 16S rRNA sequencing analysis showed the effect of UroA is associated with the recovery of the IR-induced intestinal microbacteria profile changes in mice. Therefore, our results determinated UroA could be developed as a potential candidate for radiomitigators in radiotherapy and accidental nuclear exposure. And the beneficial functions of UroA might be associated with the inhibition of p53-mediated apoptosis and remodelling of the gut microbes.


Asunto(s)
Cumarinas/farmacología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de la radiación , Radiación Ionizante , Protectores contra Radiación/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Cumarinas/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Tracto Gastrointestinal/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de la radiación , Ratones , Dosis de Radiación
17.
Radiat Oncol ; 16(1): 187, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563216

RESUMEN

Pelvic radiotherapy is the key treatment for pelvic malignancies, usually including pelvic primary tumour lesions and lymphatic drainage areas in the pelvic region. Therefore, the intestinal tract in the radiation field is inevitably damaged, a phenomenon clinically referred to as radiation enteritis, and diarrhoea is the most common clinical symptom of radiation enteritis. Therefore, it is necessary to study the mechanism of radiation-induced diarrhoea. It has been found that the gut microbiome plays an important role in the development of diarrhoea in response to pelvic radiotherapy, and the species and distribution of intestinal microbiota are significantly altered in patients after pelvic radiotherapy. In this study, we searched for articles indexed in the Cochrane Library, Web of Science, EMBASE and PubMed databases in English and CNKI, Wanfang data and SINOMED in Chinese from their inception dates through 13 March 2020 to collect studies on the gut microbiome in pelvic radiotherapy patients. Eventually, we included eight studies: one study report on prostatic carcinoma, five studies on gynaecological carcinoma and two papers on pelvic carcinomas. All studies were designed as self-controlled studies, except for one that compared toxicity to nontoxicity. The results from all the studies showed that the diversity of intestinal flora decreased during and after pelvic radiotherapy, and the diversity of intestinal flora decreased significantly in patients with diarrhoea after radiotherapy. Five studies observed that the community composition of the gut microbiota changed at the phylum, order or genus level before, during, and after pelvic radiotherapy at different time points. In addition, the composition of the gut microbiota before radiotherapy was different between patients with postradiotherapy diarrhoea and those without diarrhoea in five studies. However, relevant studies have not reached consistent results regarding the changes in microbiota composition. Changes in the intestinal flora induced by pelvic radiotherapy and their relationship between changes in intestinal flora and the occurrence of radiation-induced diarrhoea (RID) are discussed in this study, providing a theoretical basis for the causes of RID after pelvic radiotherapy.


Asunto(s)
Diarrea/etiología , Microbioma Gastrointestinal/efectos de la radiación , Pelvis/efectos de la radiación , Traumatismos por Radiación/etiología , Microbioma Gastrointestinal/fisiología , Humanos
18.
Nutrients ; 13(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34578902

RESUMEN

BACKGROUND: The human gut microbiota is defined as the microorganisms that collectively inhabit the intestinal tract. Its composition is relatively stable; however, an imbalance can be precipitated by various factors and is known to be associated with various diseases. Humans are daily exposed to ionizing radiation from ambient and medical procedures, and gastrointestinal side effects are not rare. METHODS: A systematic search of PubMed, EMBASE, and Cochrane Library databases was conducted. Primary outcomes were changes in composition, richness, and diversity of the gut microbiota after ionizing radiation exposure. Standard methodological procedures expected by Cochrane were used. RESULTS: A total of 2929 nonduplicated records were identified, and based on the inclusion criteria, 11 studies were considered. Studies were heterogeneous, with differences in population and outcomes. Overall, we found evidence for an association between ionizing radiation exposure and dysbiosis: reduction in microbiota diversity and richness, increase in pathogenic bacteria abundance (Proteobacteria and Fusobacteria), and decrease in beneficial bacteria (Faecalibacterium and Bifidobacterium). CONCLUSIONS: This review highlights the importance of considering the influence of ionizing radiation exposure on gut microbiota, especially when considering the side effects of abdominal and pelvic radiotherapy. Better knowledge of these effects, with larger population studies, is needed.


Asunto(s)
Microbioma Gastrointestinal/efectos de la radiación , Traumatismos por Radiación/microbiología , Humanos , Radiación Ionizante
20.
Cancer Cell ; 39(9): 1202-1213.e6, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34329585

RESUMEN

Studies suggest that the efficacy of cancer chemotherapy and immunotherapy is influenced by intestinal bacteria. However, the influence of the microbiome on radiation therapy is not as well understood, and the microbiome comprises more than bacteria. Here, we find that intestinal fungi regulate antitumor immune responses following radiation in mouse models of breast cancer and melanoma and that fungi and bacteria have opposite influences on these responses. Antibiotic-mediated depletion or gnotobiotic exclusion of fungi enhances responsiveness to radiation, whereas antibiotic-mediated depletion of bacteria reduces responsiveness and is associated with overgrowth of commensal fungi. Further, elevated intratumoral expression of Dectin-1, a primary innate sensor of fungi, is negatively associated with survival in patients with breast cancer and is required for the effects of commensal fungi in mouse models of radiation therapy.


Asunto(s)
Antifúngicos/administración & dosificación , Bacterias/clasificación , Neoplasias de la Mama/terapia , Hongos/efectos de los fármacos , Lectinas Tipo C/genética , Melanoma/terapia , Animales , Antifúngicos/farmacología , Bacterias/inmunología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/microbiología , Terapia Combinada , Regulación hacia Abajo , Femenino , Hongos/clasificación , Hongos/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Melanoma/inmunología , Melanoma/microbiología , Ratones , Simbiosis , Linfocitos T/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...