Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Eur J Protistol ; 88: 125969, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822126

RESUMEN

Ciliated protists contain both germline micronucleus (MIC) and somatic macronucleus (MAC) in a single cytoplasm. Programmed genome rearrangements occur in ciliates during sexual processes, and the extent of rearrangements varies dramatically among species, which lead to significant differences in genomic architectures. However, genomic sequences remain largely unknown for most ciliates due to the difficulty in culturing and in separating the germline from the somatic genome in a single cell. Single-cell whole genome amplification (WGA) has emerged as a powerful technology to characterize the genomic heterogeneity at the single-cell level. In this study, we compared two single-cell WGA, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in characterizing the germline and somatic genomes in ciliates with different genomic architectures. Our results showed that: 1) MALBAC exhibits strong amplification bias towards MAC genome while MDA shows bias towards MIC genome of ciliates with extensively fragmented MAC genome; 2) both MDA and MALBAC could amplify MAC genome more efficiently in ciliates with moderately fragmented MAC genome. Moreover, we found that more sample replicates could help to obtain more genomic data. Our work provides a reference for selecting the appropriate method to characterize germline and somatic genomes of ciliates.


Asunto(s)
Cilióforos , Genómica , Genómica/métodos , Células Germinativas , Reordenamiento Génico , Macronúcleo , Micronúcleo Germinal , Cilióforos/genética
2.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163228

RESUMEN

Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.


Asunto(s)
Análisis Citogenético/métodos , Citogenética/tendencias , Plantas/genética , Aberraciones Cromosómicas , Citogenética/métodos , Monitoreo del Ambiente/métodos , Micronúcleos con Defecto Cromosómico , Pruebas de Micronúcleos/métodos , Micronúcleo Germinal/genética , Micronúcleo Germinal/metabolismo , Mutagénesis , Pruebas de Mutagenicidad , Mutágenos/toxicidad
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163271

RESUMEN

Embryo fragmentation represents a phenomenon generally characterized by the presence of membrane-bound extracellular cytoplasm into the perivitelline space. Recent evidence supports the cellular and molecular heterogeneity of embryo fragments. In this narrative review, we described the different embryo fragment-like cellular structures in their morphology, molecular content, and supposed function and have reported the proposed theories on their origin over the years. We identified articles related to characterization of embryo fragmentation with a specific literature search string. The occurrence of embryo fragmentation has been related to various mechanisms, of which the most studied are apoptotic cell death, membrane compartmentalization of altered DNA, cytoskeletal disorders, and vesicle formation. These phenomena are thought to result in the extrusion of entire blastomeres, release of apoptotic bodies and other vesicles, and micronuclei formation. Different patterns of fragmentation may have different etiologies and effects on embryo competence. Removal of fragments from the embryo before embryo transfer with the aim to improve implantation potential should be reconsidered on the basis of the present observations.


Asunto(s)
Micropartículas Derivadas de Células/fisiología , Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Apoptosis/fisiología , Blastómeros/fisiología , División Celular , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Implantación del Embrión/fisiología , Transferencia de Embrión/métodos , Embrión de Mamíferos/metabolismo , Humanos , Micronúcleo Germinal/fisiología
4.
Dev Cell ; 56(24): 3364-3379.e10, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34852214

RESUMEN

Failure to reorganize the endoplasmic reticulum (ER) in mitosis results in chromosome missegregation. Here, we show that accurate chromosome segregation in human cells requires cell cycle-regulated ER membrane production. Excess ER membranes increase the viscosity of the mitotic cytoplasm to physically restrict chromosome movements, which impedes the correction of mitotic errors leading to the formation of micronuclei. Mechanistically, we demonstrate that the protein phosphatase CTDNEP1 counteracts mTOR kinase to establish a dephosphorylated pool of the phosphatidic acid phosphatase lipin 1 in interphase. CTDNEP1 control of lipin 1 limits the synthesis of fatty acids for ER membrane biogenesis in interphase that then protects against chromosome missegregation in mitosis. Thus, regulation of ER size can dictate the biophysical properties of mitotic cells, providing an explanation for why ER reorganization is necessary for mitotic fidelity. Our data further suggest that dysregulated lipid metabolism is a potential source of aneuploidy in cancer cells.


Asunto(s)
Ciclo Celular , Segregación Cromosómica , Retículo Endoplásmico/metabolismo , Línea Celular , Ácidos Grasos/biosíntesis , Humanos , Metafase , Micronúcleo Germinal/metabolismo , Mitosis , Modelos Biológicos , Fosfatidato Fosfatasa/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Serina-Treonina Quinasas TOR/metabolismo , Viscosidad
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819364

RESUMEN

Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2'3'-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.


Asunto(s)
Cromatina/fisiología , Mitosis/fisiología , Nucleotidiltransferasas/metabolismo , Línea Celular Tumoral , Cromatina/genética , Humanos , Interferón Tipo I/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Micronúcleo Germinal/genética , Micronúcleo Germinal/fisiología , Mitosis/efectos de los fármacos , Mitosis/genética , Neoplasias/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/fisiología , Transducción de Señal
6.
Cell ; 184(22): 5506-5526, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34715021

RESUMEN

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Asunto(s)
Envejecimiento/metabolismo , Citoplasma/metabolismo , ADN/metabolismo , Enfermedad , Animales , Humanos , Micronúcleo Germinal/metabolismo , Retroelementos/genética
7.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613334

RESUMEN

Cycling cells must respond to DNA double-strand breaks (DSBs) to avoid genome instability. Missegregation of chromosomes with DSBs during mitosis results in micronuclei, aberrant structures linked to disease. How cells respond to DSBs during mitosis is incompletely understood. We previously showed that Drosophilamelanogaster papillar cells lack DSB checkpoints (as observed in many cancer cells). Here, we show that papillar cells still recruit early acting repair machinery (Mre11 and RPA3) and the Fanconi anemia (FA) protein Fancd2 to DSBs. These proteins persist as foci on DSBs as cells enter mitosis. Repair foci are resolved in a stepwise manner during mitosis. DSB repair kinetics depends on both monoubiquitination of Fancd2 and the alternative end-joining protein DNA polymerase θ. Disruption of either or both of these factors causes micronuclei after DNA damage, which disrupts intestinal organogenesis. This study reveals a mechanism for how cells with inactive DSB checkpoints can respond to DNA damage that persists into mitosis.


Asunto(s)
Rotura Cromosómica , Segregación Cromosómica , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Drosophila melanogaster/metabolismo , Transducción de Señal , Animales , Roturas del ADN de Doble Cadena , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Pruebas Genéticas , Micronúcleo Germinal/metabolismo , Mitosis , Mutación/genética , Ubiquitinación , ADN Polimerasa theta
8.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204826

RESUMEN

Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35-100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.


Asunto(s)
Alcaloides/toxicidad , Metanfetamina/análogos & derivados , Mutágenos/toxicidad , Pentanonas/toxicidad , Pirrolidinas/toxicidad , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Metanfetamina/toxicidad , Micronúcleo Germinal/efectos de los fármacos , Micronúcleo Germinal/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Eur J Protistol ; 80: 125804, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34062315

RESUMEN

The ciliated protist Tetrahymena thermophila is a well-known model organism with typical nuclear dimorphism containing a somatic macronucleus (MAC) and a germline micronucleus (MIC). The presence in the same cell compartment of two nuclei with distinctly different structural and functional properties provides an ideal model system to explore mechanisms of genome maintenance. Although methods for the isolation of MIC have been available for many years, cross-contamination and DNA degradation remain unresolved. Here, we describe a reliable and quick method to isolate MIC with high purity and DNA integrity in T. thermophila. Different factors are examined to optimize the MIC purification. The MAC contamination ratio in purified MIC is about 0.19% and DNA integrity of purified MIC is maintained. We also establish a more accurate method to detect the contamination rate of nuclei including microscopic observation and PCR detection. This study will facilitate further epigenetic research in Tetrahymena.


Asunto(s)
ADN Protozoario/aislamiento & purificación , Epigenómica/métodos , Micronúcleo Germinal/genética , Tetrahymena thermophila/genética , ADN Protozoario/química , Epigénesis Genética
10.
Nat Genet ; 53(6): 895-905, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33846636

RESUMEN

Genome editing has therapeutic potential for treating genetic diseases and cancer. However, the currently most practicable approaches rely on the generation of DNA double-strand breaks (DSBs), which can give rise to a poorly characterized spectrum of chromosome structural abnormalities. Here, using model cells and single-cell whole-genome sequencing, as well as by editing at a clinically relevant locus in clinically relevant cells, we show that CRISPR-Cas9 editing generates structural defects of the nucleus, micronuclei and chromosome bridges, which initiate a mutational process called chromothripsis. Chromothripsis is extensive chromosome rearrangement restricted to one or a few chromosomes that can cause human congenital disease and cancer. These results demonstrate that chromothripsis is a previously unappreciated on-target consequence of CRISPR-Cas9-generated DSBs. As genome editing is implemented in the clinic, the potential for extensive chromosomal rearrangements should be considered and monitored.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cromotripsis , Edición Génica , Anemia de Células Falciformes/genética , Antígenos CD34/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , División Celular , Cromosomas Humanos/genética , División del ADN , Genoma Humano , Humanos , Micronúcleo Germinal/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
J Radiat Res ; 62(4): 618-625, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33912960

RESUMEN

Metformin, a first-line oral drug for type II diabetes mellitus, not only reduces blood glucose levels, but also has many other biological effects. Recent studies have been conducted to determine the protective effect of metformin in irradiation injuries. However, the results are controversial and mainly focus on the time of metformin administration. In this study, we aimed to investigate the protective effect of metformin in BALB/c mice exposed to 6 Gy or 8 Gy of a 60Co source of γ-rays for total body irradiation (TBI). Survival outcomes were assessed following exposure to 8 Gy or 6 Gy TBI, and hematopoietic damage and intestinal injury were assessed after exposure to 6 Gy TBI. Metformin prolonged the survival of mice exposed to 8 Gy TBI and improved the survival rate of mice exposed to 6 Gy TBI only when administered before exposure to irradiation. Moreover, pretreatment with metformin reduced the frequency of micronuclei (MN) in the bone marrow of mice exposed to 6 Gy TBI. Pretreatment of metformin also protected the intestinal morphology of mice, reduced inflammatory response and decreased the number of apoptotic cells in intestine. In conclusion, we demonstrated that pretreatment with metformin could alleviate irradiation injury.


Asunto(s)
Metformina/farmacología , Irradiación Corporal Total , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Intestinos/patología , Intestinos/efectos de la radiación , Masculino , Ratones Endogámicos BALB C , Micronúcleo Germinal/metabolismo , Análisis de Supervivencia
12.
J Cell Physiol ; 236(5): 3579-3598, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33078399

RESUMEN

Genome instability in cancer drives tumor heterogeneity, undermines the success of therapies, and leads to metastasis and recurrence. Condensins are conserved chromatin-binding proteins that promote genomic stability, mainly by ensuring proper condensation of chromatin and mitotic chromosome segregation. Condensin mutations are found in human tumors, but it is not known how or even if such mutations promote cancer progression. In this study, we focus on condensin II subunit CAPH2 and specific CAPH2 mutations reported to be enriched in human cancer patients, and we test how CAPH2 cancer-specific mutations may lead to condensin II complex dysfunction and contribute to genome instability. We find that R551P, R551S, and S556F mutations in CAPH2 cause genomic instability by causing DNA damage, anaphase defects, micronuclei, and chromosomal instability. DNA damage and anaphase defects are caused primarily by ataxia telangiectasia and Rad3-related-dependent telomere dysfunction, as anaphase bridges are enriched for telomeric repeat sequences. We also show that these mutations decrease the binding of CAPH2 to the ATPase subunit SMC4 as well as the rest of the condensin II complex, and decrease the amount of CAPH2 protein bound to chromatin. Thus, in vivo the R551P, R551S, and S556F cancer-specific CAPH2 mutant proteins are likely to impair condensin II complex formation, impede condensin II activity during mitosis and interphase, and promote genetic heterogeneity in cell populations that can lead to clonal outgrowth of cancer cells with highly diverse genotypes.


Asunto(s)
Adenosina Trifosfatasas/genética , Anafase , Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/metabolismo , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Complejos Multiproteicos/genética , Mutación/genética , Neoplasias/genética , Proteínas Nucleares/metabolismo , Telómero/patología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Micronúcleo Germinal/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias/patología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Fase S , Telómero/metabolismo
13.
Chem Biol Interact ; 332: 109283, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035519

RESUMEN

1-Methylpyrene (1-MP) is a ubiquitous environmental pollutant and rodent carcinogen. Its mutagenic activity depends on sequential activation by various CYP and sulfotransferase (SULT) enzymes. Previously we have observed induction of micronuclei and mitotic arrest by 1-MP in a Chinese hamster (V79)-derived cell line expressing both human CYP1A2 and SULT1A1 (V79-hCYP1A2-hSULT1A1), however, the mode of chromosome damage and the involvement of mitotic tubulin structures have not been clarified. In this study, we used immunofluorescent staining of centromere protein B (CENP-B) with the formed micronuclei, and that of ß- and γ-tubulin reflecting the structures of mitotic spindle and centrioles, respectively, in V79-hCYP1A2-hSULT1A1 cells. The results indicated that 1-MP induced micronuclei in V79-hCYP1A2-hSULT1A1 cells from 0.125 to 2 µM under a 24 h/0 h (exposure/recovery) regime, while in the parental V79-Mz cells micronuclei were induced by 1-MP only at concentrations ≥ 8 µM; in both cases, the micronuclei induced by 1-MP were predominantly CENP-B positive. Following 54 h of exposure, 1-MP induced mitotic spindle non-congression and centrosome amplification (multipolar mitosis) in V79-hCYP1A2-hSULT1A1 cells, and anaphase/telophase retardation, at concentrations ≥ 0.125 µM with concentration-dependence; while in V79-Mz cells it was inactive up to 8 µM. This study suggests that in mammalian cells proficient in activating enzymes 1-MP may induce chromosome loss and mitotic disturbance, probably by interfering with the mitotic spindle and centrioles.


Asunto(s)
Arilsulfotransferasa/metabolismo , Cromosomas de los Mamíferos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Mitosis/efectos de los fármacos , Pirenos/farmacología , Animales , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína B del Centrómero/metabolismo , Cricetinae , Humanos , Micronúcleo Germinal/efectos de los fármacos , Micronúcleo Germinal/metabolismo , Índice Mitótico , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
14.
Toxicol Ind Health ; 36(6): 454-466, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32787740

RESUMEN

Exposure to inhalation anesthetics (IAs) has been associated with DNA damage as reflected in the increased frequency of micronuclei (MN) and chromosomal aberrations (CAs). The present study was undertaken to ascertain whether there was any correlation between increased MN and CA and the extent of oxidative stress as well as the antioxidant status of a group of operating room personnel exposed to a mixture of IAs, including nitrous oxide, isoflurane, and sevoflurane. In this cross-sectional study, 60 operating room personnel (exposed group) in whom the frequencies of MN and CA had already been shown to be significantly higher than those of a referent group, as well as 60 unexposed nurses, were studied. Venous blood samples were taken from all participants, and malondialdehyde (MDA) levels as an index of oxidative stress (OS) and the activity of superoxide dismutase (SOD) and levels of total antioxidant capacity (TAC) as indices of antioxidant status were measured. The level of TAC (1.76 ± 0.59 mM vs. 2.13 ± 0.64 mM, p = 0.001) and the activity of SOD (11.22 ± 5.11 U/ml vs. 13.36 ± 4.12 U/ml, p = 0.01) were significantly lower, while the mean value of MDA was significantly higher (2.46 ± 0.66 µM vs. 2.19 ± 0.68 µM, p = 0.03) in the exposed group than in the nonexposed group. After adjusting for potential confounders, there were statistically significant associations between exposure to IAs, gender, SOD, and TAC with MN frequency and between exposure to IAs and SOD with numbers of CA. The findings of the present study indicated that exposure to IAs was associated with OS, and this, in turn, may be causally linked with DNA damage.


Asunto(s)
Anestésicos por Inhalación/farmacología , Daño del ADN/efectos de los fármacos , Personal de Salud , Estrés Oxidativo/efectos de los fármacos , Adulto , Biomarcadores , Estudios Transversales , Femenino , Humanos , Irán , Masculino , Malondialdehído/sangre , Micronúcleo Germinal/efectos de los fármacos , Persona de Mediana Edad , Quirófanos , Factores Sexuales , Superóxido Dismutasa/sangre
15.
Annu Rev Cell Dev Biol ; 36: 85-114, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692592

RESUMEN

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.


Asunto(s)
Membrana Nuclear/patología , Animales , Inestabilidad Genómica , Humanos , Inmunidad Innata , Micronúcleo Germinal/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo
16.
Sci Rep ; 10(1): 8720, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457346

RESUMEN

In most organisms, cells typically maintain genome integrity, as radical genome reorganization leads to dramatic consequences. However, certain organisms, ranging from unicellular ciliates to vertebrates, are able to selectively eliminate specific parts of their genome during certain stages of development. Moreover, partial or complete elimination of one of the parental genomes occurs in interspecies hybrids reproducing asexually. Although several examples of this phenomenon are known, the molecular and cellular processes involved in selective elimination of genetic material remain largely undescribed for the majority of such organisms. Here, we elucidate the process of selective genome elimination in water frog hybrids from the Pelophylax esculentus complex reproducing through hybridogenesis. Specifically, in the gonads of diploid and triploid hybrids, but not those of the parental species, we revealed micronuclei in the cytoplasm of germ cells. In each micronucleus, only one centromere was detected with antibodies against kinetochore proteins, suggesting that each micronucleus comprises a single chromosome. Using 3D-FISH with species-specific centromeric probe, we determined the role of micronuclei in selective genome elimination. We found that in triploid LLR hybrids, micronuclei preferentially contain P. ridibundus chromosomes, while in diploid hybrids, micronuclei preferentially contain P. lessonae chromosomes. The number of centromere signals in the nuclei suggested that germ cells were aneuploid until they eliminate the whole chromosomal set of one of the parental species. Furthermore, in diploid hybrids, misaligned P. lessonae chromosomes were observed during the metaphase stage of germ cells division, suggesting their possible elimination due to the inability to attach to the spindle and segregate properly. Additionally, we described gonocytes with an increased number of P. ridibundus centromeres, indicating duplication of the genetic material. We conclude that selective genome elimination from germ cells of diploid and triploid hybrids occurs via the gradual elimination of individual chromosomes of one of the parental genomes, which are enclosed within micronuclei.


Asunto(s)
Cromosomas/genética , Micronúcleo Germinal/genética , Rana esculenta/genética , Animales , Centrómero/genética , Centrómero/metabolismo , Quimera/genética , Cromosomas/metabolismo , Evolución Molecular , Femenino , Células Germinativas/química , Hibridación Fluorescente in Situ , Masculino , Micronúcleo Germinal/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
17.
PLoS Genet ; 16(4): e1008723, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32298257

RESUMEN

Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/ß domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.


Asunto(s)
Genoma de Protozoos , Inestabilidad Genómica , Autoantígeno Ku/genética , Proteínas Protozoarias/genética , Duplicación de Gen , Autoantígeno Ku/química , Autoantígeno Ku/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Micronúcleo Germinal/genética , Micronúcleo Germinal/metabolismo , Paramecium/genética , Paramecium/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
18.
Genome Res ; 30(3): 406-414, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32165395

RESUMEN

The somatic macronucleus (MAC) and germline micronucleus (MIC) of Tetrahymena thermophila differ in chromosome numbers, sizes, functions, transcriptional activities, and cohesin complex location. However, the higher-order chromatin organization in T. thermophila is still largely unknown. Here, we explored the higher-order chromatin organization in the two distinct nuclei of T. thermophila using the Hi-C and HiChIP methods. We found that the meiotic crescent MIC has a specific chromosome interaction pattern, with all the telomeres or centromeres on the five MIC chromosomes clustering together, respectively, which is also helpful to identify the midpoints of centromeres in the MIC. We revealed that the MAC chromosomes lack A/B compartments, topologically associating domains (TADs), and chromatin loops. The MIC chromosomes have TAD-like structures but not A/B compartments and chromatin loops. The boundaries of the TAD-like structures in the MIC are highly consistent with the chromatin breakage sequence (CBS) sites, suggesting that each TAD-like structure of the MIC chromosomes develops into one MAC chromosome during MAC development, which provides a mechanism of the formation of MAC chromosomes during conjugation. Overall, we demonstrated the distinct higher-order chromatin organization in the two nuclei of the T. thermophila and suggest that the higher-order chromatin structures may play important roles during the development of the MAC chromosomes.


Asunto(s)
Cromatina/química , Cromosomas/química , Macronúcleo/genética , Micronúcleo Germinal/genética , Tetrahymena thermophila/genética , Centrómero , Meiosis/genética
19.
J Radiat Res ; 61(1): 1-13, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31845986

RESUMEN

Human oxidation resistance 1 (OXR1) was identified as a protein that decreases genomic mutations in Escherichia coli caused by oxidative DNA damage. However, the mechanism by which OXR1 defends against genome instability has not been elucidated. To clarify how OXR1 maintains genome stability, the effects of OXR1-depletion on genome stability were investigated in OXR1-depleted HeLa cells using gamma-rays (γ-rays). The OXR1-depleted cells had higher levels of superoxide and micronucleus (MN) formation than control cells after irradiation. OXR1-overexpression alleviated the increases in reactive oxygen species (ROS) level and MN formation after irradiation. The increased MN formation in irradiated OXR1-depleted cells was partially attenuated by the ROS inhibitor N-acetyl-L-cysteine, suggesting that OXR1-depeletion increases ROS-dependent genome instability. We also found that OXR1-depletion shortened the duration of γ-ray-induced G2/M arrest. In the presence of the cell cycle checkpoint inhibitor caffeine, the level of MN formed after irradiation was similar between control and OXR1-depleted cells, demonstrating that OXR1-depletion accelerates MN formation through abrogation of G2/M arrest. In OXR1-depleted cells, the level of cyclin D1 protein expression was increased. Here we report that OXR1 prevents genome instability by cell cycle regulation as well as oxidative stress defense.


Asunto(s)
Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Rayos gamma , Inestabilidad Genómica/efectos de la radiación , Proteínas Mitocondriales/metabolismo , Mitosis/efectos de la radiación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Células HeLa , Humanos , Peróxido de Hidrógeno/toxicidad , Micronúcleo Germinal/efectos de los fármacos , Micronúcleo Germinal/metabolismo , Micronúcleo Germinal/efectos de la radiación , Proteínas Mitocondriales/deficiencia , Mitosis/efectos de los fármacos , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Superóxidos/metabolismo
20.
Genes (Basel) ; 10(11)2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752243

RESUMEN

In the ciliate Stylonychia, somatic macronuclei differentiate from germline micronuclei during sexual reproduction, accompanied by developmental sequence reduction. Concomitantly, over 95% of micronuclear sequences adopt a heterochromatin structure characterized by the histone variant H3.4 and H3K27me3. RNAi-related genes and histone variants dominate the list of developmentally expressed genes. Simultaneously, 27nt-ncRNAs that match sequences retained in new macronuclei are synthesized and bound by PIWI1. Recently, we proposed a mechanistic model for 'RNA-induced DNA replication interference' (RIRI): during polytene chromosome formation PIWI1/27nt-RNA-complexes target macronucleus-destined sequences (MDS) by base-pairing and temporarily cause locally stalled replication. At polytene chromosomal segments with ongoing replication, H3.4K27me3-nucleosomes become selectively deposited, thus dictating the prospective heterochromatin structure of these areas. Consequently, these micronucleus-specific sequences become degraded, whereas 27nt-RNA-covered sites remain protected. However, the biogenesis of the 27nt-RNAs remains unclear. It was proposed earlier that in stichotrichous ciliates 27nt-RNA precursors could derive from telomere-primed bidirectional transcription of nanochromosomes and subsequent Dicer-like (DCL) activity. As a minimalistic explanation, we propose here that the 27nt-RNA precursor could rather be mRNA or pre-mRNA and that the transition of coding RNA from parental macronuclei to non-coding RNAs, which act in premature developing macronuclei, could involve RNA-dependent RNA polymerase (RDRP) activity creating dsRNA intermediates prior to a DCL-dependent pathway. Interestingly, by such mechanism the partition of a parental somatic genome and possibly also the specific nanochromosome copy numbers could be vertically transmitted to the differentiating nuclei of the offspring.


Asunto(s)
Cilióforos/genética , Regulación del Desarrollo de la Expresión Génica , Micronúcleo Germinal/genética , ARN Mensajero/biosíntesis , ARN Nuclear Pequeño/biosíntesis , Replicación del ADN , Genoma de Protozoos/genética , Histonas/genética , Histonas/metabolismo , Micronúcleo Germinal/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Interferencia de ARN , Precursores del ARN/biosíntesis , Precursores del ARN/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Telómero/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...