Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298583

RESUMEN

Cleft palate is one of the most common birth defects. Previous studies revealed that multiple factors, including impaired intracellular or intercellular signals, and incoordination of oral organs led to cleft palate, but were little concerned about the contribution of the extracellular matrix (ECM) during palatogenesis. Proteoglycans (PGs) are one of the important macromolecules in the ECM. They exert biological functions through one or more glycosaminoglycan (GAG) chains attached to core proteins. The family with sequence similarity 20 member b (Fam20b) are newly identified kinase-phosphorylating xylose residues that promote the correct assembly of the tetrasaccharide linkage region by creating a premise for GAG chain elongation. In this study, we explored the function of GAG chains in palate development through Wnt1-Cre; Fam20bf/f mice, which exhibited complete cleft palate, malformed tongue, and micrognathia. In contrast, Osr2-Cre; Fam20bf/f mice, in which Fam20b was deleted only in palatal mesenchyme, showed no abnormality, suggesting that failed palatal elevation in Wnt1-Cre; Fam20bf/f mice was secondary to micrognathia. In addition, the reduced GAG chains promoted the apoptosis of palatal cells, primarily resulting in reduced cell density and decreased palatal volume. The suppressed BMP signaling and reduced mineralization indicated an impaired osteogenesis of palatine, which could be rescued partially by constitutively active Bmpr1a. Together, our study highlighted the key role of GAG chains in palate morphogenesis.


Asunto(s)
Fisura del Paladar , Micrognatismo , Animales , Ratones , Catálisis , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosaminoglicanos/metabolismo , Mesodermo/metabolismo , Micrognatismo/metabolismo , Cresta Neural/metabolismo , Hueso Paladar/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo
2.
Dis Model Mech ; 15(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35818799

RESUMEN

Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. Although pharmacological intervention with the U.S. Food and Drug Administration (FDA)-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target SPRY2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in molecular, cellular and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.


Asunto(s)
Ciliopatías , Micrognatismo , Cilios/metabolismo , Ciliopatías/tratamiento farmacológico , Ciliopatías/genética , Ciliopatías/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Micrognatismo/metabolismo , Micrognatismo/patología , Fenotipo , Proteínas/metabolismo
3.
Differentiation ; 125: 27-34, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35429807

RESUMEN

The mandible is an important part of the craniofacial skeleton. Mandibular development is complex and involves multiple signaling pathways. These signaling pathways participate in a complex regulatory mechanism to regulate mandibular growth. The function of hedgehog signaling has previously been shown to be crucial for mandibular arch development. We treated pregnant ICR mice with the hedgehog pathway inhibitor vismodegib by oral gavage to establish a micrognathia model, which was mandible development defective. Compared to control, this model exhibited reduced mesenchymal cell proliferation and increased apoptosis. The development of the Meckel's cartilage and the condensations of mesenchymal cells were delayed by approximately one day in treated embryos. These results reveal that Smoothened may have shaped the mandible during mandibular growth by ensuring cell survival, proliferation, and development of Merkel's cartilage.


Asunto(s)
Micrognatismo , Anilidas , Animales , Desarrollo Embrionario/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mandíbula , Ratones , Ratones Endogámicos ICR , Micrognatismo/metabolismo , Piridinas , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34011608

RESUMEN

Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.


Asunto(s)
Corteza Cerebral/metabolismo , Cromatina/química , Cuerpo Calloso/metabolismo , Proteínas de Unión al ADN/genética , Mutación con Pérdida de Función , Tálamo/metabolismo , Factores de Transcripción/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Animales , Corteza Cerebral/patología , Cromatina/metabolismo , Conectoma , Cuerpo Calloso/patología , Proteínas de Unión al ADN/deficiencia , Cara/anomalías , Cara/patología , Eliminación de Gen , Regulación de la Expresión Génica , Sustancia Gris/metabolismo , Sustancia Gris/patología , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/metabolismo , Deformidades Congénitas de la Mano/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Ratones , Ratones Transgénicos , Micrognatismo/genética , Micrognatismo/metabolismo , Micrognatismo/patología , Cuello/anomalías , Cuello/patología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuronas/metabolismo , Neuronas/patología , Tálamo/patología , Factores de Transcripción/deficiencia , Vibrisas/metabolismo , Vibrisas/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
5.
Nat Commun ; 12(1): 833, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547280

RESUMEN

The structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.


Asunto(s)
Discapacidades del Desarrollo/genética , Regulación del Desarrollo de la Expresión Génica , Microcefalia/genética , Micrognatismo/genética , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Adolescente , Secuencia de Aminoácidos , Animales , Niño , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Embrión no Mamífero , Femenino , Humanos , Lisina/análogos & derivados , Lisina/genética , Lisina/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patología , Micrognatismo/metabolismo , Micrognatismo/patología , Factores de Iniciación de Péptidos/deficiencia , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espermidina/farmacología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
6.
Hum Mol Genet ; 28(15): 2589-2599, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31035284

RESUMEN

The SOXC transcription factors Sox4, Sox11 and Sox12, are critical neurodevelopmental regulators that are thought to function in a highly redundant fashion. Surprisingly, heterozygous missense mutations or deletions of SOX11 were recently detected in patients with Coffin-Siris syndrome-like syndrome (CSSLS), a neurodevelopmental disorder associated with intellectual disability, demonstrating that in humans SOX11 haploinsufficiency cannot be compensated and raising the question of the function of SOX11 in human neurodevelopment. Here, we describe the generation of SOX11+/- heterozygous human embryonic stem cell (hESC) lines by CRISPR/Cas9 genome engineering. SOX11 haploinsufficiency impaired the generation of neurons and resulted in a proliferation/differentiation imbalance of neural precursor cells and enhanced neuronal cell death. Using the SOX11+/- hESC model we provide for the first time experimental evidence that SOX11 haploinsufficiency is sufficient to impair key processes of human neurodevelopment, giving a first insight into the pathophysiology of CSSLS and SOX11 function in human neurodevelopment.


Asunto(s)
Línea Celular , Dosificación de Gen , Células Madre Embrionarias Humanas/fisiología , Modelos Biológicos , Trastornos del Neurodesarrollo/metabolismo , Factores de Transcripción SOXC/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Sistemas CRISPR-Cas , Diferenciación Celular , Proliferación Celular , Cara/anomalías , Edición Génica , Regulación de la Expresión Génica , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/metabolismo , Haploinsuficiencia , Células Madre Embrionarias Humanas/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Micrognatismo/genética , Micrognatismo/metabolismo , Cuello/anomalías , Células-Madre Neurales , Trastornos del Neurodesarrollo/genética
7.
Sci Adv ; 4(11): eaau0731, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30417093

RESUMEN

Cerebral cavernous malformation (CCM) is a common cerebrovascular disease that can occur sporadically or be inherited. They are major causes of stroke, cerebral hemorrhage, and neurological deficits in the younger population. Loss-of-function mutations in three genes, CCM1, CCM2, and CCM3, have been identified as the cause of human CCMs. Currently, no drug is available to treat CCM disease. Hyperactive mitogen-activated protein kinase kinase Kinase 3 (MEKK3) kinase signaling as a consequence of loss of CCM genes is an underlying cause of CCM lesion development. Using a U.S. Food and Drug Administration-approved kinase inhibitor library combined with virtual modeling and biochemical and cellular assays, we have identified a clinically approved small compound, ponatinib, that is capable of inhibiting MEKK3 activity and normalizing expression of downstream kruppel-like factor (KLF) target genes. Treatment with this compound in neonatal mouse models of CCM can prevent the formation of new CCM lesions and reduce the growth of already formed lesions. At the ultracellular level, ponatinib can normalize the flattening and disorganization of the endothelium caused by CCM deficiency. Collectively, our study demonstrates ponatinib as a novel compound that may prevent CCM initiation and progression in mouse models through inhibition of MEKK3-KLF signaling.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Discapacidad Intelectual/tratamiento farmacológico , Proteína KRIT1/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , MAP Quinasa Quinasa Quinasa 3/metabolismo , Proteínas de Microfilamentos/fisiología , Micrognatismo/tratamiento farmacológico , Piridazinas/farmacología , Costillas/anomalías , Animales , Células Cultivadas , Progresión de la Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Factores de Transcripción de Tipo Kruppel/genética , MAP Quinasa Quinasa Quinasa 3/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Micrognatismo/metabolismo , Micrognatismo/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Costillas/metabolismo , Costillas/patología , Transducción de Señal , Pez Cebra
8.
Mol Biol Cell ; 29(25): 2989-3002, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281379

RESUMEN

The earliest step in DNA replication is origin licensing, which is the DNA loading of minichromosome maintenance (MCM) helicase complexes. The Cdc10-dependent transcript 1 (Cdt1) protein is essential for MCM loading during the G1 phase of the cell cycle, but the mechanism of Cdt1 function is still incompletely understood. We examined a collection of rare Cdt1 variants that cause a form of primordial dwarfism (the Meier-Gorlin syndrome) plus one hypomorphic Drosophila allele to shed light on Cdt1 function. Three hypomorphic variants load MCM less efficiently than wild-type (WT) Cdt1, and their lower activity correlates with impaired MCM binding. A structural homology model of the human Cdt1-MCM complex positions the altered Cdt1 residues at two distinct interfaces rather than the previously described single MCM interaction domain. Surprisingly, one dwarfism allele (Cdt1-A66T) is more active than WT Cdt1. This hypermorphic variant binds both cyclin A and SCFSkp2 poorly relative to WT Cdt1. Detailed quantitative live-cell imaging analysis demonstrated no change in the stability of this variant, however. Instead, we propose that cyclin A/CDK inhibits the Cdt1 licensing function independent of the creation of the SCFSkp2 phosphodegron. Together, these findings identify key Cdt1 interactions required for both efficient origin licensing and tight Cdt1 regulation to ensure normal cell proliferation and genome stability.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclina A/metabolismo , Replicación del ADN/fisiología , Genoma Humano , Proteínas de Mantenimiento de Minicromosoma/fisiología , Alelos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Línea Celular , Microtia Congénita/genética , Microtia Congénita/metabolismo , Variación Genética , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Células HEK293 , Humanos , Micrognatismo/genética , Micrognatismo/metabolismo , Mutación Missense , Rótula/anomalías , Rótula/metabolismo , Unión Proteica , Fase S , Proteínas Quinasas Asociadas a Fase-S/metabolismo
9.
Eur J Oral Sci ; 126(5): 433-436, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30105814

RESUMEN

The glycosaminoglycan (GAG) chains attached to the core proteins of proteoglycans exert multiple roles, such as enriching signal molecules and regulating the binding of ligands to the corresponding receptors. A newly identified kinase - family with sequence similarity 20 member B (FAM20B) - is essential for the formation of GAG chains. The FAM20B protein phosphorylates the initial xylose on the side chain of a serine residue in the protein. Although the GAG chains of proteoglycans are believed to be indispensable during craniofacial development, there are few reports on their exact functions in craniofacial organogenesis. In this study, by mating Wnt1-cre mice with Fam20b-floxed mice (Fam20bflox/flox), we created Wnt1-Cre;Fam20bflox/flox mice in which Fam20b is ablated in the neural crest-derived mesenchyme. The Wnt1-Cre;Fam20bflox/flox mice died immediately after birth because of complete cleft palates. In addition to cleft palate, Wnt1-Cre;Fam20bflox/flox mice also manifested tongue elevation, micrognathia, microcephaly, suture widening, and reduced mineralization in the calvaria, facial bones, and temporomandibular joint. These findings indicate that the proteoglycans formed through the catalysis of FAM20B are essential for the morphogenesis and mineralization of the craniofacial complex.


Asunto(s)
Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/metabolismo , Morfogénesis/fisiología , Cresta Neural/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteoglicanos/metabolismo , Animales , Biomineralización , Calcificación Fisiológica/fisiología , Fisura del Paladar , Anomalías Craneofaciales/patología , Huesos Faciales , Glicosaminoglicanos/metabolismo , Integrasas , Mesodermo/fisiología , Ratones , Microcefalia/metabolismo , Micrognatismo/metabolismo , Fosforilación , Cráneo/metabolismo , Articulación Temporomandibular , Xilosa/metabolismo
10.
J Pathol ; 243(1): 9-15, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28608987

RESUMEN

SMARCA4 chromatin remodelling factor is mutated in 11% of Coffin-Siris syndrome (CSS) patients and in almost all small-cell carcinoma of the ovary hypercalcaemic type (SCCOHT) tumours. Missense mutations with gain-of-function or dominant-negative effects are associated with CSS, whereas inactivating mutations, leading to loss of SMARCA4 expression, have been exclusively found in SCCOHT. We applied whole-exome sequencing to study a 15-year-old patient with mild CSS who concomitantly developed SCCOHT at age 13 years. Interestingly, our patient also showed congenital microphthalmia, which has never previously been reported in CSS patients. We detected a de novo germline heterozygous nonsense mutation in exon 19 of SMARCA4 (c.2935C > T;p.Arg979*), and a somatic frameshift mutation in exon 6 (c.1236_1236delC;p.Gln413Argfs*88), causing complete loss of SMARCA4 immunostaining in the tumour. The immunohistochemical findings are supported by the observation that the c.2935C > T mutant transcript was detected by reverse transcription polymerase chain reaction at a much lower level than the wild-type allele in whole blood and the lymphoblastoid cell line of the proband, confirming nonsense-mediated mRNA decay. Accordingly, immunoblotting demonstrated that there was approximately half the amount of SMARCA4 protein in the proband's cells as in controls. This study suggests that SMARCA4 constitutional mutations associated with CSS are not necessarily non-truncating, and that haploinsufficiency may explain milder CSS phenotypes, as previously reported for haploinsufficient ARID1B. In addition, our case supports the dual role of chromatin remodellers in developmental disorders and cancer, as well as the involvement of SMARCA4 in microphthalmia, confirming previous findings in mouse models and the DECIPHER database. Finally, we speculate that mild CSS might be under-recognized in a proportion of SCCOHT patients harbouring SMARCA4 mutations. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Anomalías Múltiples/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Pequeñas/genética , Codón sin Sentido , ADN Helicasas/genética , Cara/anomalías , Mutación del Sistema de Lectura , Deformidades Congénitas de la Mano/genética , Hipercalcemia/genética , Discapacidad Intelectual/genética , Micrognatismo/genética , Microftalmía/genética , Cuello/anomalías , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Adolescente , Biomarcadores de Tumor/análisis , Western Blotting , Carcinoma de Células Pequeñas/química , Carcinoma de Células Pequeñas/diagnóstico , ADN Helicasas/análisis , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/metabolismo , Heterocigoto , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/metabolismo , Inmunohistoquímica , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/metabolismo , Masculino , Micrognatismo/diagnóstico , Micrognatismo/metabolismo , Microftalmía/diagnóstico , Microftalmía/metabolismo , Persona de Mediana Edad , Proteínas Nucleares/análisis , Neoplasias Ováricas/química , Neoplasias Ováricas/diagnóstico , Linaje , Fenotipo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/análisis
11.
Front Biosci (Landmark Ed) ; 22(1): 168-179, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814609

RESUMEN

Mammalian mitochondrial DNA (mtDNA) exists in structures called nucleoids, which correspond to the configuration of nuclear DNA. Mitochondrial transcription factor A (TFAM), first cloned as an mtDNA transcription factor, is critical for packaging and maintaining mtDNA. To investigate functional aspects of TFAM, we identified many RNA-binding proteins as candidate TFAM interactors, including ERAL1 and p32. In this review, we first describe the functions of TFAM, replication proteins such as polymerase gamma and Twinkle, and mitochondrial RNA binding proteins. We describe the role of mitochondrial nucleic acid binding proteins within the mitochondrial matrix and two oxidative phosphorylation-related proteins within the mitochondrial intermembrane space. We then discuss how mitochondrial dysfunction is related to several diseases, including mitochondrial respiratory disease, Miller syndrome and cancer. We also describe p32 knockout mice, which are embryonic lethal and exhibit respiratory chain defects. Miller syndrome is a recessive disorder characterized by postaxial acrofacial dysostosis and caused by a mutation in DHODH. Finally, we explain that p32 and mitochondrial creatine kinase may be novel markers for the progression of prostate cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ARN/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Proteínas Portadoras , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/metabolismo , Disostosis Mandibulofacial/genética , Disostosis Mandibulofacial/metabolismo , Ratones , Micrognatismo/genética , Micrognatismo/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Biochem Soc Trans ; 44(6): 1753-1759, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913686

RESUMEN

Defects in the development of the mandible can lead to micrognathia, or small jaw, which manifests in ciliopathic conditions, such as orofaciodigital syndrome, Meckel-Gruber syndrome, and Bardet-Biedl syndrome. Although micrognathia occurs frequently in human and mouse ciliopathies, it has been difficult to pinpoint the underlying cellular causes. In this mini-review, we shed light on the tissue-specific contributions to ciliary dysfunction in the development of the mandible. First, we outline the steps involved in setting up the jaw primordium and subsequent steps in the outgrowth of the mandibular skeleton. We then determine the critical tissue interactions using mice carrying a conditional mutation in the cilia gene Ofd1 Our studies highlight the usefulness of the Ofd1 mouse model and illustrate long-term possibilities for understanding the cellular and biochemical events underlying micrognathia.


Asunto(s)
Ciliopatías/genética , Modelos Animales de Enfermedad , Micrognatismo/genética , Mutación , Animales , Cilios/metabolismo , Ciliopatías/metabolismo , Humanos , Mandíbula/embriología , Mandíbula/metabolismo , Ratones , Micrognatismo/metabolismo , Proteínas/genética , Proteínas/metabolismo
13.
PLoS One ; 11(8): e0160833, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27513872

RESUMEN

Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5µm (leading to a minimum feature size of approximately 25µm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases.


Asunto(s)
Modelos Animales de Enfermedad , Discapacidad Intelectual/prevención & control , MAP Quinasa Quinasa Quinasa 3/fisiología , Proteínas de Microfilamentos/fisiología , Micrognatismo/prevención & control , Costillas/anomalías , Animales , Animales Recién Nacidos , Femenino , Eliminación de Gen , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/metabolismo , Masculino , Ratones , Ratones Noqueados , Micrognatismo/diagnóstico por imagen , Micrognatismo/metabolismo , Costillas/diagnóstico por imagen , Costillas/metabolismo , Microtomografía por Rayos X
14.
Hum Mol Genet ; 25(7): 1255-70, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26758871

RESUMEN

CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb(-/-) mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb(-/-) mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb(-/-) mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis.


Asunto(s)
Proteína CapZ/genética , Diferenciación Celular , Cabeza/embriología , Morfogénesis , Cresta Neural/embriología , Animales , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Modelos Animales de Enfermedad , Femenino , Cabeza/fisiología , Humanos , Lactante , Micrognatismo/genética , Micrognatismo/metabolismo , Hipotonía Muscular/genética , Hipotonía Muscular/metabolismo , Mutación , Cresta Neural/metabolismo , Cresta Neural/fisiología , Análisis de Secuencia de ADN , Síndrome , Pez Cebra/embriología , Pez Cebra/metabolismo , Pez Cebra/fisiología
15.
Hum Mol Genet ; 25(2): 340-7, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604144

RESUMEN

The lipid phosphatase FIG4 is a subunit of the protein complex that regulates biosynthesis of the signaling lipid PI(3,5)P2. Mutations of FIG4 result in juvenile lethality and spongiform neurodegeneration in the mouse, and are responsible for the human disorders Charcot-Marie-Tooth disease, Yunis-Varon syndrome and polymicrogyria with seizures. We previously demonstrated that conditional expression of a wild-type FIG4 transgene in neurons is sufficient to rescue most of the abnormalities of Fig4 null mice, including juvenile lethality and extensive neurodegeneration. To evaluate the contribution of the phosphatase activity to the in vivo function of Fig4, we introduced the mutation p.Cys486Ser into the Sac phosphatase active-site motif CX5RT. Transfection of the Fig4(Cys486Ser) cDNA into cultured Fig4(-/-) fibroblasts was effective in preventing vacuolization. The neuronal expression of an NSE-Fig4(Cys486Ser) transgene in vivo prevented the neonatal neurodegeneration and juvenile lethality seen in Fig4 null mice. These observations demonstrate that the catalytically inactive FIG4 protein provides significant function, possibly by stabilization of the PI(3,5)P2 biosynthetic complex and/or localization of the complex to endolysosomal vesicles. Despite this partial rescue, later in life the NSE-Fig4(Cys486Ser) transgenic mice display significant abnormalities that include hydrocephalus, defective myelination and reduced lifespan. The late onset phenotype of the NSE-Fig4(Cys486Ser) transgenic mice demonstrates that the phosphatase activity of FIG4 has an essential role in vivo.


Asunto(s)
Flavoproteínas/genética , Hidrocefalia/genética , Mutación , Neuronas/metabolismo , Animales , Dominio Catalítico/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Displasia Cleidocraneal/genética , Displasia Cleidocraneal/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Flavoproteínas/metabolismo , Hidrocefalia/metabolismo , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/metabolismo , Ratones , Ratones Transgénicos , Micrognatismo/genética , Micrognatismo/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Polimicrogiria/genética , Polimicrogiria/metabolismo , Células de Schwann/metabolismo
16.
Am J Hum Genet ; 97(6): 904-13, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26637980

RESUMEN

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.


Asunto(s)
Microtia Congénita/genética , Enanismo/genética , Geminina/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Mutación , Rótula/anomalías , Adolescente , Secuencia de Aminoácidos , Secuencia de Bases , Ciclo Celular/genética , Preescolar , Microtia Congénita/metabolismo , Enanismo/metabolismo , Enanismo/patología , Exones , Femenino , Geminina/metabolismo , Expresión Génica , Genes Dominantes , Trastornos del Crecimiento/metabolismo , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Patrón de Herencia , Masculino , Micrognatismo/metabolismo , Datos de Secuencia Molecular , Rótula/metabolismo , Linaje , Estabilidad Proteica , Proteolisis , Empalme del ARN , Alineación de Secuencia
17.
Acta Neuropathol ; 130(5): 731-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385474

RESUMEN

Impairment of brain endothelial barrier integrity is critical for cerebral cavernous malformation (CCM) lesion development. The current study investigates changes in tight junction (TJ) complex organization when PDCD10 (CCM3) is mutated/depleted in human brain endothelial cells. Analysis of lesions with CCM3 mutation and brain endothelial cells transfected with CCM3 siRNA (CCM3-knockdown) showed little or no increase in TJ transmembrane and scaffolding proteins mRNA expression, but proteins levels were generally decreased. CCM3-knockdown cells had a redistribution of claudin-5 and occludin from the membrane to the cytosol with no alterations in protein turnover but with diminished protein-protein interactions with ZO-1 and ZO-1 interaction with the actin cytoskeleton. The most profound effect of CCM3 mutation/depletion was on an actin-binding protein, cortactin. CCM3 depletion caused cortactin Ser-phosphorylation, dissociation from ZO-1 and actin, redistribution to the cytosol and degradation. This affected cortical actin ring organization, TJ complex stability and consequently barrier integrity, with constant hyperpermeability to inulin. A potential link between CCM3 depletion and altered cortactin was tonic activation of MAP kinase ERK1/2. ERK1/2 inhibition increased cortactin expression and incorporation into the TJ complex and improved barrier integrity. This study highlights the potential role of CCM3 in regulating TJ complex organization and brain endothelial barrier permeability.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar/fisiología , Cortactina/metabolismo , Discapacidad Intelectual/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/metabolismo , Micrognatismo/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Costillas/anomalías , Actinas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Barrera Hematoencefálica/patología , Células Cultivadas , Citosol/metabolismo , Citosol/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Discapacidad Intelectual/patología , Proteínas de la Membrana/genética , Micrognatismo/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/metabolismo , Costillas/metabolismo , Costillas/patología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Proteína de la Zonula Occludens-1/metabolismo
18.
Clin Genet ; 88(5): 405-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25865758

RESUMEN

The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNA transcripts. Mutations in EFTUD2, encoding a component of the major spliceosome, have recently been identified as the cause of mandibulofacial dysostosis, Guion-Almeida type (MFDGA), characterized by mandibulofacial dysostosis, microcephaly, external ear malformations and intellectual disability. Mutations in several other genes involved in spliceosomal function or linked aspects of mRNA processing have also recently been identified in human disorders with specific craniofacial malformations: SF3B4 in Nager syndrome, an acrofacial dysostosis (AFD); SNRPB in cerebrocostomandibular syndrome, characterized by Robin sequence and rib defects; EIF4A3 in the AFD Richieri-Costa-Pereira syndrome, characterized by Robin sequence, median mandibular cleft and limb defects; and TXNL4A in Burn-McKeown syndrome, involving specific craniofacial dysmorphisms. Here, we review phenotypic and molecular aspects of these syndromes. Given the apparent sensitivity of craniofacial development to defects in mRNA processing, it is possible that mutations in other proteins involved in spliceosomal function will emerge in the future as causative for related human disorders.


Asunto(s)
Atresia de las Coanas/metabolismo , Pie Equinovaro/metabolismo , Sordera/congénito , Deformidades Congénitas de la Mano/metabolismo , Cardiopatías Congénitas/metabolismo , Discapacidad Intelectual/metabolismo , Disostosis Mandibulofacial/metabolismo , Micrognatismo/metabolismo , Mutación , Síndrome de Pierre Robin/metabolismo , Costillas/anomalías , Empalmosomas/metabolismo , Atresia de las Coanas/genética , Pie Equinovaro/genética , ARN Helicasas DEAD-box/genética , Sordera/genética , Sordera/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Facies , Femenino , Deformidades Congénitas de la Mano/genética , Cardiopatías Congénitas/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Disostosis Mandibulofacial/genética , Micrognatismo/genética , Factores de Elongación de Péptidos/genética , Síndrome de Pierre Robin/genética , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Costillas/metabolismo , Empalmosomas/genética
19.
Nat Commun ; 6: 6449, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25743393

RESUMEN

The mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1. Loss of ccm-3 causes canal truncations and aggregations of canaliculular vesicles, which form ectopic lumen (cysts). We show that CCM-3 localizes to the apical membrane, and in cooperation with GCK-1 and STRIPAK, promotes CDC-42 signalling, Golgi stability and endocytic recycling. We propose that endocytic recycling is mediated through the CDC-42-binding kinase MRCK-1, which interacts physically with CCM-3-STRIPAK. We further show canal membrane integrity to be dependent on the exocyst complex and the actin cytoskeleton. This work reveals novel in vivo roles of CCM-3·STRIPAK in regulating tube extension and membrane integrity through small GTPase signalling and vesicle dynamics, which may help explain the severity of CCM3 mutations in patients.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Discapacidad Intelectual/metabolismo , Micrognatismo/metabolismo , Morfogénesis/fisiología , Costillas/anomalías , Transducción de Señal/fisiología , Vesículas Transportadoras/fisiología , Animales , Caenorhabditis elegans/metabolismo , Aparato de Golgi/metabolismo , Intestinos/crecimiento & desarrollo , Microscopía Electrónica de Transmisión , Microscopía de Interferencia , Interferencia de ARN , Costillas/metabolismo
20.
Dev Dyn ; 244(4): 564-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25626636

RESUMEN

BACKGROUND: Morphogenesis of vertebrate craniofacial skeletal elements is dependent on a key cell population, the cranial neural crest cells (NCC). Cranial NCC are formed dorsally in the cranial neural tube and migrate ventrally to form craniofacial skeletal elements as well as other tissues. Multiple extracellular signaling pathways regulate the migration, survival, proliferation, and differentiation of NCC. RESULTS: In this study, we demonstrate that Shh expression in the oral ectoderm and pharyngeal endoderm is essential for mandibular development. We show that a loss of Shh in these domains results in increased mesenchymal cell death in pharyngeal arch 1 (PA1) after NCC migration. This increased cell death can be rescued in utero by pharmacological inhibition of p53. Furthermore, we show that epithelial SHH is necessary for the early differentiation of mandibular cartilage condensations and, therefore, the subsequent development of Meckel's cartilage, around which the dentary bone forms. Nonetheless, a rescue of the cell death phenotype does not rescue the defect in cartilage condensation formation. CONCLUSIONS: Our results show that SHH produced by the PA1 epithelium is necessary for the survival of post-migratory NCC, and suggests a key role in the subsequent differentiation of chondrocytes to form Meckel's cartilage.


Asunto(s)
Región Branquial/embriología , Cartílago/metabolismo , Condrocitos/metabolismo , Proteínas Hedgehog/metabolismo , Cresta Neural/embriología , Animales , Apoptosis , Región Branquial/metabolismo , Cartílago/embriología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Condrogénesis , Ectodermo/metabolismo , Epitelio/metabolismo , Femenino , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Masculino , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Micrognatismo/metabolismo , Cresta Neural/citología , Faringe/embriología , Fenotipo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA