Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
J Cancer Res Ther ; 20(5): 1595-1598, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39412925

RESUMEN

BACKGROUND: We aimed to investigate effect of radiotherapy (RT) applications with different dose rates on cytogenetic damages, which focused on micronucleus (MN) formation, and evaluate how this damage varies by cisplatin in rats receiving head-neck RT. MATERIAL AND METHODS: Thirty-six Sprague Dawley rats were divided into five groups. The first and second groups were irradiated at a dose rate of 300 monitor unit/minute (MU/min) and 600 MU/min, respectively. The third group was irradiated at a dose rate of 300 MU/min and given cisplatin. The fourth group was irradiated at a dose rate of 600 MU/min and given cisplatin. The fifth group received neither irradiation nor cisplatin (control group). One thousand polychromatic erythrocytes were scored, and MN frequency in polychromatic erythrocytes was determined for each rat. RESULTS: There was a significant difference among five groups in terms of the number of MN (p: 0.001). The number of MN was significantly higher in the 600 MU/min + cisplatin group (fourth group) compared to the control group [9.5 (1.0-23.0) vs. 1.5 (1.0-2.0), respectively]. It was also significantly higher in 600 MU/min + cisplatin group (fourth group) compared to 300 MU/min group (first group) [9.5 (1.0-23.0) vs. 2.0 (1.0-3.0), respectively]. On the other hand, there was no significant difference among other groups. CONCLUSIONS: Our findings suggest that RT given at a higher dose rate causes more cytogenetic damage, and this damage is increased by concurrent administration of cisplatin.


Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Pruebas de Micronúcleos , Animales , Cisplatino/farmacología , Ratas , Pruebas de Micronúcleos/métodos , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/genética , Masculino , Ratas Sprague-Dawley , Antineoplásicos/farmacología , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Eritrocitos/efectos de la radiación , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Relación Dosis-Respuesta en la Radiación
2.
Dokl Biochem Biophys ; 518(1): 355-360, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39023669

RESUMEN

Radiosensitivity to low and medium doses of X-ray radiation and the ability to induce a radiation adaptive response (RAR) of lymphocytes during in vitro irradiation of peripheral blood of patients with cancer were studied. The criterion for cytogenetic damage was the frequency of micronuclei (MN) in cytochalasin-blocked binucleate lymphocytes in culture. It was found that the spontaneous level of cytogenetic damage in the lymphocytes of patients was 2.6 times higher than in healthy volunteers, and there was also significant interindividual variability in values compared to the control cohort. There were no differences in mean values for radiosensitivity to low and medium doses of X-ray between the study groups. There was no correlation between the spontaneous level of MN in lymphocytes and the radiosensitivity of individuals in both groups. RAR was induced with the same frequency and to the same extent in lymphocytes from both patients and healthy individuals.


Asunto(s)
Linfocitos , Pruebas de Micronúcleos , Tolerancia a Radiación , Humanos , Linfocitos/efectos de la radiación , Masculino , Persona de Mediana Edad , Femenino , Adulto , Neoplasias/radioterapia , Neoplasias/sangre , Rayos X , Anciano , Adaptación Fisiológica , Micronúcleos con Defecto Cromosómico/efectos de la radiación
3.
Technol Health Care ; 32(4): 2825-2836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995741

RESUMEN

BACKGROUND: The radiation released at the time of dental panoramic radiographs causes genotoxic and cytotoxic effects on epithelial cells. OBJECTIVE: This research aimed to evaluate the changes in the frequencies of micronucleated cells in patients' buccal epithelial cells following dental panoramic radiography. METHODS: 74 patients were recruited for the study who were advised for panoramic radiographs. Using a wooden spatula, the buccal epithelial cells were scraped from both cheeks before to panoramic radiation exposure and ten days after the panoramic radiation exposure. Giemsa stain was used to stain the cells, and 500 cells were scored on a slide to determine the frequency of micronuclei. To determine the difference between the frequency of micronuclei before and after radiation exposure, a paired t-test was used in the statistical analysis. RESULTS: The proportion of micronuclei cells was 0.11% before radiation exposure and 0.57% following radiation exposure after 10 days. A statistically significant increase in the frequencies of micronuclei was noted after radiation exposure values. CONCLUSION: This study revealed the genotoxicity of epithelial cells with dental panoramic radiation exposure. It is advised to reduce the use of such radiographs and to use only when there is no other diagnostic tool that is helpful or when absolutely essential.


Asunto(s)
Células Epiteliales , Pruebas de Micronúcleos , Mucosa Bucal , Radiografía Panorámica , Humanos , Radiografía Panorámica/efectos adversos , Mucosa Bucal/efectos de la radiación , Mucosa Bucal/diagnóstico por imagen , Mucosa Bucal/citología , Masculino , Femenino , Células Epiteliales/efectos de la radiación , Adulto , Persona de Mediana Edad , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Adulto Joven
4.
Pak J Biol Sci ; 27(5): 276-282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38840468

RESUMEN

<b>Background and Objective:</b> Gamma irradiation induces genotoxicity, characterized by the formation of extra-nuclear bodies and left behind during the anaphase stage of cell division, often referred to as a micronucleus (MN). The present work aims to monitor exposure to ionizing radiation as a genotoxic agent in the lymphocytes of workers at radiation energy centers. <b>Materials and Methods:</b> The lymphocyte cytokinesis block micronucleus assay used and analyzed the correlation between the Nuclear Division Index (NDI), age, blood type and the number of micronuclei (MN). Blood samples were collected from 20 volunteers in heparin tubes, exposed to 2 Gy gamma rays and cultured <i>in vitro</i>. <b>Results:</b> A significant difference in the number of micronuclei between blood group A and blood groups A, B and AB. The Nuclear Division Index (NDI) value for lymphocytes of radiation energy center workers after gamma radiation was significant (1.74±0.1) but still within the normal range. Neither MN frequency nor NDI values correlated with age, but MN frequency showed a correlation with blood type. <b>Conclusion:</b> The gamma irradiation did not induce a cytostatic effect but proved genotoxic to the lymphocytes of radiation energy center workers. Notably, blood type A demonstrated higher sensitivity to gamma radiation.


Asunto(s)
Citocinesis , Rayos gamma , Linfocitos , Pruebas de Micronúcleos , Exposición Profesional , Humanos , Rayos gamma/efectos adversos , Linfocitos/efectos de la radiación , Linfocitos/metabolismo , Pruebas de Micronúcleos/métodos , Citocinesis/efectos de la radiación , Exposición Profesional/efectos adversos , Adulto , Masculino , Persona de Mediana Edad , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Femenino
5.
Environ Res ; 251(Pt 1): 118634, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452915

RESUMEN

Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.


Asunto(s)
Teléfono Celular , Citocinesis , Mucosa Bucal , Humanos , Mucosa Bucal/efectos de la radiación , Mucosa Bucal/citología , Adulto , Masculino , Citocinesis/efectos de la radiación , Muerte Celular/efectos de la radiación , Adulto Joven , Femenino , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos , Campos Electromagnéticos/efectos adversos , Micronúcleos con Defecto Cromosómico/efectos de la radiación
6.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163494

RESUMEN

Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1-a subset of USH-by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (É£H2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Tolerancia a Radiación/genética , Síndromes de Usher/enzimología , Síndromes de Usher/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Clonales , Difosfonatos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Histonas/metabolismo , Humanos , Cinética , Proteína Homóloga de MRE11/metabolismo , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Modelos Biológicos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación
7.
Cells ; 10(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685687

RESUMEN

Gynaecologic cancers are common among women and treatment includes surgery, radiotherapy or chemotherapy, where the last two methods induce DNA damage in non-targeted cells like peripheral blood lymphocytes (PBL). Damaged normal cells can transform leading to second malignant neoplasms (SMN) but the level of risk and impact of risk modifiers is not well defined. We investigated how radiotherapy alone or in combination with chemotherapy induce DNA damage in PBL of cervix and endometrial cancer patients during therapy. Blood samples were collected from nine endometrial cancer patients (treatment with radiotherapy + chemotherapy-RC) and nine cervical cancer patients (treatment with radiotherapy alone-R) before radiotherapy, 3 weeks after onset of radiotherapy and at the end of radiotherapy. Half of each blood sample was irradiated ex vivo with 2 Gy of gamma radiation in order to check how therapy influenced the sensitivity of PBL to radiation. Analysed endpoints were micronucleus (MN) frequencies, apoptosis frequencies and cell proliferation index. The results were characterised by strong individual variation, especially the MN frequencies and proliferation index. On average, despite higher total dose and larger fields, therapy alone induced the same level of MN in PBL of RC patients as compared to R. This result was accompanied by a higher level of apoptosis and stronger inhibition of cell proliferation in RC patients. The ex vivo dose induced fewer MN, more apoptosis and more strongly inhibited proliferation of PBL of RC as compared to R patients. These results are interpreted as evidence for a sensitizing effect of chemotherapy on radiation cytotoxicity. The possible implications for the risk of second malignant neoplasms are discussed.


Asunto(s)
Cisplatino/uso terapéutico , Neoplasias de los Genitales Femeninos/sangre , Neoplasias de los Genitales Femeninos/radioterapia , Linfocitos/patología , Micronúcleos con Defecto Cromosómico , Neoplasias Primarias Secundarias/sangre , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Cisplatino/farmacología , Femenino , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Humanos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Persona de Mediana Edad , Factores de Riesgo
8.
Environ Mol Mutagen ; 62(7): 422-427, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34296472

RESUMEN

It is well-known that the cytotoxicity and mutagenic effects of high dose rate (HDR) ionizing radiation (IR) are increased by increasing the dose but less is known about the effects of chronic low dose rate (LDR). In vitro, we have shown that in addition to the immediate interaction of IR with DNA (the direct and indirect effects), low doses and chronic LDR exposure induce endogenous oxidative stress. During elevated oxidative stress, reactive oxygen species (ROS) react with DNA modifying its structure. Here, BL6 mice were exposed to IR at LDR and HDR and were then sacrificed 3 hours and 3 weeks after exposure to examine early and late effects of IR. The levels of micronuclei, MN, were determined in bone marrow cells. Our data indicate that the effects of 200 mGy on MN-induction are transient, but 500 and 1000 mGy (both HDR and LDR) lead to increased levels of MN up to 3 weeks after the exposure.


Asunto(s)
Células de la Médula Ósea/patología , Rayos gamma/efectos adversos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Irradiación Corporal Total/efectos adversos , Animales , Células de la Médula Ósea/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Ratones , Ratones Endogámicos C57BL , Pruebas de Micronúcleos
9.
Artículo en Inglés | MEDLINE | ID: mdl-34266630

RESUMEN

In order to assess the health risk of low-dose radiation to radiation professionals, monitoring is performed through chromosomal aberration analysis and micronuclei (MN) analysis. MN formation has drawbacks for monitoring in the low-dose range. Nucleoplasmic bridge (NPB) analysis, with a lower background level, has good dose-response relationships at both high and relatively low dose ranges. Dicentric and ring chromosomes were analyzed in 199 medical radiation professionals, and NPB/MN yields were analyzed in 205 radiation professionals. The effects of sex, age of donor, types of work, and length of service on these cytogenetic endpoints were also analyzed. The yields of the three cytogenetic endpoints were significantly higher in radiation professionals versus controls. Frequencies of dicentric plus ring chromosomes were affected by length of service. NPB frequencies were influenced by type of work and length of service. MN yields were affected not only by types of work and length of service but also by donor sex and age. In conclusion, dicentric plus ring chromosomes, NPB, and MN can be induced by low-dose radiation in radiation professionals. NPB is a potential biomarker to assess the health risk of occupational low-dose radiation exposure.


Asunto(s)
Rayos gamma/efectos adversos , Linfocitos/efectos de la radiación , Exposición Profesional/efectos adversos , Traumatismos por Radiación/genética , Adulto , Anciano , Núcleo Celular/efectos de la radiación , Aberraciones Cromosómicas/efectos de la radiación , Análisis Citogenético/métodos , Citogenética/métodos , Daño del ADN/efectos de la radiación , Femenino , Humanos , Masculino , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Pruebas de Micronúcleos/métodos , Persona de Mediana Edad , Radiación Ionizante , Adulto Joven
10.
Environ Mol Mutagen ; 62(3): 177-184, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33496960

RESUMEN

Most women with breast cancer can become pregnant and give birth while undergoing radiation therapy and breastfeeding is generally not contraindicated. The induction of long-lived reactive species in proteins, such as casein by X-ray radiation and DNA damage to unexposed organisms, has been shown when ingesting irradiated cheese. To determine whether exposing lactating rats to X-rays increases the number of micronucleated erythrocytes (MNEs) in peripheral blood of their unexposed or breastfeeding rat pups, 15 female Wistar rats were divided into three groups: Negative control; Experimental group exposed to X-rays, and group exposed to X-rays plus vitamin C. The mothers of groups 2 and 3 were irradiated for three consecutive days after giving birth, returning them to their respective cages each time to continue lactation. A blood sample was taken from the mothers and pups at 0, 24, and 48 hr. Blood smears were stained with acridine orange to analyze MNEs. In mother rats, the frequency of micronucleated polychromatic erythrocytes (MNPCEs) increased significantly at 24 and 48 hr in both study groups exposed to radiation. Likewise, in rat pups the MNPCE and MNE frequencies increased in both groups with radiation and radiation plus vitamin C at 24 and 48 hr, and a protection from vitamin C was observed. In conclusion, the genotoxic damage produced in rat pups that were lactated by mothers irradiated with X-rays is possibly due to the effect of long-lived reactive species that were formed in the breast milk of female Wistar rats during the irradiation process.


Asunto(s)
Daño del ADN/genética , Eritrocitos/efectos de la radiación , Lactancia/efectos de la radiación , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/radioterapia , Daño del ADN/efectos de la radiación , Eritrocitos/patología , Femenino , Lactancia/genética , Masculino , Pruebas de Micronúcleos , Madres , Embarazo , Ratas , Ratas Wistar , Rayos X/efectos adversos
11.
Genes (Basel) ; 11(9)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957448

RESUMEN

Radioiodine therapy with 131I remains the mainstay of standard treatment for well-differentiated thyroid cancer (DTC). Prognosis is good but concern exists that 131I-emitted ionizing radiation may induce double-strand breaks in extra-thyroidal tissues, increasing the risk of secondary malignancies. We, therefore, sought to evaluate the induction and 2-year persistence of micronuclei (MN) in lymphocytes from 26 131I-treated DTC patients and the potential impact of nine homologous recombination (HR), non-homologous end-joining (NHEJ), and mismatch repair (MMR) polymorphisms on MN levels. MN frequency was determined by the cytokinesis-blocked micronucleus assay while genotyping was performed through pre-designed TaqMan® Assays or conventional PCR-restriction fragment length polymorphism (RFLP). MN levels increased significantly one month after therapy and remained persistently higher than baseline for 2 years. A marked reduction in lymphocyte proliferation capacity was also apparent 2 years after therapy. MLH1 rs1799977 was associated with MN frequency (absolute or net variation) one month after therapy, in two independent groups. Significant associations were also observed for MSH3 rs26279, MSH4 rs5745325, NBN rs1805794, and tumor histotype. Overall, our results suggest that 131I therapy may pose a long-term challenge to cells other than thyrocytes and that the individual genetic profile may influence 131I sensitivity, hence its risk-benefit ratio. Further studies are warranted to confirm the potential utility of these single nucleotide polymorphisms (SNPs) as radiogenomic biomarkers in the personalization of radioiodine therapy.


Asunto(s)
Adenocarcinoma Folicular/patología , Carcinoma Papilar/patología , Reparación del ADN , Radioisótopos de Yodo/uso terapéutico , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Polimorfismo de Nucleótido Simple , Neoplasias de la Tiroides/patología , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/radioterapia , Adulto , Anciano , Carcinoma Papilar/genética , Carcinoma Papilar/radioterapia , Femenino , Estudios de Seguimiento , Humanos , Linfocitos/patología , Linfocitos/efectos de la radiación , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/radioterapia
12.
Biomed Res Int ; 2020: 4703286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337251

RESUMEN

Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.


Asunto(s)
Radiación Cósmica/efectos adversos , Vuelo Espacial , Rayos Ultravioleta , Animales , Astronautas , Carcinogénesis/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Aberraciones Cromosómicas/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Medio Ambiente Extraterrestre , Inestabilidad Genómica/efectos de la radiación , Humanos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Sustancias Protectoras/farmacología , Dosis de Radiación , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/prevención & control , Estrés Psicológico , Ingravidez
13.
Genes Genomics ; 42(6): 673-680, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32314273

RESUMEN

BACKGROUND: Micronuclei (MN), nuclear bud (NBud), and nucleoplasmic bridge (NPB) are suggested as biomarkers for radiation exposure; however, they have not been extensively studied to understand the underlying mechanisms responsible for their formation. OBJECTIVES: To (1) validate NBud and NPB within the cytokinesis-blocked micronucleus (CBMN) assay as biomarkers for radiation exposure and (2) determine the effects of the DNA repair inhibitors, cytosine arabinoside (Ara C) and 3-aminobenzamide (3-AB) on radiation-induced MN, NBud, and NPB formation. METHODS: Human blood samples were irradiated with 0-3 Gy X-rays and subsequently treated with Ara C and 3-AB. CBMN and chromosome aberration assays were carried out to measure MN, NBud, and NPB and dicentric chromosomes, respectively. RESULTS: The frequency of radiation-induced MN, NBud, and NPB increased in a dose-dependent manner. The frequency of MN, NBud, and NPB was highly and positively correlated with the dicentric chromosome, a standard biomarker for biodosimetry (r > 0.98, p < 0.0001). Furthermore, Ara C increased the frequency of MN, NBud, and NPB, whereas 3-AB increased the frequency of MN and NPB, but not NBud. Further, the potentiating effect of Ara C on the frequency of MN, NBud, and NPB was greater than that of 3-AB. CONCLUSION: Our results validate NBuds and NPBs as independent valuable markers of radiation exposure. Additionally, we suggest that different mechanisms are likely involved in the formation of NBuds and NPBs following X-irradiation; however, additional studies are warranted to better understand the contribution of distinct DNA repair pathways to the formation of radiation-induced damages.


Asunto(s)
Benzamidas/farmacología , Citarabina/farmacología , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Adulto , Células Cultivadas , Reparación del ADN/efectos de los fármacos , Femenino , Humanos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Tolerancia a Radiación , Rayos X
14.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102335

RESUMEN

During almost 40 years of use, the micronucleus assay (MN) has become one of the most popular methods to assess genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage. In this minireview, we focus on the position of MN among the other genotoxicity tests, its usefulness in different applications and visibility by international organizations, such as International Atomic Energy Agency, Organization for Economic Co-operation and Development and International Organization for Standardization. In addition, the mechanism of micronuclei formation is discussed. Finally, foreseen directions of the MN development are pointed, such as automation, buccal cells MN and chromothripsis phenomenon.


Asunto(s)
Linfocitos/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos , Mutágenos/farmacología , Daño del ADN , Predicción , Humanos , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Pruebas de Micronúcleos/tendencias , Radiación Ionizante
15.
Artículo en Inglés | MEDLINE | ID: mdl-32087852

RESUMEN

We have assessed chromosome-type aberrations and micronuclei in the peripheral lymphocytes of personnel working with C-arm fluoroscopy, multi-slice CT-scan, lithotripsy, and digital radiology medical procedures. The study population comprised of 46 exposed workers and 35 controls matched for age, gender, and other confounding factors. Chromosome-type aberrations and micronuclei were analyzed and compared with occupational dosimetry data. The highest frequency of both chromosome aberrations (1.62 CA/100 cells) and MN (MN = 7.47 ± 2.55) was observed in the operating room group. According to occupational dosimetry, surgeons and medical staff received 0-2.99 mSv over the previous year, well below the limit established by the International Committee on Radiation Protection. An increased level of chromosomal aberrations was observed among workers exposed in the operating rooms. We recommend that operating room radiation safety programs be improved and better supervised, in particular for orthopedic surgeons and personnel performing fluoroscopically guided procedures.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Fluoroscopía/efectos adversos , Litotricia/efectos adversos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Exposición Profesional/análisis , Tomografía Computarizada por Rayos X/efectos adversos , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Cuerpo Médico de Hospitales , Persona de Mediana Edad , Quirófanos , Dosis de Radiación
16.
Int J Radiat Biol ; 96(2): 197-205, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31633434

RESUMEN

Purpose: To examine the phenomena governing the quantitative relationships between acentric fragments and micronuclei and understand which formulas are useful for curve-fitting of experimental data of micronuclei.Materials and methods: A stochastic model, including the phenomena of inclusion, coalescence and culling out, was developed and applied to experimental data.Results: Probabilities for inclusion/exclusion of acentric fragments into daughter nuclei and for coalescence of many fragments into a single micronucleus were found to be not cell type-specific. The biological basis for this result is explained with the lack of DNA damage checkpoints between metaphase (when acentric fragments are scored) and telophase (when micronuclei are formed). The phenomenon of "culling out" cells with high numbers of acentric fragments is also described, along with its proposed biological mechanism.Conclusions: Apart from complex formulas that describe these phenomena, we discuss which simple formulas can best approximate them and when is the case to use them for curve fitting of micronuclei data.


Asunto(s)
Núcleo Celular/metabolismo , Aberraciones Cromosómicas/efectos de la radiación , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Pruebas de Micronúcleos , Apoptosis , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/efectos de la radiación , Fibroblastos/efectos de la radiación , Humanos , Cinética , Modelos Lineales , Metafase , Probabilidad , Telofase
17.
Probl Radiac Med Radiobiol ; 24: 220-234, 2019 Dec.
Artículo en Inglés, Ucraniano | MEDLINE | ID: mdl-31841469

RESUMEN

OBJECTIVE: Rat liver stem-like epithelial cells (WB-F344) that under certain conditions may differentiate into hepa- tocyte and biliary lineages were subjected to acute X-irradiation with the aim to examine cell cycle peculiarities dur- ing the course of survival. MATERIALS AND METHODS: Suspensions of WB-F344 cells that grew as a monolayer and reached sub-confluence were irradiated with 1, 5, and 10 Gy of X-rays (2 Gy/min). As an intact control, sham-irradiated cells were used. After irra- diation, cells were plated into 25-cm2 tissue culture flasks to culture them for over several days without reaching contact inhibition. On days 1, 2, 3, and 5 post-irradiation, cells were harvested and examined for nuclear morpholo- gy and DNA ploidy by stoichiometric toluidine blue reaction and image cytometry. On days 7 and 9 post-irradiation, only heavily irradiated (10 Gy) cells were examined. Also, 10 Gy-irradiated cells were chosen for immunofluorescence staining to monitor persistence of DNA lesions (γ-H2AX), cell proliferation (Ki-67), and self-renewal factors charac- teristic for stem cells (OCT4 and NANOG). RESULTS: Radioresistance of WB-F344 cells was evidenced by the findings that they do not undergo rapid and mas- sive cell death that in fact was weakly manifested as apoptotic even in heavily irradiated cells. Instead, there was cell cycle progression delay accompanied by polyploidization (via Ki-67-positive mitotic slippage or via impaired cytokinesis) and micronucleation in a dose-dependent manner, although micronucleation to some extent went ahead of polyploidization. Polyploid cells amenable for recovering from DNA damage can mitotically depolyploidize. Many micronuclei contained γ-H2AX clusters, suggesting isolation of severely damaged DNA fragments. Both factors, OCT4 and NANOG, were expressed in the intact control, but became enhanced after irradiation. CONCLUSIONS: Although the fact of micronucleation is indicative of genotoxic effect, WB-F344 cells can probably escape cell death via sorting of damaged DNA by micronuclei. Induction of polyploidy in these cells can be adaptive to promote cell survival and tissue regeneration with possible involvement of self-renewal mechanism.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de la radiación , Hígado/efectos de la radiación , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Poliploidía , Tolerancia a Radiación , Rayos X/efectos adversos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/patología , Hígado/patología , Dosis de Radiación , Ratas , Células Madre/patología , Células Madre/efectos de la radiación
18.
Hum Exp Toxicol ; 38(10): 1195-1211, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31256688

RESUMEN

The present study was premeditated to examine the radioprotective effects of aqueous Aloe vera gel extract against whole-body X-ray irradiation-induced hematological alterations and splenic tissue injury in mice. Healthy male balb/c mice were divided into four groups: group 1, control; group 2, A. vera (50 mg/kg body weight) administered per oral on alternate days for 30 days (15 times); group 3, X-ray exposure of 2 Gy (0.25 Gy twice a day for four consecutive days in the last week of the experimental protocol); and group 4, A. vera + X-ray. X-ray exposure caused alterations in histoarchitecture of spleen along with enhanced clastogenic damage as assessed by micronucleus formation and apoptotic index. Irradiation caused an elevation in proinflammatory cytokines like tumor necrosis factor and interleukin-6, total leucocyte counts, neutrophil counts and decreased platelet counts along with unaltered red blood cell counts and hemoglobin. Irradiation also caused an elevation in reactive oxygen species (ROS), lipid peroxidation (LPO) levels, lactate dehydrogenase activity and alterations in enzymatic and nonenzymatic antioxidant defense mechanism in plasma and spleen. However, administration of A. vera gel extract ameliorated X-ray irradiation-induced elevation in ROS/LPO levels, histopathological and clastogenic damage. It also modulated biochemical indices, inflammatory markers, and hematological parameters. These results collectively indicated that the A. vera gel extract offers protection against whole-body X-ray exposure by virtue of its antioxidant, anti-inflammatory and anti-apoptotic potential.


Asunto(s)
Apoptosis/efectos de los fármacos , Leucocitos/efectos de los fármacos , Preparaciones de Plantas/farmacología , Traumatismos Experimentales por Radiación/sangre , Traumatismos Experimentales por Radiación/prevención & control , Bazo/efectos de los fármacos , Administración Oral , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de la radiación , Recuento de Leucocitos , Leucocitos/efectos de la radiación , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Masculino , Ratones Endogámicos BALB C , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Recuento de Plaquetas , Traumatismos Experimentales por Radiación/patología , Bazo/patología , Bazo/efectos de la radiación , Irradiación Corporal Total
19.
Methods Mol Biol ; 1984: 23-29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31267416

RESUMEN

Micronuclei are formed by broken chromosome fragments or chromosomes, which were not appropriately separated into the daughter cells' nuclei after division. The appearance of micronuclei is typically a sign of genotoxic events. Majority of micronuclei are formed by broken acentric fragments, but some micronuclei are formed by centric chromosome fragments which were not appropriately separated to daughter cells' nuclei. Because researchers only need to measure visible micronuclei in binucleated cells, micronuclei analysis is much easier than metaphase chromosome aberration analysis discussed in the previous chapter. This method does not require professional training compared to metaphase chromosome aberration analysis. In addition, one can analyze many samples in a relatively short time. Not only ionizing radiation, but other genotoxic stress also induces micronuclei formation. The background frequency of micronuclei is noticeably higher than chromosome aberrations. But researchers can easily analyze 300-1000 binucleated cells per data point to obtain statistically significant differences of irradiated samples. In this chapter, we will discuss the advantages and preparation of micronuclei samples.


Asunto(s)
Micronúcleos con Defecto Cromosómico/efectos de la radiación , Pruebas de Micronúcleos/métodos , Radiación Ionizante , Animales , Células CHO , Cricetinae , Cricetulus
20.
J Cancer Res Ther ; 15(3): 512-516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31169212

RESUMEN

INTRODUCTION: Ionizing radiations produce free radicals which are often responsible for DNA damage or cell death. Grape seed extract (GSE) is a natural compound having an antioxidant that protects DNA, lipids, and proteins from free radical damages. In this study, radioprotective effect of the GSE has been investigated in mouse bone marrow cells using micronucleus test. MATERIALS AND METHODS: Four groups of mice were investigated in this study: Mice in Group 1 were subjected to injection of distilled water with no irradiation. Mice in Group 2 were exposed to 3 Gy gamma radiation after the injection of distillated water. Mice in Group 3 were injected with 200 mg/kg of the GSE without any irradiation. In another group, mice were exposed to three gray gamma irradiation after the injection of GSE. Animals were killed, and slides were prepared from the bone marrow cells 24 h after irradiation. The slides were stained with May Grunwald-Giemsa method and analyzed microscopically. The frequency of the micronucleated polychromatic erythrocytes (MnPCEs), micronucleated normochromatic erythrocyte (MnNCEs), and polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte (PCE/PCE + NCE) ratios was calculated. RESULTS: Injection of GSE significantly decreased the frequency of MnPCEs (P < 0.0001) and MnNCEs (P < 0.05) and increased the ratio of PCE/PCE + NCE (P < 0.0001) compared to the irradiated control group. DISCUSSION AND CONCLUSIONS: GSE could reduce clastogenic and cytotoxic effects of gamma irradiation in mice bone marrow cells; therefore, it can be concluded that the GSE is a herbal compound with radioprotective effects against gamma irradiation. Free radical scavenging and the antioxidant effects of the GSE probably are responsible mechanisms for the GSE radioprotective effects.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de la radiación , Rayos gamma , Extracto de Semillas de Uva/farmacología , Protectores contra Radiación/farmacología , Animales , Células de la Médula Ósea/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/efectos de la radiación , Rayos gamma/efectos adversos , Extracto de Semillas de Uva/química , Masculino , Ratones , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Pruebas de Micronúcleos , Protectores contra Radiación/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...