Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 608(7924): 750-756, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948630

RESUMEN

Microglia are specialized macrophages in the brain parenchyma that exist in multiple transcriptional states and reside within a wide range of neuronal environments1-4. However, how and where these states are generated remains poorly understood. Here, using the mouse somatosensory cortex, we demonstrate that microglia density and molecular state acquisition are determined by the local composition of pyramidal neuron classes. Using single-cell and spatial transcriptomic profiling, we unveil the molecular signatures and spatial distributions of diverse microglia populations and show that certain states are enriched in specific cortical layers, whereas others are broadly distributed throughout the cortex. Notably, conversion of deep-layer pyramidal neurons to an alternate class identity reconfigures the distribution of local, layer-enriched homeostatic microglia to match the new neuronal niche. Leveraging the transcriptional diversity of pyramidal neurons in the neocortex, we construct a ligand-receptor atlas describing interactions between individual pyramidal neuron subtypes and microglia states, revealing rules of neuron-microglia communication. Our findings uncover a fundamental role for neuronal diversity in instructing the acquisition of microglia states as a potential mechanism for fine-tuning neuroimmune interactions within the cortical local circuitry.


Asunto(s)
Microglía , Neocórtex , Células Piramidales , Corteza Somatosensorial , Animales , Recuento de Células , Ratones , Microglía/clasificación , Microglía/fisiología , Neocórtex/citología , Neocórtex/fisiología , Células Piramidales/clasificación , Células Piramidales/fisiología , Análisis de la Célula Individual , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Transcriptoma
2.
Front Immunol ; 12: 748663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691061

RESUMEN

Ischemic stroke is one of the leading causes of morbidity and mortality globally. Hundreds of clinical trials have proven ineffective in bringing forth a definitive and effective treatment for ischemic stroke, except a myopic class of thrombolytic drugs. That, too, has little to do with treating long-term post-stroke disabilities. These studies proposed diverse options to treat stroke, ranging from neurotropic interpolation to venting antioxidant activity, from blocking specific receptors to obstructing functional capacity of ion channels, and more recently the utilization of neuroprotective substances. However, state of the art knowledge suggests that more pragmatic focus in finding effective therapeutic remedy for stroke might be targeting intricate intracellular signaling pathways of the 'neuroinflammatory triangle': ROS burst, inflammatory cytokines, and BBB disruption. Experimental evidence reviewed here supports the notion that allowing neuroprotective mechanisms to advance, while limiting neuroinflammatory cascades, will help confine post-stroke damage and disabilities.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Aldehídos/metabolismo , Barrera Hematoencefálica , Isquemia Encefálica/complicaciones , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Citocinas/fisiología , Descubrimiento de Drogas , Endotelina-1/metabolismo , Regulación de la Expresión Génica , Humanos , Malondialdehído/metabolismo , Microglía/clasificación , Microglía/inmunología , Terapia Molecular Dirigida , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/fisiopatología , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Receptores de Citocinas/fisiología
3.
Biochem Biophys Res Commun ; 577: 71-79, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34507068

RESUMEN

Ischemic stroke is the leading cause of death and disability. Microglia are polarized toward the proinflammatory M1 phenotype and neuroprotective M2 phenotype after stroke and play an important role in the pathological process of ischemic stroke. Emerging research suggests that vagus nerve stimulation (VNS) can mediate microglia polarization after ischemic stroke and may serve as a potential treatment for ischemic stroke. However, the mechanism by which VNS mediates microglia polarization remains unclear. In this study, we aimed to investigate the underlying mechanism. Sprague-Dawley rats were randomly divided into the sham, ischemic stroke, ischemic stroke + VNS, ischemic stroke + VNS + lentivirus (LV)-TLR4 and ischemic stroke + VNS + LV-CON groups. LV was injected into the lateral ventricles of the rats 14 days before ischemic stroke surgery, and VNS was administered after 30 min of occlusion. We assessed the infarct volume, neurological scores, the TLR4/MyD88/NF-κB protein level and microglia polarization after 3 days of reperfusion. Our results revealed that VNS can promote M2 microglia polarization and inhibit M1 microglia polarization to alleviate brain injury via inhibition of the TLR4/MyD88/NF-κB pathway in microglia in the acute stage of stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico/fisiopatología , Microglía/fisiología , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Estimulación del Nervio Vago/métodos , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/clasificación , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley
4.
Clin Immunol ; 230: 108815, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339843

RESUMEN

Traumatic Brain Injury (TBI) is the most prevalent of all head injuries. Microglia play an essential role in homeostasis and diseases of the central nervous system. We hypothesize that microglia may play a beneficial or detrimental role in TBI depending on their state of activation and duration. In this study, we evaluated whether TBI results in a spatiotemporal change in microglia phenotype and whether it affects sensory-motor or learning and memory functions in male C57BL/6 mice. We used a panel of neurological and behavioral tests and a multi-color flow cytometry-based data analysis followed by unsupervised clustering to evaluate isolated microglia from injured brain tissue. We characterized several microglial phenotypes and their association with cognitive deficits. TBI results in a spatiotemporal increase in activated microglia that correlated negatively with spatial learning and memory at 35 days post-injury. These observations could define therapeutic windows and accelerate translational research to improve patient outcomes.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Disfunción Cognitiva/etiología , Microglía/fisiología , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/psicología , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Modelos Animales de Enfermedad , Citometría de Flujo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/clasificación , Microglía/patología , Modelos Neurológicos , Modelos Psicológicos , Dinámicas no Lineales , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Análisis Espacio-Temporal , Investigación Biomédica Traslacional
5.
J Neuroinflammation ; 18(1): 166, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34311763

RESUMEN

BACKGROUND: Differentiating infiltrating myeloid cells from resident microglia in neuroinflammatory disease is challenging, because bone marrow-derived inflammatory monocytes infiltrating the inflamed brain adopt a 'microglia-like' phenotype. This precludes the accurate identification of either cell type without genetic manipulation, which is important to understand their temporal contribution to disease and inform effective intervention in its pathogenesis. During West Nile virus (WNV) encephalitis, widespread neuronal infection drives substantial CNS infiltration of inflammatory monocytes, causing severe immunopathology and/or death, but the role of microglia in this remains unclear. METHODS: Using high-parameter cytometry and dimensionality-reduction, we devised a simple, novel gating strategy to identify microglia and infiltrating myeloid cells during WNV-infection. Validating our strategy, we (1) blocked the entry of infiltrating myeloid populations from peripheral blood using monoclonal blocking antibodies, (2) adoptively transferred BM-derived monocytes and tracked their phenotypic changes after infiltration and (3) labelled peripheral leukocytes that infiltrate into the brain with an intravenous dye. We demonstrated that myeloid immigrants populated only the identified macrophage gates, while PLX5622 depletion reduced all 4 subsets defined by the microglial gates. RESULTS: Using this gating approach, we identified four consistent microglia subsets in the homeostatic and WNV-infected brain. These were P2RY12hi CD86-, P2RY12hi CD86+ and P2RY12lo CD86- P2RY12lo CD86+. During infection, 2 further populations were identified as 'inflammatory' and 'microglia-like' macrophages, recruited from the bone marrow. Detailed kinetic analysis showed significant increases in the proportions of both P2RY12lo microglia subsets in all anatomical areas, largely at the expense of the P2RY12hi CD86- subset, with the latter undergoing compensatory proliferation, suggesting replenishment of, and differentiation from this subset in response to infection. Microglia altered their morphology early in infection, with all cells adopting temporal and regional disease-specific phenotypes. Late in disease, microglia produced IL-12, downregulated CX3CR1, F4/80 and TMEM119 and underwent apoptosis. Infiltrating macrophages expressed both TMEM119 and P2RY12 de novo, with the microglia-like subset notably exhibiting the highest proportional myeloid population death. CONCLUSIONS: Our approach enables detailed kinetic analysis of resident vs infiltrating myeloid cells in a wide range of neuroinflammatory models without non-physiological manipulation. This will more clearly inform potential therapeutic approaches that specifically modulate these cells.


Asunto(s)
Encéfalo/patología , Citometría de Flujo/métodos , Microglía , Enfermedades Neuroinflamatorias/patología , Análisis Espacio-Temporal , Traslado Adoptivo/métodos , Animales , Anticuerpos Monoclonales/administración & dosificación , Barrera Hematoencefálica , Encéfalo/inmunología , Encéfalo/virología , Femenino , Inmunofenotipificación , Interleucina-12/inmunología , Interleucina-12/metabolismo , Cinética , Ratones , Ratones Endogámicos C57BL , Microglía/clasificación , Microglía/inmunología , Microglía/fisiología , Microglía/virología , Células Mieloides/clasificación , Células Mieloides/inmunología , Células Mieloides/fisiología , Células Mieloides/virología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/virología , Compuestos Orgánicos , Coloración y Etiquetado , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología
6.
Acta Neuropathol ; 141(6): 881-899, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33779783

RESUMEN

Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.


Asunto(s)
Corteza Cerebral/patología , Meninges/patología , Microglía/patología , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/patología , Neuronas/patología , Adulto , Anciano , Animales , Muerte Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Meninges/inmunología , Microglía/clasificación , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/inmunología , Fenotipo , Ratas
7.
Nat Rev Neurol ; 17(4): 243-259, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692572

RESUMEN

Microglia are the resident innate immune cells of the immune-privileged CNS and, as such, represent the first line of defence against tissue injury and infection. Given their location, microglia are undoubtedly the first immune cells to encounter a developing primary brain tumour. Our knowledge of these cells is therefore important to consider in the context of such neoplasms. As the heterogeneous nature of the most aggressive primary brain tumours is thought to underlie their poor prognosis, this Review places a special emphasis on the heterogeneity of the tumour-associated microglia and macrophage populations present in primary brain tumours. Where available, specific information on microglial heterogeneity in various types and subtypes of brain tumour is included. Emerging evidence that highlights the importance of considering the heterogeneity of both the tumour and of microglial populations in providing improved treatment outcomes for patients is also discussed.


Asunto(s)
Neoplasias Encefálicas , Microglía , Animales , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Humanos , Microglía/clasificación , Microglía/inmunología , Microglía/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33446504

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) sustains microglia response to brain injury stimuli including apoptotic cells, myelin damage, and amyloid ß (Aß). Alzheimer's disease (AD) risk is associated with the TREM2R47H variant, which impairs ligand binding and consequently microglia responses to Aß pathology. Here, we show that TREM2 engagement by the mAb hT2AB as surrogate ligand activates microglia in 5XFAD transgenic mice that accumulate Aß and express either the common TREM2 variant (TREM2CV) or TREM2R47H scRNA-seq of microglia from TREM2CV-5XFAD mice treated once with control hIgG1 exposed four distinct trajectories of microglia activation leading to disease-associated (DAM), interferon-responsive (IFN-R), cycling (Cyc-M), and MHC-II expressing (MHC-II) microglia types. All of these were underrepresented in TREM2R47H-5XFAD mice, suggesting that TREM2 ligand engagement is required for microglia activation trajectories. Moreover, Cyc-M and IFN-R microglia were more abundant in female than male TREM2CV-5XFAD mice, likely due to greater Aß load in female 5XFAD mice. A single systemic injection of hT2AB replenished Cyc-M, IFN-R, and MHC-II pools in TREM2R47H-5XFAD mice. In TREM2CV-5XFAD mice, however, hT2AB brought the representation of male Cyc-M and IFN-R microglia closer to that of females, in which these trajectories had already reached maximum capacity. Moreover, hT2AB induced shifts in gene expression patterns in all microglial pools without affecting representation. Repeated treatment with a murinized hT2AB version over 10 d increased chemokines brain content in TREM2R47H-5XFAD mice, consistent with microglia expansion. Thus, the impact of hT2AB on microglia is shaped by the extent of TREM2 endogenous ligand engagement and basal microglia activation.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Proliferación Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Cinética , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Microglía/clasificación , Microglía/efectos de los fármacos , Microglía/patología , Mutación , Unión Proteica , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Factores Sexuales
9.
J Neuroimmunol ; 341: 577185, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32045774

RESUMEN

Alzheimer's disease (AD) is the most common dementia type affecting nearly 44 million people worldwide. Recent findings point to microglia as a significant contributor to neural development, neuroinflammation, and degeneration. Dysregulated immunoactivity in AD has been broadly studied, and current research on animal models enabled us to identify a new cluster of microglia (disease-associated microglia) alongside previously detected glial populations (e.g., plaque-associated microglia, dark microglia, Human Alzheimer's microglia) associated with neuroinflammation and with macrophagic activity. These distinct populations of glia show a spatial distribution within plaques with unique imaging features and distinct gene expression profile. Novel genetic approaches using single-nuclei RNA sequencing (sn-RNA seq) allowed researchers to identify gene expression profiles from fixed human samples. Recent studies, exposing transcriptomic clusters of disease-related cells and analyzing sequenced RNA from sorted myeloid cells, seem to confirm the hypothesis of the central role of glia in the pathogenesis of Alzheimer's disease. These discoveries may shed light on the effects of microglial activation and differences in gene expression profiles, furthering research towards the development of a cell-specific therapy. In this review, we examine recent studies that guide us towards recognizing the role of diverse populations of glial cells and their possible heterogeneous functional states in the pathogenesis of AD in humans.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Microglía/inmunología , Degeneración Nerviosa/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Proteínas del Ojo/fisiología , Perfilación de la Expresión Génica , Humanos , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Ratones , Microglía/clasificación , Microglía/metabolismo , Microglía/patología , Degeneración Nerviosa/patología , Factores de Crecimiento Nervioso/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Placa Amiloide/inmunología , Placa Amiloide/patología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Receptores Inmunológicos/fisiología , Serpinas/fisiología , Transcriptoma
10.
Biochem Biophys Res Commun ; 523(2): 361-367, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31866008

RESUMEN

Traumatic brain injury (TBI) represents a major cause of death and disability worldwide. Exacerbated neuroinflammation following TBI causes secondary injury. Podoplanin (PDPN) is a small transmembrane mucin-like glycoprotein that promotes the inflammatory response in different tissues and cells. However, the contribution of PDPN to neuroinflammation and microglial activation is unknown. Here, we found that PDPN was correlated with microglial activation after TBI in mice. Meanwhile, PDPN expression could be induced by trauma-related stimuli, such as lipopolysaccharide (LPS), ATP, H2O2 and hemoglobin (Hb), in primary microglia. Furthermore, with Hb treatment in vitro, knockdown of PDPN could decrease the proportion of M1-like microglia and increase the proportion of M2-like microglia via reduced secretion of IL-1ß and TNF-α and increased secretion of IL-10 and TGF-ß compared to the control microglia. Immunofluorescence also showed that CD86-positive microglia were decreased and CD206-positive microglia were elevated in the PDPN-KD group. Additionally, PDPN knockdown impaired microglial mobility and phagocytosis and decreased the expression of matrix metalloproteinases (mainly MMP2 and MMP9). In summary, PDPN plays an important role in microglia-mediated inflammation and may serve as a potential target for TBI treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Glicoproteínas de Membrana/fisiología , Animales , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemoglobinas/administración & dosificación , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos ICR , Microglía/clasificación , Microglía/patología , Microglía/fisiología , Fagocitosis , Fenotipo
11.
Adv Exp Med Biol ; 1185: 181-186, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884609

RESUMEN

As the resident macrophages of central nervous system, microglia reside in the plexiform and nerve fiber layers of the retina. In degenerative diseases, monocyte-derived macrophages can be recruited to the retina, and histopathology shows abnormal accumulation of macrophages subretinally. However, due to lack of known markers, recruited cells and resident microglia are phenotypically indistinguishable, leaving a major knowledge gap about their potentially independent roles. Here, we used single cell RNA-seq and analyzed over 10,000 immune cells of mouse retinas from normal control and light damage-induced retinal degeneration. We observed ten major macrophage clusters. Moreover, combining trajectory analysis and in situ validation allowed us to pinpoint that subretinal phagocytes are microglia-derived and express high levels of Gal3, Cd68, and Lpl but not P2ry12. Hence, we have identified novel subretinal macrophage markers indicative of their origin and phenotype, which may be useful in other degeneration models and human specimens.


Asunto(s)
Microglía/clasificación , Degeneración Retiniana/patología , Animales , Modelos Animales de Enfermedad , Humanos , Macrófagos/clasificación , Macrófagos/citología , Ratones , Microglía/citología , RNA-Seq , Retina/citología
12.
Curr Pharm Des ; 25(21): 2375-2393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31584369

RESUMEN

BACKGROUND: Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS: Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS: Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION: Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.


Asunto(s)
Encéfalo/citología , Microglía/citología , Encéfalo/patología , Epigénesis Genética , Humanos , Microglía/clasificación , Neuroprotección , Fenotipo , Preparaciones de Plantas/uso terapéutico , Tomografía de Emisión de Positrones
13.
EMBO J ; 38(17): e101997, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31373067

RESUMEN

Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.


Asunto(s)
Microglía/clasificación , Animales , Plasticidad de la Célula , Humanos , Microglía/inmunología , Fenotipo
14.
Neurochem Int ; 129: 104485, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31195027

RESUMEN

The glioblastoma (GBM) immune microenvironment is highly heterogeneous, and microglia may represent 30-70% of the entire tumor. However, the role of microglia and other specific immune populations is poorly characterized. Activation of mTOR signaling occurs in numerous human cancers and has roles in microglia-glioma cell interactions. We now show in human tumor specimens (42 patients), that 39% of tumor-associated microglial (TAM) cells express mTOR phosphorylated at Ser-2448; and similar mTOR activation is observed using a human microglia-glioma interaction paradigm. In addition, we confirm previous studies that microglia express urea and ARG1 (taken as M2 marker) in the presence of glioma cells, and this phenotype is down-regulated in the presence of a mTOR inhibitor. These results suggest that mTOR suppression in GBM patients might induce a reduction of the M2 phenotype expression in up to 40% of all TAMs. Since the M2 profile of microglial activation is believed to be associated with tumor progression, reductions in that phenotype may represent an additional anti-tumor mechanism of action of mTOR inhibitors, along with direct anti-proliferative activities.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Anciano , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular , Línea Celular Tumoral , Dinoprostona/biosíntesis , Dinoprostona/genética , Femenino , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Interleucinas/biosíntesis , Interleucinas/genética , Masculino , Microglía/clasificación , Persona de Mediana Edad , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfoproteínas/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Microambiente Tumoral/inmunología , Urea/metabolismo
15.
Nat Neurosci ; 22(7): 1046-1052, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182869

RESUMEN

Failed regeneration of CNS myelin contributes to clinical decline in neuroinflammatory and neurodegenerative diseases, for which there is an unmet therapeutic need. Here we reveal that efficient remyelination requires death of proinflammatory microglia followed by repopulation to a pro-regenerative state. We propose that impaired microglia death and/or repopulation may underpin dysregulated microglia activation in neurological diseases, and we reveal therapeutic targets to promote white matter regeneration.


Asunto(s)
Enfermedades Desmielinizantes/fisiopatología , Microglía/fisiología , Regeneración Nerviosa/fisiología , Animales , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Enfermedades Desmielinizantes/inducido químicamente , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/clasificación , Esclerosis Múltiple/patología , Necrosis , Nestina/análisis , Fagocitosis , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Sustancia Blanca/fisiología
17.
Glia ; 67(8): 1496-1509, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30983036

RESUMEN

The phenotypic changes of microglia in brain diseases are particularly diverse and their role in disease progression, beneficial, or detrimental, is still elusive. High-throughput molecular approaches such as single-cell RNA-sequencing can now resolve the high heterogeneity in microglia population for a specific physiological condition, however, the relation between the different microglial signatures and their surrounding brain microenvironment is barely understood. Thus, better tools to characterize the phenotypic variations of microglia in situ are needed, particularly for human brain postmortem samples analysis. To address this challenge, we developed MIC-MAC, a Microglia and Immune Cells Morphologies Analyser and Classifier pipeline that semiautomatically segments, extracts, and classifies all microglia and immune cells labeled in large three-dimensional (3D) confocal image stacks of mouse and human brain samples. Our imaging-based approach enables automatic 3D-morphology characterization and classification of thousands of individual microglia in situ and revealed species- and disease-specific morphological phenotypes in mouse aging, human Alzheimer's disease, and dementia with Lewy Bodie's samples. MIC-MAC is a precision diagnostic tool that allows a rapid, unbiased, and large-scale analysis of microglia morphological states in mouse models and patient brain samples.


Asunto(s)
Encéfalo/citología , Imagenología Tridimensional , Microglía/citología , Microscopía Confocal , Reconocimiento de Normas Patrones Automatizadas/métodos , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Análisis por Conglomerados , Femenino , Humanos , Imagenología Tridimensional/métodos , Enfermedad por Cuerpos de Lewy/patología , Aprendizaje Automático , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/clasificación , Microglía/patología , Microscopía Confocal/métodos
18.
J Neuroinflammation ; 16(1): 79, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971251

RESUMEN

BACKGROUND: Microglia play crucial roles in the maintenance of brain homeostasis. Activated microglia show a biphasic influence, promoting beneficial repair and causing harmful damage via M2 and M1 microglia, respectively. It is well-known that microglia are initially activated to the M2 state and subsequently switch to the M1 state, called M2-to-M1 class switching in acute ischemic models. However, the activation process of microglia in chronic and sporadic hypertension remains poorly understood. We aimed to clarify the process using a chronic hypertension model, the deoxycorticosterone acetate (DOCA)-salt-treated Wistar rats. METHODS: After unilateral nephrectomy, the rats were randomly divided into DOCA-salt, placebo, and control groups. DOCA-salt rats received a weekly subcutaneous injection of DOCA (40 mg/kg) and were continuously provided with 1% NaCl in drinking water. Placebo rats received a weekly subcutaneous injection of vehicle and were provided with tap water. Control rats received no administration of DOCA or NaCl. To investigate the temporal expression profiles of M1- and M2-specific markers for microglia, the animals were subjected to the immunohistochemical and biochemical studies after 2, 3, or 4 weeks DOCA-salt treatment. RESULTS: Hypertension occurred after 2 weeks of DOCA and salt administration, when round-shaped microglia with slightly shortened processes were observed juxtaposed to the vessels, although the histopathological findings were normal. After 3 weeks of DOCA and salt administration, M1-state perivascular and parenchyma microglia significantly increased, when local histopathological findings began to be observed but cerebrovascular destruction did not occur. On the other hand, M2-state microglia were never observed around the vessels at this period. Interestingly, prior to M1 activation, about 55% of perivascular microglia transiently expressed Ki-67, one of the cell proliferation markers. CONCLUSIONS: We concluded that the resting perivascular microglia directly switched to the pro-inflammatory M1 state via a transient proliferative state in DOCA-salt rats. Our results suggest that the activation machinery of microglia in chronic hypertension differs from acute ischemic models. Proliferative microglia are possible initial key players in the development of hypertension-induced cerebral vessel damage. Fine-tuning of microglia proliferation and activation could constitute an innovative therapeutic strategy to prevent its development.


Asunto(s)
Encéfalo/patología , Proliferación Celular/fisiología , Hipertensión/complicaciones , Hipertensión/patología , Microglía/clasificación , Microglía/patología , Animales , Antígenos CD/metabolismo , Presión Sanguínea/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Carboximetilcelulosa de Sodio/farmacología , Proliferación Celular/efectos de los fármacos , Acetato de Desoxicorticosterona/toxicidad , Modelos Animales de Enfermedad , Lateralidad Funcional , Hipertensión/diagnóstico por imagen , Hipertensión/etiología , Antígeno Ki-67/metabolismo , Imagen por Resonancia Magnética , Masculino , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Mineralocorticoides/toxicidad , Nefrectomía/efectos adversos , Ratas , Ratas Wistar , Cloruro de Sodio/toxicidad , Factores de Tiempo
19.
Nature ; 566(7744): 388-392, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760929

RESUMEN

Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system1-4. These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.


Asunto(s)
Microglía/clasificación , Microglía/citología , Análisis de la Célula Individual , Análisis Espacio-Temporal , Animales , Encéfalo/citología , Encéfalo/patología , Estudios de Casos y Controles , Separación Celular , Enfermedades Desmielinizantes/patología , Femenino , Humanos , Cinética , Masculino , Ratones , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/patología
20.
FASEB J ; 32(1): 512-528, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28935818

RESUMEN

Neuronal inflammation is the characteristic pathologic change of acute neurologic impairment and chronic traumatic encephalopathy after traumatic brain injury (TBI). Inhibiting the excessive inflammatory response is essential for improving the neurologic outcome. To clarify the regulatory mechanism of microglial exosomes on neuronal inflammation in TBI, we focused on studying the impact of microglial exosomal miRNAs on injured neurons in this research. We used a repetitive (r)TBI mouse model and harvested the injured brain extracts from the acute to the chronic phase of TBI to treat cultured BV2 microglia in vitro The microglial exosomes were collected for miRNA microarray analysis, which showed that the expression level of miR-124-3p increased most apparently in the miRNAs. We found that miR-124-3p promoted the anti-inflamed M2 polarization in microglia, and microglial exosomal miR-124-3p inhibited neuronal inflammation in scratch-injured neurons. Further, the mammalian target of rapamycin (mTOR) signaling was implicated as being involved in the regulation of miR-124-3p by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Using the mTOR activator MHY1485 we confirmed that the inhibitory effect of exosomal miR-124-3p on neuronal inflammation was exerted by suppressing the activity of mTOR signaling. PDE4B was predicted to be the target gene of miR-124-3p by pathway analysis. We proved that it was directly targeted by miR-124-3p with a luciferase reporter assay. Using a PDE4B overexpressed lentivirus transfection system, we suggested that miR-124-3p suppressed the activity of mTOR signaling mainly through inhibiting the expression of PDE4B. In addition, exosomal miR-124-3p promoted neurite outgrowth after scratch injury, characterized by an increase on the number of neurite branches and total neurite length, and a decreased expression on RhoA and neurodegenerative proteins [Aß-peptide and p-Tau]. It also improved the neurologic outcome and inhibited neuroinflammation in mice with rTBI. Taken together, increased miR-124-3p in microglial exosomes after TBI can inhibit neuronal inflammation and contribute to neurite outgrowth via their transfer into neurons. miR-124-3p exerted these effects by targeting PDE4B, thus inhibiting the activity of mTOR signaling. Therefore, miR-124-3p could be a promising therapeutic target for interventions of neuronal inflammation after TBI. miRNAs manipulated microglial exosomes may provide a novel therapy for TBI and other neurologic diseases.-Huang, S., Ge, X., Yu, J., Han, Z., Yin, Z., Li, Y., Chen, F., Wang, H., Zhang, J., Lei, P. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Exosomas/genética , Exosomas/metabolismo , Redes Reguladoras de Genes , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/clasificación , Microglía/patología , Proyección Neuronal/genética , Proyección Neuronal/fisiología , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...