Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
J Chromatogr A ; 1730: 465139, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38970876

RESUMEN

Adsorbents with good dispersibility and high efficiency are crucial for magnetic solid-phase extraction (MSPE). In this study, flower-like magnetic nanomaterials (F-Ni@NiO@ZnO2-C) were successfully prepared by calcination of metal-organic framework (MOF) precursors that was stacked by two-dimensional (2D) nanosheet. The synthesized F-Ni@NiO@ZnO2-C has a flower-like layered structure with a large amount of pore space, promoting the rapid diffusion of targets. In addition, Zn2+ doped in MOF precursors was still retained that further produced strong metal chelation with targets. The unique structure of F-Ni@NiO@ZnO2-C was used as MSPE adsorbent, and combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for extraction of three microcystins (MCs) detection, including microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR). The resulting method has a detection limit of 0.2-1.0 pg mL-1, a linear dynamic range of 0.6-500.0 pg mL-1 and has good linearity (R ≥ 0.9996). Finally, the established method was applied to the highly selective enrichment of MCs in biological samples, successfully detecting trace amounts of MCs (8.4-15.0 pg mL-1) with satisfactory recovery rates (83.7-103.1 %). The results indicated that flower-like magnetic F-Ni@NiO@ZnO2-C was a promising adsorbent, providing great potential for the determination of trace amounts of MCs in biological samples.


Asunto(s)
Límite de Detección , Microcistinas , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Microcistinas/aislamiento & purificación , Microcistinas/química , Microcistinas/análisis , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Estructuras Metalorgánicas/química , Nanoestructuras/química , Adsorción , Carbono/química , Organismos Acuáticos/química , Animales , Reproducibilidad de los Resultados , Níquel/química
2.
Chemosphere ; 361: 142430, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844105

RESUMEN

In the present study, algicidal bacteria cultivated in an aqueous medium were utilized as a surface modification agent to develop an efficient adsorbent for the removal of Microcystis aeruginosa. The modification considerably enhanced M. aeruginosa cell removal efficiency. Moreover, the introduction of bio-compounds ensured specificity in the removal of M. aeruginosa. Additionally, the cyanotoxin release and acute toxicity tests demonstrated that the adsorption process using the developed adsorbent is environmentally safe. Furthermore, the practical feasibility of the adsorptive removal of M. aeruginosa was confirmed through cell removal tests performed using the developed adsorbent in a scaled-up reactor (50 L and 10 tons). In these tests, the effects of the adsorbent application type, water temperature, and initial cell concentration on the M. aeruginosa removal efficiency were evaluated. The results of this study provide novel insights into the valorization strategy of biological algicides repurposed as adsorbents, and provide practical operational data for effective M. aeruginosa removal in scaled-up conditions.


Asunto(s)
Microcystis , Adsorción , Microcistinas/química , Microcistinas/metabolismo , Microcistinas/aislamiento & purificación , Cianobacterias/metabolismo , Purificación del Agua/métodos
3.
Toxins (Basel) ; 16(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38922163

RESUMEN

The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles' effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water.


Asunto(s)
Toxinas Bacterianas , Toxinas de Cianobacterias , Toxinas Marinas , Microcistinas , Purificación del Agua , Toxinas de Cianobacterias/química , Humanos , Microcistinas/toxicidad , Microcistinas/química , Microcistinas/aislamiento & purificación , Toxinas Marinas/toxicidad , Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Alcaloides/química , Alcaloides/toxicidad , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Tropanos/química , Tropanos/toxicidad , Tropanos/aislamiento & purificación , Nanoestructuras/química , Nanoestructuras/toxicidad , Uracilo/análogos & derivados , Uracilo/química , Uracilo/toxicidad , Cianobacterias/química , Supervivencia Celular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
4.
Food Chem ; 456: 140004, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870813

RESUMEN

Natural toxins, such as mycotoxins and cyanotoxins, can contaminate food and feed, leading to toxicity in humans and animals. This study focused on using nine magnetic nanostructured agents to remove the main types of toxins. Initially, the efficacy of these materials was evaluated in water solutions, revealing that composites with sizes below 3 mm, containing magnetite, activated carbon, esterified pectin, and sodium alginate, removed up to 90% of mycotoxins and cyanotoxins with an adsorption of 873 ng/g. The application of the nanostructures was then assessed in beer, milk, Distillers Dried Grains with Solubles and water contaminated with cyanobacteria. The presence of matrix slightly decreases the adsorption capacity for some toxins. The maximum toxin removal capacity was calculated with cyanotoxins, composites achieved a removal of up to 0.12 mg/g, while nanocomposites (15 µm) reached 36.6 mg/g. Therefore, these findings point out the potential for using nanotechnology in addressing natural toxins contamination.


Asunto(s)
Contaminación de Alimentos , Micotoxinas , Nanoestructuras , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Micotoxinas/química , Micotoxinas/análisis , Adsorción , Nanoestructuras/química , Animales , Cadena Alimentaria , Cerveza/análisis , Leche/química , Toxinas Bacterianas/química , Cianobacterias/química , Microcistinas/química , Microcistinas/análisis
5.
Sci Total Environ ; 937: 173370, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38772489

RESUMEN

To innovate the design of water treatment technology for algal toxin removal, this research investigated the mechanisms of cyanotoxin microcystin-LR (MC-LR) removal by a coupled adsorption-biodegradation. Eight types of woody carbonaceous adsorbents with and without Sphingopyxis sp. m6, a MC-LR degrading bacterium, were tested for MC-LR removal in water. All adsorbents showed good adsorption capability, removing 40 % to almost 100 % of the MC-LR (4.5 mg/L) within 48 h in batch experiments. Adding Sphingopyxis sp. m6 continuously promoted MC-LR biological removal, and successfully broke the barrier of adsorption capacity of tested adsorbents, removing >90 % of the MC-LR in most of the coupled adsorption-biodegradation tests, especially for those adsorbents had low physiochemical adsorption capacity. Variance partitioning analysis indicated that mesopore was the dominant contributor to adsorption capacity of MC-LR in pure adsorption treatments, which acted synergistically with electrical conductivity, polarity and total functional groups on the absorbent. Pore structure was the key factor beneficial for the growth of Sphingopyxis sp. m6 (51% contribution) and subsequent MC-LR biological removal rate (80 % contribution). Overall, pinewood-based carbonaceous adsorbents (especially pinewood activated carbon) exhibited the highest adsorption capacity towards MC-LR and provided the most favorable conditions for biological removal of MC-LR, largely because of their high mesopore volume, total functional groups and electric conductivity. The research outcomes not only deepened the quantitative understanding of mechanisms for MC-LR removal by the coupled process, but also provided theoretical basis for future materials' selection and modification during the practical application of coupled process.


Asunto(s)
Biodegradación Ambiental , Toxinas Marinas , Microcistinas , Contaminantes Químicos del Agua , Purificación del Agua , Microcistinas/metabolismo , Microcistinas/química , Adsorción , Purificación del Agua/métodos , Sphingomonadaceae/metabolismo
6.
J Hazard Mater ; 472: 134469, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691995

RESUMEN

The scarcity of selective adsorbents for efficient extraction and removal of microcystins (MCs) from complex samples greatly limits the precise detection and effective control of MCs. Three-dimensional covalent organic frameworks (3D COFs), characterized by their large specific surface areas and highly ordered rigid structure, are promising candidates, but suffer from lack of specific recognition. Herein, we design to engineer molecularly imprinted cavities within 3D COFs via molecularly imprinted technology, creating a novel adsorbent with exceptional selectivity, kinetics and capacity for the efficient extraction and removal of MCs. As proof-of-concept, a new CC bond-containing 3D COF, designated JNU-7, is designed and prepared for copolymerization with methacrylic acid, the pseudo template L-arginine and ethylene dimethacrylate to yield the JNU-7 based molecularly imprinted polymer (JNU-7-MIP). The JNU-7-MIP exhibits a great adsorption capacity (156 mg g-1) for L-arginine. Subsequently, the JNU-7-MIP based solid-phase extraction coupled with high performance liquid chromatography-mass spectrometry achieves low detection limit of 0.008 ng mL-1, wide linear range of 0.025-100 ng mL-1, high enrichment factor of 186, rapid extraction of 10 min, and good recoveries of 92.4%-106.5% for MC-LR. Moreover, the JNU-7-MIP can rapidly remove the MC-LR from 1 mg L-1 to levels (0.26-0.35 µg L-1) lower than the WHO recommended limit for drinking water (1 µg L-1). This work reveals the considerable potential of 3D COF based MIPs as promising adsorbents for the extraction and removal of contaminants in complex real samples.


Asunto(s)
Microcistinas , Impresión Molecular , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Microcistinas/aislamiento & purificación , Microcistinas/química , Microcistinas/análisis , Adsorción , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Estructuras Metalorgánicas/química , Arginina/química , Polímeros Impresos Molecularmente/química , Cromatografía Líquida de Alta Presión , Límite de Detección
7.
Sci Rep ; 14(1): 11058, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745050

RESUMEN

The present study assessed the effective use of biochar for the adsorption of two potent HAB toxins namely, Microcystin-LR (MCLR) and Saxitoxin (STX) through a combination of dosage, kinetic, equilibrium, initial pH, and competitive adsorption experiments. The adsorption results suggest that biochar has excellent capabilities for removing MCLR and STX, with STX reporting higher adsorption capacities (622.53-3507.46 µg/g). STX removal required a minimal dosage of 0.02 g/L, while MCLR removal needed 0.4 g/L for > 90%. Similarly, a shorter contact time was required for STX removal compared to MCLR for > 90% of toxin removed from water. Initial pH study revealed that for MCLR acidic conditions favored higher uptake while STX favored basic conditions. Kinetic studies revealed that the Elovich model to be most suitable for both toxins, while STX also showed suitable fittings for Pseudo-First Order and Pseudo-Second Order in individual toxin systems. Similarly, for the Elovich model the most suited kinetic model for both toxins in presence of each other. Isotherm studies confirmed the Langmuir-Freundlich model as the best fit for both toxins. These results suggest adsorption mechanisms including pore filling, hydrogen bonding, π-π interactions, hydrophobic interactions, electrostatic attraction, and dispersive interactions.


Asunto(s)
Carbón Orgánico , Toxinas Marinas , Microcistinas , Saxitoxina , Purificación del Agua , Microcistinas/química , Microcistinas/aislamiento & purificación , Carbón Orgánico/química , Saxitoxina/química , Toxinas Marinas/química , Adsorción , Cinética , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
8.
J Environ Manage ; 360: 121232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801804

RESUMEN

Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.


Asunto(s)
Microcistinas , Microcystis , Tensoactivos , Microcistinas/química , Microcistinas/metabolismo , Microcystis/efectos de los fármacos , Tensoactivos/química , Tensoactivos/farmacología , Octoxinol/química , Octoxinol/farmacología , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/farmacología
9.
Environ Res ; 252(Pt 2): 118885, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614200

RESUMEN

Photocatalysis was an attractive strategy that had potential to tackle the Microcystin-LR (MC-LR) contamination of aquatic ecosystems. Herein, magnetic photocatalyst Fe3O4/Bi2WO6/Reduced graphene oxide composites (Bi2WO6/Fe3O4/RGO) were employed to degrade MC-LR. The removal efficiency and kinetic constant of the optimized Bi2WO6/Fe3O4/RGO (Bi2WO6/Fe3O4-40%/RGO) was 1.8 and 2.3 times stronger than the pure Bi2WO6. The improved activity of Bi2WO6/Fe3O4-40%/RGO was corresponded to the expanded visible light adsorption ability and reduction of photogenerated carrier recombination efficiency through the integration of Bi2WO6 and Fe3O4-40%/RGO. The MC-LR removal efficiency exhibited a positive tendency to the initial density of algae cells, fulvic acid, and the concentration of MC-LR decreased. The existed anions (Cl-, CO3-2, NO3-, H2PO4-) reduced MC-LR removal efficiency of Bi2WO6/Fe3O4-40%/RGO. The Bi2WO6/Fe3O4-40%/RGO could degrade 79.3% of MC-LR at pH = 7 after 180 min reaction process. The trapping experiments and ESR tests confirmed that the h+, ∙OH, and ∙O2- played a significant role in MC-LR degradation. The LC-MS/MS result revealed the intermediates and possible degradation pathways.


Asunto(s)
Bismuto , Grafito , Luz , Toxinas Marinas , Microcistinas , Microcistinas/química , Microcistinas/efectos de la radiación , Grafito/química , Bismuto/química , Contaminantes Químicos del Agua/química , Fotólisis , Catálisis
10.
J Hazard Mater ; 470: 134170, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613957

RESUMEN

Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.


Asunto(s)
Estrógenos , Aprendizaje Automático , Metabolómica , Microcistinas , Microcystis , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Microcistinas/metabolismo , Microcistinas/análisis , Microcistinas/química , Estrógenos/metabolismo , Estrógenos/química
11.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608582

RESUMEN

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Asunto(s)
Electrodos , Grafito , Toxinas Marinas , Microcistinas , Compuestos de Plata , Grafito/química , Grafito/efectos de la radiación , Microcistinas/química , Microcistinas/aislamiento & purificación , Catálisis , Compuestos de Plata/química , Fosfatos/química , Óxidos/química , Técnicas Electroquímicas , Tungsteno/química , Clorofila A/química , Zinc/química , Purificación del Agua/métodos , Clorofila/química , Procesos Fotoquímicos , Floraciones de Algas Nocivas
12.
Chemosphere ; 352: 141436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360412

RESUMEN

Harmful cyanobacterial bloom is one of the serious environmental problems worldwide. Microcystis aeruginosa is a representative harmful alga in cyanobacteria bloom. It is of great significance to develop new technologies for the removal of Microcystis aeruginosa and microcystins. The feasibility and mechanism of removing microcystis aeruginosa and degrading microcystins by dielectric barrier discharge (DBD) plasma were studied. The suitable DBD parameters obtained in this study are DBD (41.5 W, 40 min) and DBD (41.5 W, 50 min), resulting in algae removal efficiency of 77.4% and 80.4%, respectively; scanning electron microscope and LIVE-DEATH analysis demonstrate that DBD treatment can disrupt cell structure and lead to cell death; analysis of elemental composition and chemical state indicated that there are traces of oxidation of organic nitrogen and organic carbon in microcystis aeruginosa; further intracellular ROS concentration and antioxidant enzyme activity analysis confirm that DBD damage microcystis aeruginosa through oxidation. Meanwhile, DBD can effectively degrade the microcystin-LR released after cell lysis, the extracellular microcystin-LR concentration in the DBD (41.5 W) group decreased by 88.7% at 60 min compared to the highest concentration at 20 min; further toxicity analysis of degradation intermediates indicated that DBD can reduce the toxicity of microcystin-LR. The contribution of active substances to the inactivation of microcystis aeruginosa is eaq- > •OH > H2O2 > O3 > 1O2 > •O2- > ONOO-, while on the degradation of microcystin-LR is eaq- > •OH > H2O2 > O3 > •O2- > 1O2 > ONOO-. The application of DBD plasma technology in microcystis aeruginosa algae removal and detoxification has certain prospects for promotion and application.


Asunto(s)
Cianobacterias , Toxinas Marinas , Microcystis , Microcystis/metabolismo , Floraciones de Algas Nocivas , Microcistinas/química , Peróxido de Hidrógeno/metabolismo , Estudios de Factibilidad , Cianobacterias/metabolismo , Antioxidantes/metabolismo
13.
Environ Sci Technol ; 57(41): 15432-15442, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37802498

RESUMEN

Herein, we propose a label-free chemiresistive sensor for the highly sensitive and selective detection of microcystin (MC)-LR in water samples. The sensor uses a layer-by-layer (LBL) assembled conductive film consisting of Ti3C2Tx nanosheets as the sensing channel. It is further modified by using an aptamer for the specific recognition of MC-LR. The response signal is based on the change in resistance of the conductive channel upon binding of MC-LR with the aptamer. Our novel strategy is the first concept proposed for immobilizing the aptamer containing -SH on the channel surface through a Ti-S bond under weakly alkaline condition. The resulting sensor is highly sensitive and stable for the detection of MC-LR, with a detection limit of 0.18 ng L-1 and a wide linear range from 1 to 104 ng L-1. We used the sensor to continuously monitor MC-LR released by cultivated Microcystis aeruginosa, showing a strong relationship between MC-LR and cell density. Furthermore, the sensor was successfully used to measure MC-LR in freshwater lakes with moderate algal blooms, and the results agreed well with those obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The present study provides a reliable method for highly sensitive and selective detection of MC-LR in environmental waters.


Asunto(s)
Microcistinas , Espectrometría de Masas en Tándem , Microcistinas/análisis , Microcistinas/química , Cromatografía Liquida , Titanio , Lagos/análisis , Agua/química
14.
J Hazard Mater ; 459: 132233, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567143

RESUMEN

Recently, harmful algal blooms (HABs) have become occurred with increasingly frequency worldwide. High nitrate content is one of the primary causes of eutrophication. Research has shown that photocatalytic materials enhance the effectiveness of microbial denitrification while removing other contaminants, despite some shortcomings. Based on this, we loaded TiO2/C3N4 heterojunctions onto weaveable, flexible carbon fibers and established a novel photocatalytically enhanced microbial denitrification system for the simultaneous removal of harmful algae and Microcystin-LR. We found that 99.35% of Microcystis aeruginosa and 95.34% of MC-LR were simultaneously and effectively removed. Compared to existing denitrification systems, the nitrate removal capacity improved by 72.33%. The denitrifying enzyme activity and electron transport system activity of microorganisms were enhanced by 3.54-3.86 times. Furthermore, the microbial community structure was optimized by the regulation of photogenerated electrons, and the relative abundance of main denitrifying bacteria increased from 50.72% to 66.45%, including Proteobacteria and Bacteroidetes. More importantly, we found that the increased secretion of extracellular polymeric substances by microorganisms may be responsible for the persistence of the reinforcing effect caused by photogenerated electrons in darkness. The higher removal of Microcystis aeruginosa and Microcystin-LR (MC-LR) achieved by the proposed system would reduce the frequency of HAB outbreaks and prevent the associated secondary pollution.


Asunto(s)
Desnitrificación , Microcystis , Nitratos , Floraciones de Algas Nocivas , Microcystis/química , Microcistinas/química , Transporte de Electrón
15.
Biotechnol Adv ; 68: 108235, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567398

RESUMEN

Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.


Asunto(s)
Alcaloides , Toxinas Bacterianas , Cianobacterias , Animales , Toxinas de Cianobacterias , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microcistinas/toxicidad , Microcistinas/química , Microcistinas/metabolismo , Cianobacterias/metabolismo , Alcaloides/metabolismo , Mamíferos
16.
J Environ Manage ; 338: 117774, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989953

RESUMEN

Microcystin-LR (MC-LR), a type of cyanotoxin commonly found in natural water bodies (sources of drinking water), poses a threat to human health due to its high toxicity. It is essential to successfully remove this cyanotoxin from drinking water sources. In this study, chlorine was used to oxidize MC-LR in Milli-Q water (MQ) (control test) and natural water collected from Lake Longhu (LLW) as a drinking water source. The removal efficiency, proposed transformation pathways, and genotoxicity were investigated. In the chlorine dose range investigated (4.0 mg L-1 - 8.0 mg L-1), the apparent second-order rate constants for MC-LR chlorination varied from 21.3 M-1s-1 to 31.9 M-1s-1 in MQ, higher than that in LLW (9.06 M-1s-1 to 17.7 M-1s-1) due to a faster chlorine decay attributed to the water matrix (e.g., natural organic matter) of LLW. Eleven transformation products (TPs) of MC-LR were identified in the two waters. The conjugated diene moieties and benzene ring of Adda moiety (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid), and the double bond of Mdha moiety (N-methyldehydroalanine) were the major susceptible reaction sites. Attacking unsaturated bonds by hydroxyl and chlorine radicals to generate monochloro-hydroxy-MC-LR was the primary initial transformation pathway, followed by nucleophilic substitution, dehydration, and cleavage in MC-LR. Chlorine substitution on the benzene ring was also observed. Based on the bacterial reverse-mutation assay (Ames assay), TPs in treated natural water did not induce genotoxicity/mutagenicity. These findings shed light on the role of chlorination in controlling the risk of cyanotoxins in drinking water treatment plants.


Asunto(s)
Agua Potable , Purificación del Agua , Humanos , Halogenación , Cloro , Benceno , Microcistinas/química , Microcistinas/toxicidad , Cinética
17.
Chemosphere ; 321: 138105, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764614

RESUMEN

Developing heterostructure photocatalysts for removing Microcystin-LR (MC-LR) under visible light was of positive significance to control the risk of Microcystins and ensure the safety of water quality. Herein, the Bi2WO6/Reduced graphene oxide (RGO) nanocomposites were prepared via a simple one-spot hydrothermal method for the first time to degrade MC-LR. The optimized Bi2WO6/RGO (Bi2WO6/RGO3%) achieved a removal efficiency of 82.3% toward MC-LR, with 1.9-fold higher efficiencies than Bi2WO6, and it showed superior reusability and high stability after 5 cycles. The degradation efficiency of MC-LR demonstrated a negative trend with the initial concentration of MC-LR, fulvic acid, and initial algal density increased, while MC-LR removal rate for the presence of anions was in the order of Cl- > CO3-2 > NO3- > H2PO4-. The degradation efficiency of MC-LR could reach up to 82.3% within 180 min in the neutral condition. The active species detection experiments and EPR measurements demonstrated that the holes (h+), hydroxide radicals (∙OH), and superoxide radicals (∙O2-) participated in the degradation of MC-LR. The DFT calculations showed that 0.56 of electron transferred from Bi2WO6 to RGO, indicating RGO introduction could prevent the recombination of photoelectrons and holes and was beneficial for MC-LR degradation. Finally, the possible intermediate products and degradation pathways were also proposed by the LC-MS/MS analysis.


Asunto(s)
Microcistinas , Espectrometría de Masas en Tándem , Microcistinas/química , Teoría Funcional de la Densidad , Cromatografía Liquida , Luz
18.
Chemosphere ; 317: 137866, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642149

RESUMEN

Microcystinase C (MlrC), one key hydrolase of the microcystinase family, plays an important role in linearized microsystin (L-MC) degradation. However, the three-dimensional structure and structural features of MlrC are still unclear. This study obtained high specific activity and high purity of MlrC by heterologous expression, and revealed that MlrC derived from Sphingomonas sp. ACM-3962 (ACM-MlrC) can degrade linearized products of MC-LR, MC-RR and MC-YR to product 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda), indicating the degradation function and significance in MC-detoxification. More importantly, this study reported the crystal structure of ACM-MlrC at 2.6 Å resolution for the first time, which provides a basis for further understanding the structural characteristics and functions of MlrC. MlrC had a dual-domain feature, namely N and C terminal domain respectively. The N-terminal domain contained a Glutamate-Aspartate-Histidine-Histidine catalytic quadruplex coordinated with zinc ion in each monomer. The importance of zinc ions and their coordinated residues was analyzed by dialysis and site-directed mutagenesis methods. Moreover, the important influence of the N/C-terminal flexible regions of ACM-MlrC was also analyzed by sequence truncation, and then the higher yield and total activity of variants were obtained, which was beneficial to study the better function and application of MlrC.


Asunto(s)
Microcistinas , Sphingomonas , Microcistinas/química , Sphingomonas/metabolismo , Histidina , Toxinas Marinas , Diálisis Renal , Biodegradación Ambiental
19.
Water Res ; 229: 119397, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459892

RESUMEN

Microcystins (MCs) are harmful to the ecology and public health. Some bacteria can degrade MCs into Adda, but few can destroy Adda. Adda is the key bioactive moiety of MCs and mainly contributes to hepatotoxicity. We had previously isolated an indigenous novel bacterial strain named Sphingopyxis sp. YF1 that can efficiently degrade MCs and its key bioactive moiety Adda, but the mechanisms remained unknown. Here, the biodegradation mechanisms and pathways of Adda were systematically investigated using multi-omics analysis, mass spectrometry and heterologous expression. The transcriptomic and metabolomic profiles of strain YF1 during Adda degradation were revealed for the first time. Multi-omics analyses suggested that the fatty acid degradation pathway was enriched. Specifically, the expression of genes encoding aminotransferase, beta oxidation (ß-oxidation) enzymes and phenylacetic acid (PAA) degradation enzymes were significantly up-regulated during Adda degradation. These enzymes were further proven to play important roles in the biodegradation of Adda. Simultaneously, some novel potential degradation products of Adda were identified successfully, including 7­methoxy-4,6-dimethyl-8-phenyloca-2,4-dienoic acid (C17H22O3), 2-methyl-3­methoxy-4-phenylbutyric acid (C12H16O3) and phenylacetic acid (PAA, C8H8O2). In summary, the Adda was converted into PAA through aminotransferase and ß-oxidation enzymes, then the PAA was further degraded by PAA degradation enzymes, and finally to CO2 via the tricarboxylic acid cycle. This study comprehensively elucidated the novel MC-LR biodegradation mechanisms, especially the new enzymatic pathway of Adda degradation. These findings provide a new perspective on the applications of microbes in the MCs polluted environment.


Asunto(s)
Sphingomonadaceae , Biodegradación Ambiental , Sphingomonadaceae/genética , Microcistinas/química , Fenilacetatos/metabolismo , Transaminasas/metabolismo
20.
Chemosphere ; 311(Pt 2): 137012, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36397634

RESUMEN

Cyanobacteria produce a plethora of structurally diverse bioactive secondary metabolites, including cyanotoxins which pose a serious threat to humans and other living organisms worldwide. Currently, a wide variety of mass spectrometry-based methods for determination of microcystins (MCs), the most commonly occurring and studied class of cyanotoxins, have been developed and employed for research and monitoring purposes. The scarcity of commercially available reference materials, together with the ever-growing range of mass spectrometers and analytical approaches, make the accuracy of quantitative analyses a critical point to be carefully investigated in view of a reliable risk evaluation. This study reports, a comparative investigation of the qualitative and quantitative MCs profile obtained using targeted and untargeted liquid chromatography-mass spectrometry approaches for the analyses of cyanobacterial biomass from Lake Kastoria, Greece. Comparison of the total MCs content measured by the two approaches showed good correlation, with variations in the range of 3.8-13.2%. In addition, the implementation of an analytical workflow on a hybrid linear ion trap/orbitrap mass spectrometer is described, based on combining data-dependent acquisition and a powerful database of cyanobacterial metabolites (CyanoMetDB) for the annotation of known and discovery of new cyanopeptides. This untargeted strategy proved highly effective for the identification of MCs, microginins, anabaenopeptins, and micropeptins. The systematic interpretation of the acquired fragmentation patterns allowed the elucidation of two new MC structural variants, MC-PrhcysR and MC-Prhcys(O)R, and proposal of structures for two new microginins, isomeric cyanostatin B and MG 821A, and three isomeric micropeptins at m/z 846.4715, 846.4711 and 846.4723.


Asunto(s)
Cianobacterias , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Flujo de Trabajo , Cianobacterias/metabolismo , Microcistinas/química , Oligopéptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...