Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
2.
J Oral Biosci ; 66(2): 358-364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641252

RESUMEN

OBJECTIVES: Rothia spp. are emerging as significant bacteria associated with oral health, with Rothia dentocariosa being one of the most prevalent species. However, there is a lack of studies examining these properties at the genetic level. This study aimed to establish a genetic modification platform for R. dentocariosa. METHODS: Rothia spp. were isolated from saliva samples collected from healthy volunteers. Subsequently, R. dentocariosa strains were identified through colony morphology, species-specific polymerase chain reaction (PCR), and 16S ribosomal RNA gene sequencing. The identified strains were then transformed with plasmid pJRD215, and the most efficient strain was selected. Transposon insertion mutagenesis was performed to investigate the possibility of genetic modifications. RESULTS: A strain demonstrating high transforming ability, designated as R. dentocariosa LX16, was identified. This strain underwent transposon insertion mutagenesis and was screened for 5-fluoroorotic acid-resistant transposants. The insertion sites were confirmed using arbitrary primed PCR, gene-specific PCR, and Sanger sequencing. CONCLUSION: This study marks the first successful genetic modification of R. dentocariosa. Investigating R. dentocariosa at the genetic level can provide insights into its role within the oral microbiome.


Asunto(s)
Elementos Transponibles de ADN , Micrococcaceae , Reacción en Cadena de la Polimerasa , Elementos Transponibles de ADN/genética , Humanos , Micrococcaceae/genética , Micrococcaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Mutagénesis Insercional , Saliva/microbiología , Plásmidos/genética
3.
Microbiol Spectr ; 12(6): e0400623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38652457

RESUMEN

Cystic fibrosis (CF), an inherited genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, results in sticky and thick mucosal fluids. This environment facilitates the colonization of various microorganisms, some of which can cause acute and chronic lung infections, while others may positively impact the disease. Rothia mucilaginosa, an oral commensal, is relatively abundant in the lungs of CF patients. Recent studies have unveiled its anti-inflammatory properties using in vitro three-dimensional lung epithelial cell cultures and in vivo mouse models relevant to chronic lung diseases. Apart from this, R. mucilaginosa has been associated with severe infections. However, its metabolic capabilities and genotype-phenotype relationships remain largely unknown. To gain insights into its cellular metabolism and genetic content, we developed the first manually curated genome-scale metabolic model, iRM23NL. Through growth kinetics and high-throughput phenotypic microarray testings, we defined its complete catabolic phenome. Subsequently, we assessed the model's effectiveness in accurately predicting growth behaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that could expedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their effect on metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without laborious large-scale screening of knockouts and mutant transposon libraries. Overall, iRM23NL demonstrates a solid capability to predict cellular phenotypes and holds immense potential as a valuable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor R. mucilaginosa's metabolism for desired performance.IMPORTANCECystic fibrosis (CF) is a genetic disorder characterized by thick mucosal secretions, leading to chronic lung infections. Rothia mucilaginosa is a common bacterium found in various parts of the human body, acting as a normal part of the flora. In people with weakened immune systems, it can become an opportunistic pathogen, while it is prevalent and active in CF airways. Recent studies have highlighted its anti-inflammatory properties in the lower pulmonary system, indicating the intricate relationship between microbes and human health. Herein, we have developed the first manually curated metabolic model of R. mucilaginosa. Our study examined the previously unknown relationships between the bacterium's genotype and phenotype and identified essential genes that impact the metabolism under various conditions. With this, we opt for paving the way for developing new strategies in antimicrobial therapy and metabolic engineering, leading to enhanced therapeutic outcomes in cystic fibrosis and related conditions.


Asunto(s)
Fibrosis Quística , Genoma Bacteriano , Micrococcaceae , Fibrosis Quística/microbiología , Humanos , Micrococcaceae/genética , Micrococcaceae/metabolismo , Genoma Bacteriano/genética , Genes Esenciales/genética , Animales , Ratones , Fenotipo
4.
Plant Physiol Biochem ; 210: 108609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615442

RESUMEN

Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.


Asunto(s)
Micrococcaceae , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Micrococcaceae/metabolismo , Micrococcaceae/genética , Microbiología del Suelo , Regulación de la Expresión Génica de las Plantas
5.
Arch Microbiol ; 206(4): 165, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485793

RESUMEN

This article reports the results of quantitative intra- and intergeneric taxonomic relationships among Micrococcaceae strains and a novel endophytic bacterium (SG) isolated from a suspension culture of Arabidopsis thaliana (L.) Heynh in our laboratory. The known strain Rothia sp. ND6WE1A was used as a reference one for SG. Whole-genome sequencing and phylogenetic analysis were based on the 16S rRNA test. Quantitative analysis for the nucleotide identity (ANI) and calculation of evolutionary distances were based on the identified amino acids (AAI) test indicating the generic assignment of the reference strain within and between the identified monophyletic groups of Micrococcaceae. The amino acid data structure of Rothia sp. ND6WE1A was compared against the UniProt database (250 million records) of close lineage of Micrococcaceae, including other Rothia spp. These data presented unique and evolutionary amino acid alignments, eventually expected in the new SG isolate as well. The metagenomic entries of the respective genome and proteome, characterized at the genus and species levels, could be considered for evolutionary taxonomic reclassification of the isolated and the reference strain (SG + Rothia sp. ND6WE1A). Therefore, our results warrant further investigations on the isolated SG strain.


Asunto(s)
Micrococcaceae , Micrococcaceae/genética , Filogenia , Ácidos Grasos/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Composición de Base , Aminoácidos/metabolismo , Técnicas de Tipificación Bacteriana , Hibridación de Ácido Nucleico
6.
Dev Comp Immunol ; 156: 105165, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499166

RESUMEN

Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.


Asunto(s)
Enfermedades de los Peces , Perfilación de la Expresión Génica , Riñón Cefálico , Inmunidad Innata , Renibacterium , Transcriptoma , Animales , Riñón Cefálico/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Renibacterium/inmunología , Renibacterium/genética , Inmunidad Innata/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Adaptativa/genética , Peces/inmunología , Peces/microbiología , Enfermedad Crónica , Perciformes/inmunología , Perciformes/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Enfermedades Renales/genética , Enfermedades Renales/veterinaria , Micrococcaceae/genética , Micrococcaceae/inmunología
7.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366247

RESUMEN

The widespread occurrence of sulfonamides raises significant concerns about the evolution and spread of antibiotic resistance genes. Biodegradation represents not only a resistance mechanism but also a clean-up strategy. Meanwhile, dynamic and diverse environments could influence the cellular function of individual sulfonamide-degrading strains. Here, we present Paenarthrobacter from different origins that demonstrated diverse growth patterns and sulfonamide-degrading abilities. Generally, the degradation performance was largely associated with the number of sadA gene copies and also relied on its genotype. Based on the survey of sad genes in the public database, an independent mobilization of transposon-borne genes between chromosome and plasmid was observed. Insertions of multiple sadA genes could greatly enhance sulfonamide-degrading performance. Moreover, the sad gene cluster and sadA transposable element showed phylogenetic conservation currently, being identified only in two genera of Paenarthrobacter (Micrococcaceae) and Microbacterium (Microbacteriaceae). Meanwhile, Paenarthrobacter exhibited a high capacity for genome editing to adapt to the specific environmental niche, opening up new opportunities for bioremediation applications.


Asunto(s)
Micrococcaceae , Sulfonamidas , Sulfonamidas/metabolismo , Biodegradación Ambiental , Filogenia , Sulfanilamida , Micrococcaceae/genética , Micrococcaceae/metabolismo
8.
Microbiome ; 12(1): 43, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424602

RESUMEN

BACKGROUND: Bioaugmentation has the potential to enhance the ability of ecological technology to treat sulfonamide-containing wastewater, but the low viability of the exogenous degraders limits their practical application. Understanding the mechanism is important to enhance and optimize performance of the bioaugmentation, which requires a multifaceted analysis of the microbial communities. Here, DNA-stable isotope probing (DNA-SIP) and metagenomic analysis were conducted to decipher the bioaugmentation mechanisms in stabilization pond sediment microcosms inoculated with sulfamethoxazole (SMX)-degrading bacteria (Pseudomonas sp. M2 or Paenarthrobacter sp. R1). RESULTS: The bioaugmentation with both strains M2 and R1, especially strain R1, significantly improved the biodegradation rate of SMX, and its biodegradation capacity was sustainable within a certain cycle (subjected to three repeated SMX additions). The removal strategy using exogenous degrading bacteria also significantly abated the accumulation and transmission risk of antibiotic resistance genes (ARGs). Strain M2 inoculation significantly lowered bacterial diversity and altered the sediment bacterial community, while strain R1 inoculation had a slight effect on the bacterial community and was closely associated with indigenous microorganisms. Paenarthrobacter was identified as the primary SMX-assimilating bacteria in both bioaugmentation systems based on DNA-SIP analysis. Combining genomic information with pure culture evidence, strain R1 enhanced SMX removal by directly participating in SMX degradation, while strain M2 did it by both participating in SMX degradation and stimulating SMX-degrading activity of indigenous microorganisms (Paenarthrobacter) in the community. CONCLUSIONS: Our findings demonstrate that bioaugmentation using SMX-degrading bacteria was a feasible strategy for SMX clean-up in terms of the degradation efficiency of SMX, the risk of ARG transmission, as well as the impact on the bacterial community, and the advantage of bioaugmentation with Paenarthrobacter sp. R1 was also highlighted. Video Abstract.


Asunto(s)
Micrococcaceae , Contaminantes Químicos del Agua , Sulfametoxazol/metabolismo , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales , Antibacterianos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Micrococcaceae/genética , Biodegradación Ambiental , ADN
9.
J Wildl Dis ; 59(4): 545-556, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791744

RESUMEN

Improving rapid detection methods for pathogens is important for research as we collectively aim to improve the health of ecosystems globally. In the northern hemisphere, the success of salmon (Oncorhynchus spp.) populations is vitally important to the larger marine, aquatic, and terrestrial ecosystems they inhabit. This has led to managers cultivating salmon in hatcheries and aquaculture to bolster their populations, but young salmon face many challenges, including diseases such as bacterial kidney disease (BKD). Early detection of the BKD causative agent, Renibacterium salmoninarum, is useful for managers to avoid outbreaks in hatcheries and aquaculture stocks to enable rapid treatment with targeted antibiotics. Isothermal amplification and CRIPSR-Cas12a systems may enable sensitive, relatively rapid, detection of target DNA molecules from environmental samples compared to quantitative PCR (qPCR) and culture methods. We used these technologies to develop a sensitive and specific rapid assay to detect R. salmoninarum from water samples using isothermal recombinase polymerase amplification (RPA) and an AsCas12a RNA-guided nuclease detection. The assay was specific to R. salmoninarum (0/10 co-occurring or closely related bacteria detected) and sensitive to 0.0128 pg/µL of DNA (approximately 20-40 copies/µL) within 10 min of Cas activity. This assay successfully detected R. salmoninarum environmental DNA in 14/20 water samples from hatcheries with known quantification for the pathogen via previous qPCR (70% of qPCR-positive samples). The RPA-CRISPR/AsCas12a assay had a limit of detection (LOD) of >10 copies/µL in the hatchery water samples and stochastic detection below 10 copies/µL, similar to but slightly higher than the qPCR assay. This LOD enables 37 C isothermal detection, potentially in the field, of biologically relevant levels of R. salmoninarum in water. Further research is needed to develop easy-to-use, cost-effective, sensitive RPA/CRISPR-AsCas12a assays for rapidly detecting low concentrations of wildlife pathogens in environmental samples.


Asunto(s)
ADN Ambiental , Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Animales , Animales Salvajes , Sistemas CRISPR-Cas , Ecosistema , Micrococcaceae/genética , Enfermedades Renales/microbiología , Enfermedades Renales/veterinaria , Salmón/genética , Salmón/microbiología , Agua , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/microbiología
10.
Microbiome ; 11(1): 136, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330554

RESUMEN

BACKGROUND: Disruption of the microbial community in the respiratory tract due to infections, like influenza, could impact transmission of bacterial pathogens. Using samples from a household study, we determined whether metagenomic-type analyses of the microbiome provide the resolution necessary to track transmission of airway bacteria. Microbiome studies have shown that the microbial community across various body sites tends to be more similar between individuals who cohabit in the same household than between individuals from different households. We tested whether there was increased sharing of bacteria from the airways within households with influenza infections as compared to control households with no influenza. RESULTS: We obtained 221 respiratory samples that were collected from 54 individuals at 4 to 5 time points across 10 households, with and without influenza infection, in Managua, Nicaragua. From these samples, we generated metagenomic (whole genome shotgun sequencing) datasets to profile microbial taxonomy. Overall, specific bacteria and phages were differentially abundant between influenza positive households and control (no influenza infection) households, with bacteria like Rothia, and phages like Staphylococcus P68virus that were significantly enriched in the influenza-positive households. We identified CRISPR spacers detected in the metagenomic sequence reads and used these to track bacteria transmission within and across households. We observed a clear sharing of bacterial commensals and pathobionts, such as Rothia, Neisseria, and Prevotella, within and between households. However, due to the relatively small number of households in our study, we could not determine if there was a correlation between increased bacterial transmission and influenza infection. CONCLUSION: We observed that airway microbial composition differences across households were associated with what appeared to be different susceptibility to influenza infection. We also demonstrate that CRISPR spacers from the whole microbial community can be used as markers to study bacterial transmission between individuals. Although additional evidence is needed to study transmission of specific bacterial strains, we observed sharing of respiratory commensals and pathobionts within and across households. Video Abstract.


Asunto(s)
Gripe Humana , Microbiota , Micrococcaceae , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Gripe Humana/prevención & control , Bacterias , Metagenoma/genética , Microbiota/genética , Micrococcaceae/genética
12.
J Periodontal Res ; 58(2): 381-391, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36641544

RESUMEN

INTRODUCTION: Microbiome from a "healthy cohort" is used as a reference for comparison to cases and intervention. However, the studies with cohort-based clinical research have not sufficiently accounted for the multistability in oral microbial community. The screening is limited to phenotypic features with marked variations in microbial genomic markers. Herein, we aimed to assess the stability of the oral microbiome across time from an intervention-free "healthy" cohort. METHODS: We obtained 33 supragingival samples of 11 healthy participants from the biobank. For each participant, we processed one sample as baseline (T0) and two samples spaced at 1-month (T1) and 3-month (T2) intervals for 16S ribosomal RNA gene sequencing analysis. RESULTS: We observed that taxonomic profiling had a similar pattern of dominant genera, namely, Rothia, Prevotella, and Hemophilus, at all time points. Shannon diversity revealed a significant increase from T0 (p < .05). Bray Curtis dissimilarity was significant (R = -.02, p < .01) within the cohort at each time point. Community stability had negative correlation to synchrony (r = -.739; p = .009) and variance (r = -.605; p = .048) of the species. Clustering revealed marked differences in the grouping patterns between the three time points. For all time points, the clusters presented a substantially dissimilar set of differentially abundant taxonomic and functional biomarkers. CONCLUSION: Our observations indicate towards the presence of multistable states within the oral microbiome in an intervention-free healthy cohort. For a conclusive and meaningful long-term reference, dental clinical research should account for multistability in the personalized therapy approach to improve the identification and classification of reliable markers.


Asunto(s)
Microbiota , Micrococcaceae , Humanos , ARN Ribosómico 16S/genética , Microbiota/genética , Estudios de Cohortes , Biomarcadores , Micrococcaceae/genética
13.
Microb Genom ; 8(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36165601

RESUMEN

Rothia species are understudied members of the phylum Actinobacteria and prevalent colonizers of the human and animal upper respiratory tract and oral cavity. The oral cavity, including the palatine tonsils, is colonized by a complex microbial community, which compete for resources, actively suppress competitors and influence host physiology. We analysed genomic data from 43 new porcine Rothia isolates, together with 112 publicly available draft genome sequences of Rothia isolates from humans, animals and the environment. In all Rothia genomes, we identified biosynthetic gene clusters predicted to produce antibiotic non-ribosomal peptides, iron scavenging siderophores and other secondary metabolites that modulate microbe-microbe and potentially microbe-host interactions. In vitro overlay inhibition assays corroborated the hypothesis that specific strains produce natural antibiotics. Rothia genomes encode a large number of carbohydrate-active enzymes (CAZy), with varying CAZy activities among the species found in different hosts, host niches and environments. These findings reveal competition mechanisms and metabolic specializations linked to ecological adaptation of Rothia species in different hosts.


Asunto(s)
Eucariontes , Micrococcaceae , Animales , Antibacterianos , Carbohidratos , Eucariontes/genética , Genómica , Humanos , Hierro , Micrococcaceae/genética , Familia de Multigenes , Péptidos/genética , Sideróforos/genética , Porcinos
14.
Dis Aquat Organ ; 149: 109-120, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678356

RESUMEN

Detections of Renibacterium salmoninarum in Colorado USA fish hatcheries have become more frequent in recent years, including one disease outbreak that originated with a wild broodstock. Our objectives were to document the prevalence and distribution of R. salmoninarum in Colorado's wild trout fisheries, investigate variables that influence that distribution, and evaluate the effectiveness of common testing methods on non-anadromous trout. We sampled wild trout across Colorado and tested kidney tissue with enzyme-linked immunosorbent assay (ELISA), quantitative polymerase chain reaction (qPCR), nested polymerase chain reaction (nPCR), and direct fluorescent antibody test (DFAT). Screening with ELISA showed high prevalence of R. salmoninarum among fish populations, but antigen levels were low. No clinical disease was observed in any of the fish sampled despite the antigen of R. salmoninarum being common. Antigen levels measured by ELISA increased in smaller streams with lower historic fish stocking rates. Brook trout Salvelinus fontinalis had the highest prevalence of the bacterium among fish species and highest ELISA antigen levels. The distribution of brook trout in the smallest streams may help explain the patterns of R. salmoninarum across the landscape. The most effective assays for screening wild trout were qPCR and ELISA; DFAT was inconsistent for bacterial levels encountered in wild trout and generally uninformative. Additionally, qPCR and ELISA can provide quantitative information about bacteria levels. The bacterium R. salmoninarum is ubiquitous in Colorado trout fisheries but is generally found at low levels. Active infections are rare and overt bacterial kidney disease appears more common in Colorado hatcheries than in wild fish.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Animales , Infecciones Bacterianas/veterinaria , Colorado/epidemiología , Enfermedades de los Peces/microbiología , Explotaciones Pesqueras , Riñón , Enfermedades Renales/epidemiología , Enfermedades Renales/veterinaria , Micrococcaceae/genética , Prevalencia , Renibacterium , Trucha
15.
J Fish Dis ; 45(8): 1173-1188, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35604683

RESUMEN

Renibacterium salmoninarum, a Gram-positive intracellular pathogen, is the causative agent of bacterial kidney disease (BKD), the impacts of which are high mortalities and economic losses for the salmon industry. This study provides novel analyses for the whole-genome sequences of 50 R. salmoninarum isolates and the reference strain ATCC 33209 using a pan-genomic approach to elucidate phylogenomic relationships and identify unique and shared genes associated with pathogenicity and infection mechanisms. Genome size varied from 3,061,638 to 3,155,332 bp; gene count from 3452 to 3580; and predicted coding sequences from 3402 to 3527. Comparative analyses revealed an open, but approaching closed, pan-genome. The pan-genome analysis recovered 4064 genes, with a core genome containing 3306 genes. Phylogenetic analysis of R. salmoninarum showed high genomic homogeneity, apart from one isolate obtained from Salmo trutta in Norway. All genomes presented the 57-kDa protein (p57). Strain ATCC 33209 and the Chilean isolates H-2 and DJ2R presented two copies of the msa gene, while the remaining isolates had one copy. The pan-genome analysis further identified differences in the number of copies and length of the signalling peptide for p57, the principal virulence factor reported for this bacterium. This heterogeneity could be associated with the secretion levels of p57, potentially influencing virulence. Additionally identified were numerous common genes related to iron uptake, the stress response and regulation, and cell signalling-all of which constitute the pathogenic repertoire of R. salmoninarum. This investigation provides information that is applicable in future studies for identifying therapeutic targets and/or for designing new strategies (e.g., vaccines) to prevent BKD infections in salmon farming.


Asunto(s)
Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Animales , Enfermedades de los Peces/microbiología , Genómica , Enfermedades Renales/microbiología , Micrococcaceae/genética , Filogenia , Renibacterium , Salmón , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Pest Manag Sci ; 78(9): 3920-3930, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35484875

RESUMEN

BACKGROUND: The potato tuber moth (PTM), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. α-solanine and α-chaconine are toxic steroidal glycoalkaloids (SGAs) in Solanaceae crops and are most abundant in potatoes (Solanum tuberosum L.), accounting for more than 95% of the total SGAs. PTM grows on potatoes with a higher concentration of SGAs. Gut bacteria play an important role in the physiology and behavior of insects. To understand the role of gut bacteria of PTM in host adaptability, we isolated and identified major SGA (α-chaconine and α-solanine)-degrading gut bacteria in the gut of PTM by a selective medium and analyzed their degradability and degradation mechanism. RESULTS: The gut Glutamicibacter halophytocola S2 of PTM with high degradation capacity to α-solanine and α-chaconine were detected by liquid chromatography mass spectrometry (LC-MS) and identified by morphological and 16S rRNA gene sequence analysis. A gene cluster involving α-rhamnosidases, ß-glucosidases, and ß-galactosidases was identified by whole-genome sequencing of G. halophytocola S2. These genes had higher expression on the α-solanine medium. PTM inoculated with the isolated G. halophytocola S2 obtained higher fitness than antibiotic-treated PTM. CONCLUSION: The G. halophytocola S2 in the gut of PTM could degrade the major toxic α-solanine and α-chaconine in potatoes. This enhances the fitness of PTM feeding on potatoes with high SGA contents. The results provide a theoretical foundation for the integrated pest management of PTM and provide an effective strain for the treatment of α-solanine and α-chaconine in potato food. © 2022 Society of Chemical Industry.


Asunto(s)
Micrococcaceae , Mariposas Nocturnas , Solanum tuberosum , Animales , Bacterias , Productos Agrícolas/genética , Micrococcaceae/genética , Mariposas Nocturnas/genética , ARN Ribosómico 16S , Solanum tuberosum/química , Verduras
17.
J Fish Dis ; 45(6): 883-894, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35363399

RESUMEN

Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum (Rs), can be transmitted both horizontally and vertically and there is no available cure or prophylaxis. The control of BKD requires continuous surveillance, which is challenging in aquaculture as well as in programs for conservation and restoration of salmonid fish strains. BKD is a notifiable disease in Sweden and is monitored through the mandatory health control program using a polyclonal ELISA for detection of the Rs p57 protein in kidney. Fish must be killed for sampling, an obvious disadvantage especially regarding valuable broodfish. The present study shows that gill-/cloacal swabs collected in vivo for real-time PCR (qPCRgc ), allow a sensitive and specific detection of Rs. The sensitivity of qPCRgc was estimated to 97.8% (credible interval (ci) 93.8%-100%) compared to 98.3% (ci 92.7%-100%) and 48.8% (ci 38.8%-58.8%) of kidney samples for qPCR (qPCRk ) and ELISA (ELISAk ) respectively, by use of the Bayesian Latent Class Analysis (BLCA). Since the goal of the program is eradication of BKD the most sensitive test is preferrable. Using qPCRgc instead of ELISAk will result in a lower false negative rate and can be useful for surveillance in aquaculture and in breeding programs with valuable fish. However, a higher false positive rate warrants confirmatory lethal testing before a previously Rs negative farm is subject to restrictions.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Animales , Teorema de Bayes , Femenino , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/microbiología , Riñón/microbiología , Enfermedades Renales/diagnóstico , Enfermedades Renales/microbiología , Enfermedades Renales/veterinaria , Masculino , Micrococcaceae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Renibacterium
18.
J Fish Dis ; 45(5): 613-621, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35092707

RESUMEN

Bacterial kidney disease (BKD) can be a devastating bacterial infection in salmonids, and it is present in aquaculture throughout the world. BKD is caused by the Gram-positive facultative intracellular bacterium Renibacterium salmoninarum (R. salmoninarum) that is spread both horizontally and vertically. Disease signs include external ulcerations and blisters and internal signs such as organ swelling, granulomas, petechiae and ascites. In Sweden, BKD accounts for a significant income loss in aquacultures due to expensive decontamination of the facility and increased disease susceptibility for the immunocompromised fish leading to higher mortality rates. In addition, uncontrolled spread in aquaculture may threaten the survival of wild fish populations. The aim of our study was to investigate the prevalence of R. salmoninarum in wild salmonids caught in Swedish waters where net pen farms with a recent history of BKD are present. Four rivers with at least one BKD-positive or recently BKD-positive farm were selected. In addition, we evaluated the use of environmental DNA (eDNA) for surveillance and monitoring of ongoing infections at these locations. In total, 1058 fish were sampled from four different river systems, and of them 52 (4.9%) were positive for R. salmoninarum by antigen ELISA. Surprisingly, these fish were not evenly distributed between the four river systems, but 50 were caught in the same river (Ljungan). This accounts for an alarmingly high rate of 17% R. salmoninarum-positive samples in wild salmonids in this area. This number is far above what was expected and clearly shows the risk with an open farming system as well as the importance of effective health monitoring programmes to avoid an uncontrolled spread of the disease. The use of eDNA for monitoring BKD is somewhat difficult to evaluate. Few of the water samples analysed were PCR positive for R. salmoninarum (2 of 38) and those were collected where no ELISA positive fish were identified. In addition to water, sediment samples were collected under a net pen farm that had recently slaughtered all fish due to ongoing R. salmoninarum infections. Sediment samples are more promising than water as 4 of 5 samples at one farming facility where positive for R. salmoninarum. Thus, sediment samples may be valuable for monitoring potential ongoing BKD in farms, without the need to sacrifice valuable fish.


Asunto(s)
Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Salmonidae , Animales , Enfermedades de los Peces/microbiología , Enfermedades Renales/veterinaria , Micrococcaceae/genética , Renibacterium , Suecia/epidemiología
20.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502555

RESUMEN

The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 µM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.


Asunto(s)
Proteínas Bacterianas/genética , Dioxigenasas/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Micrococcaceae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Biocatálisis , Dioxigenasas/química , Dioxigenasas/metabolismo , Ácido Gálico/química , Ácido Gálico/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética/métodos , Micrococcaceae/enzimología , Estructura Molecular , Fenantrenos/química , Fenantrenos/metabolismo , Filogenia , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...