Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Intervalo de año de publicación
1.
Mol Med ; 30(1): 105, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030525

RESUMEN

Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Probióticos , Radioterapia , Humanos , Microbioma Gastrointestinal/efectos de la radiación , Neoplasias/radioterapia , Neoplasias/microbiología , Neoplasias/inmunología , Neoplasias/terapia , Probióticos/uso terapéutico , Radioterapia/efectos adversos , Radioterapia/métodos , Animales , Microbiota/efectos de la radiación , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/terapia , Traumatismos por Radiación/etiología , Resultado del Tratamiento
2.
Cancer Res Commun ; 4(7): 1690-1701, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904265

RESUMEN

Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE: Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.


Asunto(s)
Neoplasias Colorrectales , Ratones Endogámicos BALB C , Ratones Desnudos , Hipoxia Tumoral , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/microbiología , Animales , Ratones , Humanos , Hipoxia Tumoral/efectos de la radiación , Microbiota/efectos de la radiación , Línea Celular Tumoral , Femenino
3.
Oral Oncol ; 154: 106864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824812

RESUMEN

OBJECTIVE: To compare the changes in the sinonasal mucosa microbiome in patients with nasopharyngeal carcinoma (NPC) before and after radiotherapy (RT), and to explore the pathogenesis of post-irradiation chronic rhinosinusitis (PI-CRS) and its association with dysbiosis. STUDY DESIGN: Prospective cohort study. SETTING: Unicenter, Tertiary referral hospital. METHODS: Included patients newly diagnosed with NPC. Samples of ostiomeatal complex mucosa were collected before and after RT. Microbiome analysis was conducted using 16S rRNA sequencing, and statistical analysis was performed. Subgroup analyses based on RT modality (proton therapy or photon therapy) RESULTS: Total of 18 patients were enrolled in the study, with 62.1% receiving intensity-modulated proton therapy (IMPT). Corynebacterium was the most dominant genus identified in both the pre- and post-RT groups, with a visible increase in Staphylococcus and a decrease in Fusobacterium genus in post-RT group. Alpha-diversity did not significantly differ between groups, although the beta-diversity analysis revealed a dispersed microbiota in the post-RT group. The functional prediction indicated a higher relative abundance of taxonomies associated with biofilm formation in the post-RT group. The subgroup analysis revealed the above changes to be more significant in patients who received photon therapy (Intensity modulated radiation therapy, IMRT). CONCLUSIONS: This is the first study to analyze the microbiome of patients with NPC after IMPT. We identified similarities between the post-RT microenvironment and that reported in patients with CRS, with a more apparent change noted in patients treated with IMRT. Further investigation is required to further elucidate the pathogenesis of PI-CRS and its relationship to post-RT dysbiosis, particularly IMPT.


Asunto(s)
Disbiosis , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Masculino , Femenino , Disbiosis/microbiología , Disbiosis/etiología , Persona de Mediana Edad , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/microbiología , Proyectos Piloto , Estudios Prospectivos , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/microbiología , Adulto , Anciano , Microbiota/efectos de la radiación , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos
4.
PLoS One ; 19(5): e0300883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758927

RESUMEN

Development of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.


Asunto(s)
Ratones Endogámicos C57BL , Animales , Ratones , Femenino , Masculino , Exposición a la Radiación , Microbiota/efectos de la radiación , Metabolómica/métodos , Metaboloma/efectos de la radiación , Radiación Ionizante
5.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163296

RESUMEN

Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.


Asunto(s)
Terapia por Luz de Baja Intensidad/tendencias , Microbiota/efectos de la radiación , Enfermedades Periodontales/microbiología , Bacterias , Humanos , Rayos Infrarrojos , Luz , Terapia por Luz de Baja Intensidad/métodos , Mitocondrias , Enfermedades Periodontales/radioterapia , Fototerapia/métodos , Fototerapia/tendencias , Estomatitis/radioterapia
6.
Microbiol Spectr ; 10(1): e0223221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34985332

RESUMEN

In densely populated cities with limited land, storage of surface water in underground spaces is a potential solution to meet the rising demand of clean water. In addition, due to the imperative need of renewable solar energy and limited land resources, the deployment of floating solar photovoltaic (PV) systems over water has risen exponentially. In both scenarios, microbial communities in the water do not have access to sunlight. How the absence of sunlight influences microbial community function and the water quality is largely unknown. The objective of this study was to reveal microbial processes in surface water stored in the dark and water quality dynamics. Water from a freshwater reservoir was stored in the dark or light (control) for 6 months. Water quality was monitored at regular intervals. RNA sequencing was performed on the Illumina MiSeq platform and qPCR was used to substantiate the findings arising from the sequencing data. Our results showed that storage of surface water in the dark resulted in the accumulation of nitrate in the water. Storage in the dark promoted the decay of algal cells, increasing the amount of free nitrogen in the water. Most of the free nitrogen was eventually transformed into nitrate through microbial processes. RNA sequencing-based microbial community analyses and pure culture experiments using nitrifying bacteria Nitrosomonas europaea and Nitrobacter sp. revealed that the accumulation of nitrate in the dark was likely due to an increase in nitrification rate and a decrease in the assimilation rate of nitrate back into the biomass. IMPORTANCE Microbial communities play an essential role in maintaining a healthy aquatic ecosystem. For example, in surface water reservoirs, microorganisms produce oxygen, break down toxic contaminants and remove excess nitrogen. In densely populated cities with limited land, storing surface water in underground spaces and deploying floating solar photovoltaic (PV) systems over water are potential solutions to address water and energy sustainability challenges. In both scenarios, surface water is kept in the dark. In this work, we revealed how the absence of sunlight influences microbial community function and water quality. We showed that storage of surface water in the dark affected bacterial activities responsible for nitrogen transformation, resulting in the accumulation of nitrate in the water. Our findings highlight the importance of monitoring nitrate closely if raw surface water is to be stored in the dark and the potential need of downstream treatment to remove nitrate.


Asunto(s)
Bacterias/metabolismo , Agua Dulce/microbiología , Nitratos/análisis , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Oscuridad , Agua Dulce/química , Microbiota/efectos de la radiación , Nitratos/metabolismo , Nitrógeno/metabolismo , Calidad del Agua
7.
Dermatology ; 238(1): 109-120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33887725

RESUMEN

BACKGROUND: The pathophysiology in atopic dermatitis (AD) is not fully understood, but immune dysfunction, skin barrier defects, and alterations of the skin microbiota are thought to play important roles. AD skin is frequently colonized with Staphylococcus aureus (S. aureus) and microbial diversity on lesional skin (LS) is reduced compared to on healthy skin. Treatment with narrow-band ultraviolet B (nb-UVB) leads to clinical improvement of the eczema and reduced abundance of S. aureus. However, in-depth knowledge of the temporal dynamics of the skin microbiota in AD in response to nb-UVB treatment is lacking and could provide important clues to decipher whether the microbial changes are primary drivers of the disease, or secondary to the inflammatory process. OBJECTIVES: To map the temporal shifts in the microbiota of the skin, nose, and throat in adult AD patients after nb-UVB treatment. METHODS: Skin swabs were taken from lesional AD skin (n = 16) before and after 3 treatments of nb-UVB, and after 6-8 weeks of full-body treatment. We also obtained samples from non-lesional skin (NLS) and from the nose and throat. All samples were characterized by 16S rRNA gene sequencing. RESULTS: We observed shifts towards higher diversity in the microbiota of lesional AD skin after 6-8 weeks of treatment, while the microbiota of NLS and of the nose/throat remained unchanged. After only 3 treatments with nb-UVB, there were no significant changes in the microbiota. CONCLUSION: Nb-UVB induces changes in the skin microbiota towards higher diversity, but the microbiota of the nose and throat are not altered.


Asunto(s)
Dermatitis Atópica/microbiología , Dermatitis Atópica/radioterapia , Microbiota/efectos de la radiación , Piel/microbiología , Terapia Ultravioleta , Adulto , Anciano , Biodiversidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nariz/microbiología , Faringe/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/efectos de la radiación , Resultado del Tratamiento , Adulto Joven
8.
Environ Pollut ; 294: 118646, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896224

RESUMEN

With the rapidly increasing popularity of 5G mobile technology, the effect of radiofrequency radiation on human health has caused public concern. This study explores the effects of a simulated 3.5 GHz radiofrequency electromagnetic radiation (RF-EMF) environment on the development and microbiome of flies under intensities of 0.1 W/m2, 1 W/m2 and 10 W/m2. We found that the pupation percentages in the first 3 days and eclosion rate in the first 2 days were increased under exposure to RF-EMF, and the mean development time was shortened. In a study on third-instar larvae, the expression levels of the heat shock protein genes hsp22, hsp26 and hsp70 and humoral immune system genes AttC, TotC and TotA were all significantly increased. In the oxidative stress system, DuoX gene expression was decreased, sod2 and cat gene expression levels were increased, and SOD and CAT enzyme activity also showed a significant increase. According to the 16S rDNA results, the diversity and species abundance of the microbial community decreased significantly, and according to the functional prediction analysis, the genera Acetobacter and Lactobacillus were significantly increased. In conclusion, 3.5 GHz RF-EMF may enhance thermal stress, oxidative stress and humoral immunity, cause changes in the microbial community, and regulate the insulin/TOR and ecdysteroid signalling pathways to promote fly development.


Asunto(s)
Drosophila melanogaster , Campos Electromagnéticos , Microbiota/efectos de la radiación , Ondas de Radio , Animales , Teléfono Celular , Drosophila melanogaster/embriología , Drosophila melanogaster/microbiología , Drosophila melanogaster/efectos de la radiación , Expresión Génica , Proteínas de Choque Térmico , Larva/efectos de la radiación
9.
Sci Rep ; 11(1): 5179, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664352

RESUMEN

Radiotherapy-induced dermatitis (RID) is an inflammatory cutaneous disorder that is acquired as an adverse effect of undergoing radiotherapy. Skin microbiome dysbiosis has been linked to the outcomes of several dermatological diseases. To explore the skin microbiota of RID and deduce their underlying impact on the outcome of RID, cutaneous microbiomes of 78 RID patients and 20 healthy subjects were characterized by sequencing V1-V3 regions of 16S rRNA gene. In total, a significantly apparent reduction in bacterial diversity was detected in microbiomes of RID in comparison to controls. Overall, the raised Proteobacteria/ Firmicutes ratio was significantly linked to delayed recovery or tendency toward the permanence of RID (Kruskal Wallis: P = 2.66 × 10-4). Moreover, applying enterotyping on our samples stratified microbiomes into A, B, and C dermotypes. Dermotype C included overrepresentation of Pseudomonas, Staphylococcus and Stenotrophomonas and was markedly associated with delayed healing of RID. Strikingly, coexistence of diabetes mellitus and RID was remarkably correlated with a significant overrepresentation of Klebsiella or Pseudomonas and Staphylococcus. Metabolic abilities of skin microbiome could support their potential roles in the pathogenesis of RID. Cutaneous microbiome profiling at the early stages of RID could be indicative of prospective clinical outcomes and maybe a helpful guide for personalized therapy.


Asunto(s)
Bacterias/genética , Disbiosis/microbiología , Radiodermatitis/microbiología , Piel/microbiología , Adulto , Bacterias/clasificación , Bacterias/efectos de la radiación , Disbiosis/etiología , Disbiosis/genética , Disbiosis/patología , Femenino , Humanos , Inflamación/etiología , Inflamación/microbiología , Inflamación/patología , Masculino , Microbiota/efectos de la radiación , Persona de Mediana Edad , Pronóstico , ARN Ribosómico 16S/genética , Radiodermatitis/genética , Radiodermatitis/patología
10.
Photochem Photobiol Sci ; 20(3): 451-473, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33721277

RESUMEN

Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.


Asunto(s)
Luz , Microbiota/efectos de la radiación , Plantas/microbiología , Bacterias/metabolismo , Bacterias/patogenicidad , Hongos/metabolismo , Hongos/patogenicidad , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Fitocromo/metabolismo
11.
Int J Food Microbiol ; 343: 109105, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33636589

RESUMEN

In this study the suitability of a thin-film reactor (TFR) equipped with special flow guiding elements (FGE) was examined to analyse its capability to inactivate microorganisms in milk. Experiments were carried out with UHT-milk inoculated with Escherichia coli (E. coli), DH5α and Listeria innocua (L. innocua) WS 2258. Furthermore, the inactivation of microorganisms originally occurring in raw milk was investigated. E. coli, DH5α and L. innocua serving as biodosimeter were reduced by 4.58-log and 3.19-log, respectively. In milk, the original microorganisms showed a 4-log reduction. Without FGE the reduction was below 0.13-log. Thus, it can be derived that the efficacy of a UV-C thin-film reactor processing absorptive media like milk can be highly improved using FGE.


Asunto(s)
Escherichia coli/efectos de la radiación , Irradiación de Alimentos/métodos , Listeria/efectos de la radiación , Leche/microbiología , Animales , Recuento de Colonia Microbiana , Escherichia coli/crecimiento & desarrollo , Irradiación de Alimentos/instrumentación , Microbiología de Alimentos , Listeria/crecimiento & desarrollo , Microbiota/efectos de la radiación , Leche/química , Rayos Ultravioleta
12.
Int J Radiat Oncol Biol Phys ; 109(1): 145-150, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866565

RESUMEN

PURPOSE: The human commensal microbiome has been suggested to be involved in the regulation of response to anticancer therapies. However, little is known regarding changes in commensal microbes in patients with cancer during radiation therapy. We conducted a prospective, longitudinal proof-of-concept cohort study with patients with newly diagnosed nasopharyngeal carcinoma (NPC) who underwent radiation therapy-based treatment. METHODS AND MATERIALS: Nasopharyngeal swabs were collected before radiation therapy, twice per week during radiation therapy, and after radiation therapy. The nasopharyngeal microbiome was assessed using 16S rRNA amplicon sequencing. A patient's response to treatment was measured 3 months after the completion of radiation therapy as a short-term clinical outcome. In total, 39 NPC patients with 445 nasopharyngeal samples were analyzed. RESULTS: There was stable temporal change in the community structure of the nasopharyngeal microbiome among patients with NPC during treatment (P = .0005). Among 73 abundant amplicon sequence variants (ASVs), 7 ASVs assigned to genus Corynebacterium decreased significantly during the treatment (W-statistic >80%); 23 ASVs showed statistically significant changes in the ratio of abundance between early and late responders during treatment (false discovery rate <0.05). CONCLUSIONS: This study addressed stable temporal change in the nasopharyngeal microbiome among patients with NPC during radiation therapy-based treatment and provided preliminary evidence of an association with a short-term clinical outcome.


Asunto(s)
Microbiota/efectos de la radiación , Carcinoma Nasofaríngeo/microbiología , Carcinoma Nasofaríngeo/radioterapia , Nasofaringe/microbiología , Nasofaringe/efectos de la radiación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
PLoS One ; 15(10): e0239051, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33006995

RESUMEN

A large body of ongoing research focuses on understanding the mechanisms and processes underlying host-microbiome interactions, and predicting their ecological and evolutionary outcomes. To draw general conclusions about such interactions and understand how they are established, we must synthesize information from a diverse set of species. We analysed the microbiome of an important insect model-the red flour beetle Tribolium castaneum-which is a widespread generalist pest of stored cereals. The beetles complete their entire life cycle in flour, which thus serves multiple functions: habitat, food, and a source of microbes. We determined key factors that shape the T. castaneum microbiome, established protocols to manipulate it, and tested its consequences for host fitness. We show that the T. castaneum microbiome is derived from flour-acquired microbes, and varies as a function of (flour) resource and beetle density. Beetles gain multiple fitness benefits from their microbiome, such as higher fecundity, egg survival, and lifespan; and reduced cannibalism. In contrast, the microbiome has a limited effect on development rate, and does not enhance pathogen resistance. Importantly, the benefits are derived only from microbes in the ancestral resource (wheat flour), and not from novel resources such as finger millet, sorghum, and corn. Notably, the microbiome is not essential for beetle survival and development under any of the tested conditions. Thus, the red flour beetle is a tractable model system to understand the ecology, evolution and mechanisms of host-microbiome interactions, while closely mimicking the host species' natural niche.


Asunto(s)
Interacciones Microbiota-Huesped , Modelos Biológicos , Tribolium/microbiología , Animales , Antibacterianos/farmacología , Bacillus thuringiensis/patogenicidad , Canibalismo , Femenino , Fertilidad , Harina/microbiología , Harina/parasitología , Aptitud Genética , Longevidad , Masculino , Microbiota/efectos de los fármacos , Microbiota/genética , Microbiota/efectos de la radiación , Tribolium/crecimiento & desarrollo , Tribolium/fisiología , Rayos Ultravioleta
14.
Sci Rep ; 10(1): 16582, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024215

RESUMEN

Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients' well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation ("after"). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.


Asunto(s)
Quimioradioterapia , Neoplasias de Cabeza y Cuello/microbiología , Neoplasias de Cabeza y Cuello/terapia , Microbiota/efectos de los fármacos , Microbiota/efectos de la radiación , Saliva/microbiología , Carcinoma de Células Escamosas de Cabeza y Cuello/microbiología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Adulto , Anciano , Candida/genética , Candida/aislamiento & purificación , Femenino , Voluntarios Sanos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , ARN Ribosómico 16S/genética
15.
Biomarkers ; 25(8): 677-684, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32960109

RESUMEN

INTRODUCTION: Oral mucositis (OM) is a severe side effect in patients undergoing anticancer therapies, which negatively impacts on their quality of life often leading to either the interruption of the therapy. Photobiomodulation (PBM) is emerging as an effective strategy allowing a faster wound healing. OBJECTIVES: This pilot study aims at verifying whether PBM modulates the inflammatory response in patients and its effect on the oral microbiome composition. MATERIALS AND METHODS: Buccal swabs were collected from four patients affected by OM, both on ulcerated and clinically healthy areas, before and on the last day of PBM therapy, as well as on the first day after treatment discontinuation. The concentration of 38 cytokines and the composition of oral microbiome were measured. RESULTS: Most of the pro-inflammatory cytokines were reduced, whereas anti-inflammatory cytokines resulted up-regulated by PBM. In addition, PBM influenced the composition of oral microbiome, by decreasing the amount of pathogenic species and promoting the growth of commensal bacteria. These changes were even more evident when separately analysing patients who clinically responded to PBM and the only patient who did not respond. CONCLUSIONS: PBM reduces inflammatory burden in patients affected by OM and positively influences the composition of the oral microbiome.


Asunto(s)
Bacterias/efectos de la radiación , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Terapia por Luz de Baja Intensidad , Microbiota/efectos de la radiación , Mucosa Bucal/efectos de la radiación , Estomatitis/radioterapia , Bacterias/crecimiento & desarrollo , Disbiosis , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Mucosa Bucal/patología , Proyectos Piloto , Estomatitis/metabolismo , Estomatitis/microbiología , Estomatitis/patología , Resultado del Tratamiento
16.
Cancer ; 126(23): 5124-5136, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32888342

RESUMEN

BACKGROUND: Oral mucositis (OM) is a debilitating sequela for patients treated for squamous cell carcinoma of the head and neck (HNSCC). This study investigated whether oral microbial features before treatment or during treatment are associated with the time to onset of severe OM in patients with HNSCC. METHODS: This was a cohort study of newly diagnosed patients with locoregional HNSCC who received chemotherapy with or without radiotherapy from April 2016 to September 2017. OM was based on the National Cancer Institute's Common Terminology Criteria for Adverse Events, version 4.0. The oral microbiome was characterized on the basis of the 16S ribosomal RNA V4 region with the Illumina platform. A mixture cure model was used to generate hazard ratios for the onset of severe OM. RESULTS: Eighty-six percent of the patients developed OM (n = 57 [33 nonsevere cases and 24 severe cases]) with a median time to onset of OM of 21 days. With adjustments for age, sex, and smoking status, genera abundance was associated with the hazard for the onset of severe OM as follows: 1) at the baseline (n = 66), Cardiobacterium (P = .03) and Granulicatella (P = .04); 2) immediately before the development of OM (n = 57), Prevotella (P = .03), Fusobacterium (P = .03), and Streptococcus (P = .01); and 3) immediately before the development of severe OM (n = 24), Megasphaera (P = .0001) and Cardiobacterium (P = .03). There were no differences in α-diversity between the baseline samples and Human Microbiome Project data. CONCLUSIONS: Changes in the abundance of genera over the course of treatment were associated with the onset of severe OM. The mechanism and therapeutic implications of these findings need to be investigated in future studies.


Asunto(s)
Neoplasias de Cabeza y Cuello/terapia , Microbiota , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Estomatitis/etiología , Anciano , Femenino , Neoplasias de Cabeza y Cuello/microbiología , Humanos , Masculino , Microbiota/efectos de los fármacos , Microbiota/efectos de la radiación , Persona de Mediana Edad , ARN Ribosómico 16S , Carcinoma de Células Escamosas de Cabeza y Cuello/microbiología , Estomatitis/microbiología , Factores de Tiempo
17.
PLoS One ; 15(8): e0235948, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32785216

RESUMEN

INTRODUCTION: Surgical site infection is one of the most severe complications of surgical treatments. However, the optimal procedure to prevent such infections remains uninvestigated. Ultraviolet radiation C (UVC) with a short wavelength has a high bactericidal effect; however, it is cytotoxic. Nonetheless, given that UVC with a wavelength of 222 nm reaches only the stratum corneum, it does not affect the skin cells. This study aimed to investigate the safety of 222-nm UVC irradiation and to examine its skin sterilization effect in healthy volunteers. METHODS: This trial was conducted on 20 healthy volunteers. The back of the subject was irradiated with 222-nm UVC at 50-500 mJ/cm2, and the induced erythema (redness of skin) was evaluated. Subsequently, the back was irradiated with a maximum amount of UVC not causing erythema, and the skin swabs before and after the irradiation were cultured. The number of colonies formed after 24 hours was measured. In addition, cyclobutene pyrimidine dimer (CPD) as an indicator of DNA damage was measured using skin tissues of the nonirradiated and irradiated regions. RESULTS: All subjects experienced no erythema at all doses. The back of the subject was irradiated at 500 mJ/cm2, and the number of bacterial colonies in the skin swab culture was significantly decreased by 222-nm UVC irradiation. The CPD amount produced in the irradiated region was slightly but significantly higher than that of the non-irradiated region. CONCLUSION: A 222-nm UVC at 500 mJ/cm2 was a safe irradiation dose and possessed bactericidal effects. In the future, 222-nm UVC irradiation is expected to contribute to the prevention of perioperative infection.


Asunto(s)
Daño del ADN/efectos de la radiación , Microbiota/efectos de la radiación , Piel/efectos de la radiación , Esterilización/métodos , Rayos Ultravioleta/efectos adversos , Adulto , Dorso , Biopsia , Recuento de Colonia Microbiana , Eritema/diagnóstico , Eritema/etiología , Voluntarios Sanos , Humanos , Masculino , Dímeros de Pirimidina/análisis , Dímeros de Pirimidina/efectos de la radiación , Piel/microbiología , Infección de la Herida Quirúrgica/microbiología , Infección de la Herida Quirúrgica/prevención & control , Resultado del Tratamiento
18.
Microbiome ; 8(1): 116, 2020 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772914

RESUMEN

BACKGROUND: Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS: The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION: Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.


Asunto(s)
Lagos/microbiología , Lagos/virología , Microbiota/efectos de la radiación , Fotoperiodo , Estaciones del Año , Regiones Antárticas , Organismos Acuáticos/efectos de la radiación , Organismos Acuáticos/virología , Ecosistema
19.
Philos Trans A Math Phys Eng Sci ; 378(2179): 20190523, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32762429

RESUMEN

The persistent motility of individual constituents in microbial suspensions represents a prime example of the so-called active matter systems. Cells consume energy, exert forces and move, overall releasing the constraints of equilibrium statistical mechanics of passive elements and allowing for complex spatio-temporal patterns to emerge. Moreover, when subject to physico-chemical stimuli their collective behaviour often drives large-scale instabilities of a hydrodynamic nature, with implications for biomixing in natural environments and incipient industrial applications. In turn, our ability to exert external control of these driving stimuli could be used to govern the emerging patterns. Light, being easily manipulable and, at the same time, an important stimulus for a wide variety of microorganisms, is particularly well suited to this end. In this paper, we will discuss the current state, developments and some of the emerging advances in the fundamentals and applications of light-induced bioconvection with a focus on recent experimental realizations and modelling efforts. This article is part of the theme issue 'Stokes at 200 (part 2)'.


Asunto(s)
Luz , Microbiota/fisiología , Microbiota/efectos de la radiación , Modelos Biológicos , Fototaxis/fisiología , Fenómenos Biofísicos , Chlamydomonas/fisiología , Chlamydomonas/efectos de la radiación , Hidrodinámica , Conceptos Matemáticos
20.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513689

RESUMEN

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Producción de Cultivos , Productos Agrícolas/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo/química , Alanina/química , Alanina/metabolismo , Biomasa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Productos Agrícolas/metabolismo , Conjuntos de Datos como Asunto , Redes y Vías Metabólicas/efectos de la radiación , Metabolómica , Microbiota/fisiología , Microbiota/efectos de la radiación , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Rizosfera , Microbiología del Suelo , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...