Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 10(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34944025

RESUMEN

There are numerous studies that investigate the effects of static magnetic fields (SMFs) on osteoblasts and osteoclasts. However, although osteocytes are the most abundant cell type in bone tissue, there are few studies on the biological effects of osteocytes under magnetic fields. Iron is a necessary microelement that is involved in numerous life activities in cells. Studies have shown that high static magnetic fields (HiSMF) can regulate cellular iron metabolism. To illustrate the effect of HiSMF on activities of osteocytes, and whether iron is involved in this process, HiSMF of 16 tesla (T) was used, and the changes in cellular morphology, cytoskeleton, function-related protein expression, secretion of various cytokines, and iron metabolism in osteocytes under HiSMF were studied. In addition, the biological effects of HiSMF combined with iron preparation and iron chelator on osteocytes were also investigated. The results showed that HiSMF promoted cellular viability, decreased apoptosis, increased the fractal dimension of the cytoskeleton, altered the secretion of cytokines, and increased iron levels in osteocytes. Moreover, it was found that the biological effects of osteocytes under HiSMF are attenuated or enhanced by treatment with a certain concentration of iron. These data suggest that HiSMF-regulated cellular iron metabolism may be involved in altering the biological effects of osteocytes under HiSMF exposure.


Asunto(s)
Apoptosis/genética , Supervivencia Celular/genética , Hierro/metabolismo , Osteocitos/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Hierro/efectos de la radiación , Campos Magnéticos/efectos adversos , Ratones , Microtúbulos/genética , Microtúbulos/efectos de la radiación , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Osteoclastos/metabolismo , Osteoclastos/efectos de la radiación , Osteocitos/metabolismo , Células RAW 264.7
2.
BMC Cancer ; 21(1): 981, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470602

RESUMEN

BACKGROUND: Paclitaxel (Taxol) is a microtubule-stabilizing drug used to treat several solid tumors, including ovarian, breast, non-small cell lung, and pancreatic cancers. The current treatment of ovarian cancer is chemotherapy using paclitaxel in combination with carboplatin as a frontline agent, and paclitaxel is also used in salvage treatment as a second line drug with a dose intensive regimen following recurrence. More recently, a dose dense approach for paclitaxel has been used to treat metastatic breast cancer with success. Paclitaxel binds to beta tubulin with high affinity and stabilizes microtubule bundles. As a consequence of targeting microtubules, paclitaxel kills cancer cells through inhibition of mitosis, causing mitotic catastrophes, and by additional, not yet well defined non-mitotic mechanism(s). RESULTS: In exploring methods to modulate activity of paclitaxel in causing cancer cell death, we unexpectedly found that a brief exposure of paclitaxel-treated cells in culture to low intensity ultrasound waves prevented the paclitaxel-induced cytotoxicity and death of the cancer cells. The treatment with ultrasound shock waves was found to transiently disrupt the microtubule cytoskeleton and to eliminate paclitaxel-induced rigid microtubule bundles. When cellular microtubules were labelled with a fluorescent paclitaxel analog, exposure to ultrasound waves led to the disassembly of the labeled microtubules and localization of the signals to perinuclear compartments, which were determined to be lysosomes. CONCLUSIONS: We suggest that ultrasound disrupts the paclitaxel-induced rigid microtubule cytoskeleton, generating paclitaxel bound fragments that undergo degradation. A new microtubule network forms from tubulins that are not bound by paclitaxel. Hence, ultrasound shock waves are able to abolish paclitaxel impact on microtubules. Thus, our results demonstrate that a brief exposure to low intensity ultrasound can reduce and/or eliminate cytotoxicity associated with paclitaxel treatment of cancer cells in cultures.


Asunto(s)
Neoplasias de la Mama/patología , Microtúbulos/patología , Mitosis , Neoplasias Ováricas/patología , Paclitaxel/farmacología , Ondas Ultrasónicas , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Proliferación Celular , Citoesqueleto/metabolismo , Femenino , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de la radiación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/radioterapia , Tubulina (Proteína)/metabolismo , Células Tumorales Cultivadas
3.
Toxicology ; 458: 152841, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34216699

RESUMEN

The cardiotoxicity of various anticancer therapies, including radiotherapy, can lead to cardiovascular complications. These complications can range from damaging cardiac tissues within the irradiation field to increasing the long-term risks of developing heart failure, coronary artery disease, and myocardial infarction. We analyzed radiation-induced metabolites capable of mediating critical biological processes, such as inflammation, senescence, and apoptosis. Previously, by applying QTOF-MASS analysis to irradiated human fibroblasts, we identified that metabolite sets of lysophosphatidylcholine (LPC) were increased in these cells. In this study, radiation-induced LPC accumulation in human aortic endothelial cells (HAECs) increased reactive oxygen species (ROS) production and senescence-associated-beta-galactosidase staining, in addition to decreasing their tube-forming ability. Knockdown of lipoprotein-associated phospholipase A2 (Lp-PLA2) with small interfering RNA (siRNA) inhibited the increased LPC production induced by radiation, and reduced the radiation-induced cell damage produced by ROS and oxidized low-density lipoprotein (LDL). Lp-PLA2 depletion abolished the induction of proinflammatory factors, such as interleukin 1ß, tumor necrosis factor-alpha, matrix metalloproteinase 2, and matrix metalloproteinase 9, as well as adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and E-selection. Likewise, we showed that Lp-PLA2 expression was upregulated in the vasculature of irradiated rat, resulting in increased LPC production and LDL oxidation. Our data demonstrate that radiation-induced LPC production is a potential risk factor for cardiotoxicity that is mediated by Lp-PLA2 activity, suggesting that LPC and Lp-PLA2 offer potential diagnostic and therapeutic approaches to cardiovascular damage during radiotherapy.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/efectos de la radiación , Células Endoteliales/patología , Células Endoteliales/efectos de la radiación , Lisofosfatidilcolinas/metabolismo , Fosfolipasas A2/metabolismo , Fosfolipasas A2/efectos de la radiación , Animales , Aorta/patología , Aorta/efectos de la radiación , Citocinas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de la radiación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/efectos de la radiación , Radiación Ionizante , Ratas , Ratas Endogámicas F344 , Especies Reactivas de Oxígeno/metabolismo
4.
Front Immunol ; 12: 649600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135890

RESUMEN

Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.


Asunto(s)
Endocitosis/inmunología , Macrófagos/inmunología , Microtúbulos/metabolismo , Pinocitosis/inmunología , Proteínas de Unión al GTP rab/metabolismo , Animales , Endocitosis/efectos de los fármacos , Endocitosis/efectos de la radiación , Aparato de Golgi/metabolismo , Microscopía Intravital , Luz , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Microtúbulos/inmunología , Microtúbulos/efectos de la radiación , Neuropéptidos/genética , Neuropéptidos/metabolismo , Optogenética , Pinocitosis/efectos de los fármacos , Pinocitosis/efectos de la radiación , Células RAW 264.7 , Acetato de Tetradecanoilforbol/farmacología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
5.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068980

RESUMEN

Ultraviolet (UV) exposure has been linked to skin damage and carcinogenesis, but recently UVB has been proposed as a therapeutic approach for cancer. Herein, we investigated the cellular and molecular effects of UVB in immortal and tumorigenic HPV positive and negative cells. Cells were irradiated with 220.5 to 1102.5 J/m2 of UVB and cell proliferation was evaluated by crystal violet, while cell cycle arrest and apoptosis analysis were performed through flow cytometry. UVB effect on cells was recorded at 661.5 J/m2 and it was exacerbated at 1102.5 J/m2. All cell lines were affected by proliferation inhibition, cell cycle ablation and apoptosis induction, with different degrees depending on tumorigenesis level or HPV type. Analysis of the well-known UV-responsive p53, E2F1 and microtubules system proteins was performed in SiHa cells in response to UVB through Western-blotting assays. E2F1 and the Microtubule-associated protein 2 (MAP2) expression decrease correlated with cellular processes alteration while p53 and Microtubule-associated Protein 1S (MAP1S) expression switch was observed since 882 J/m2, suggesting they were required under more severe cellular damage. However, expression transition of α-Tubulin3C and ß-Tubulin was abruptly noticed until 1102.5 J/m2 and particularly, γ-Tubulin protein expression remained without alteration. This study provides insights into the effect of UVB in cervical cancer cell lines.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Microtúbulos/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta , Neoplasias del Cuello Uterino/patología , Apoptosis , Ciclo Celular , Proliferación Celular , Factor de Transcripción E2F1/genética , Femenino , Humanos , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/radioterapia
6.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760136

RESUMEN

Osteoblasts are sensitive to ionizing radiation. The small GTPase RhoA and its effector Rho­associated protein kinase (ROCK) are critical to several cellular functions, including cytoskeleton reorganization, cell survival, and cell differentiation. However, whether the RhoA/ROCK signaling pathway is involved in the regulation of osteoblast cytoskeleton reorganization and differentiation induced by low­dose X­ray irradiation remains to be determined. The aim of the present study was to investigate the role of the RhoA/ROCK signaling pathway in mediating differentiation of osteoblasts and reorganization of the cytoskeleton under low­dose X­ray irradiation. Osteoblasts were pretreated with the ROCK kinase­specific inhibitor (Y­27632) before exposure to low­dose X­ray irradiation. The changes of F­actin in MC3T3 cells were observed at different time points following X­ray irradiation. Cell Counting Kit­8 assay, alkaline phosphatase activity, Alizarin red staining and western blotting were used to detect the proliferation and differentiation of osteoblasts after 0.5­Gy X­ray irradiation. In the present study, low­dose X­ray irradiation promoted the expression of genes associated with the cytoskeleton reorganization. Indeed, the results showed that, 0.5­Gy X­ray irradiation can induce reorganization of cytoskeleton and promote differentiation of osteoblasts through the RhoA/ROCK signaling pathway. Additionally, inhibiting ROCK activity blocked low­dose X­ray irradiation­induced LIMK2 phosphorylation, stress fiber formation and cell differentiation. Thus, these results demonstrated the excitatory effects of low­dose X­ray irradiation on MC3T3­E1 cells, including reorganization of the cytoskeleton and differentiation of osteoblasts.


Asunto(s)
Citoesqueleto de Actina/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Quinasas Lim/genética , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/genética , Células 3T3 , Citoesqueleto de Actina/genética , Amidas/farmacología , Animales , Diferenciación Celular/genética , Humanos , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Microtúbulos/efectos de la radiación , Osteoblastos/efectos de los fármacos , Osteoblastos/efectos de la radiación , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Transducción de Señal/efectos de la radiación , Rayos X/efectos adversos , Quinasas Asociadas a rho/antagonistas & inhibidores
7.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404607

RESUMEN

DNA double-strand breaks (DSBs) are mainly repaired by c-NHEJ and HR pathways. The enhanced DSB mobility after DNA damage is critical for efficient DSB repair. Although microtubule dynamics have been shown to regulate DSB mobility, the reverse effect of DSBs to microtubule dynamics remains elusive. Here, we uncovered a novel DSB-induced microtubule dynamics stress response (DMSR), which promotes DSB mobility and facilitates c-NHEJ repair. DMSR is accompanied by interphase centrosome maturation, which occurs in a DNA-PK-AKT-dependent manner. Depletion of PCM proteins attenuates DMSR and the mobility of DSBs, resulting in delayed c-NHEJ. Remarkably, DMSR occurs only in G1 or G0 cells and lasts around 6 h. Both inhibition of DNA-PK and depletion of 53BP1 abolish DMSR. Taken together, our study reveals a positive DNA repair mechanism in G1 or G0 cells in which DSBs actively promote microtubule dynamics and facilitate the c-NHEJ process.


Asunto(s)
Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Centrosoma/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades , Fase G1 , Humanos , Interfase , Microtúbulos/efectos de la radiación , Modelos Biológicos , Polimerizacion , Radiación Ionizante , Fase de Descanso del Ciclo Celular , Estrés Fisiológico , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
8.
Cell Chem Biol ; 28(2): 228-241.e6, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33275880

RESUMEN

Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP/YFP imaging and are metabolically labile, posing severe limitations for biological use. We rationally designed a photoswitchable "SBT" scaffold to overcome these problems, then derivatized it to create exceptionally metabolically robust and fully GFP/YFP-orthogonal "SBTub" photopharmaceutical tubulin inhibitors. Lead compound SBTub3 allows temporally reversible, cell-precise, and even subcellularly precise photomodulation of microtubule dynamics, organization, and microtubule-dependent processes. By overcoming the previous limitations of microtubule photopharmaceuticals, SBTubs offer powerful applications in cell biology, and their robustness and druglikeness are favorable for intracellular biological control in in vivo applications. We furthermore expect that the robustness and imaging orthogonality of the SBT scaffold will inspire other derivatizations directed at extending the photocontrol of a range of other biological targets.


Asunto(s)
Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Células A549 , Animales , Compuestos Azo/química , Compuestos Azo/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/efectos de la radiación , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de la radiación , Imagen Óptica , Optogenética , Procesos Fotoquímicos , Ratas Wistar
9.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32491151

RESUMEN

The stress-induced c-Jun N-terminal kinase (JNK) controls microtubule dynamics by enhancing both microtubule growth and rescues. Here, we show that upon cell stress, JNK directly phosphorylates the microtubule rescue factor CLIP-170 in its microtubule-binding domain to increase its rescue-promoting activity. Phosphomimetic versions of CLIP-170 enhance its ability to promote rescue events in vitro and in cells. Furthermore, while phosphomimetic mutations do not alter CLIP-170's capability to form comets at growing microtubule ends, both phosphomimetic mutations and JNK activation increase the occurrence of CLIP-170 remnants on the microtubule lattice at the rear of comets. As the CLIP-170 remnants, which are potential sites of microtubule rescue, display a shorter lifetime when CLIP-170 is phosphorylated, we propose that instead of acting at the time of rescue occurrence, CLIP-170 would rather contribute in preparing the microtubule lattice for future rescues at these predetermined sites.


Asunto(s)
MAP Quinasa Quinasa 4/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Estrés Fisiológico/genética , Animales , Anisomicina/farmacología , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , MAP Quinasa Quinasa 4/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de la radiación , Microtúbulos/ultraestructura , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Cloruro de Sodio/farmacología , Rayos Ultravioleta
10.
Nature ; 572(7768): 224-229, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391558

RESUMEN

Living systems are capable of locomotion, reconfiguration and replication. To perform these tasks, cells spatiotemporally coordinate the interactions of force-generating, 'active' molecules that create and manipulate non-equilibrium structures and force fields of up to millimetre length scales1-3. Experimental active-matter systems of biological or synthetic molecules are capable of spontaneously organizing into structures4,5 and generating global flows6-9. However, these experimental systems lack the spatiotemporal control found in cells, limiting their utility for studying non-equilibrium phenomena and bioinspired engineering. Here we uncover non-equilibrium phenomena and principles of boundary-mediated control by optically modulating structures and fluid flow in an engineered system of active biomolecules. Our system consists of purified microtubules and light-activatable motor proteins that crosslink and organize the microtubules into distinct structures upon illumination. We develop basic operations-defined as sets of light patterns-to create, move and merge the microtubule structures. By combining these operations, we create microtubule networks that span several hundred micrometres in length and contract at speeds up to an order of magnitude higher than the speed of an individual motor protein. We manipulate these contractile networks to generate and sculpt persistent fluid flows. The principles of boundary-mediated control that we uncover may be used to study emergent cellular structures and forces and to develop programmable active-matter devices.


Asunto(s)
Bioingeniería/métodos , Cinesinas/metabolismo , Cinesinas/efectos de la radiación , Luz , Microtúbulos/química , Microtúbulos/efectos de la radiación , Cinesinas/química , Microtúbulos/metabolismo
11.
Cell Cycle ; 18(20): 2660-2671, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31416397

RESUMEN

DNA repair proteins have been found to localize to the centrosomes and defects in these proteins cause centrosome abnormality. Centrobin is a centriole-associated protein that is required for centriole duplication and microtubule stability. A recent study revealed that centrobin is a candidate substrate for ATM/ATR kinases. However, whether centrobin is involved in DNA damage response (DDR) remains unexplored. Here we show that centrobin is phosphorylated after UV exposure and that the phosphorylation is detected exclusively in the detergent/DNase I-resistant nuclear matrix. UV-induced phosphorylation of centrobin is largely dependent on ATR activity. Centrobin-depleted cells show impaired DNA damage-induced microtubule stabilization and increased sensitivity to UV radiation. Interestingly, depletion of centrobin leads to defective homologous recombination (HR) repair, which is reversed by expression of wild-type centrobin. Taken together, these results strongly suggest that centrobin plays an important role in DDR.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Rayos Ultravioleta , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cafeína/farmacología , Proteínas de Ciclo Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Centriolos/metabolismo , Células HeLa , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación , Nocodazol/farmacología , Fosfoproteínas Fosfatasas/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/efectos de la radiación , Transfección
12.
Nat Cell Biol ; 21(6): 768-777, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061466

RESUMEN

Controlling cellular processes with light can help elucidate their underlying mechanisms. Here we present zapalog, a small-molecule dimerizer that undergoes photolysis when exposed to blue light. Zapalog dimerizes any two proteins tagged with the FKBP and DHFR domains until exposure to light causes its photolysis. Dimerization can be repeatedly restored with uncleaved zapalog. We implement this method to investigate mitochondrial motility and positioning in cultured neurons. Using zapalog, we tether mitochondria to constitutively active kinesin motors, forcing them down the axon towards microtubule (+) ends until their instantaneous release via blue light, which results in full restoration of their endogenous motility. We find that one-third of stationary mitochondria cannot be pulled away from their position and that these firmly anchored mitochondria preferentially localize to VGLUT1-positive presynapses. Furthermore, inhibition of actin polymerization with latrunculin A reduces this firmly anchored pool. On release from exogenous motors, mitochondria are preferentially recaptured at presynapses.


Asunto(s)
Axones/metabolismo , Mitocondrias/genética , Fotólisis , Multimerización de Proteína/efectos de la radiación , Actinas/antagonistas & inhibidores , Animales , Axones/química , Axones/efectos de la radiación , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células COS , Chlorocebus aethiops , Cinesinas/química , Luz , Microtúbulos/genética , Microtúbulos/efectos de la radiación , Mitocondrias/química , Mitocondrias/efectos de la radiación , Neuronas/química , Neuronas/efectos de la radiación , Polimerizacion/efectos de los fármacos , Dominios Proteicos/genética , Dominios Proteicos/efectos de la radiación , Multimerización de Proteína/genética , Sinapsis/química , Sinapsis/genética , Sinapsis/efectos de la radiación , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/genética , Tiazolidinas/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/genética
13.
Methods Mol Biol ; 1924: 191-198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694476

RESUMEN

The distribution patterns of the cytoskeleton, i.e., microtubules and actin filaments, in the apical part of protonemal cells are unique and differ from those of other apical growing cells, such as moss and liverwort protonemata, fungal hyphae, and angiosperm pollen tubes. A ring structure composed of microtubules and actin filaments exists at the basal part of the apical dome of protonemal cells. The structure may control the protonemal diameter and growth direction. Herein, the methods of staining of both microtubules and actin filaments are described.


Asunto(s)
Adiantum/fisiología , Citoesqueleto/metabolismo , Luz , Fototropismo/fisiología , Citoesqueleto de Actina/metabolismo , Adiantum/metabolismo , Adiantum/efectos de la radiación , Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación
14.
J Cell Biol ; 218(1): 190-205, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30377221

RESUMEN

Central to the building and reorganizing cytoskeletal arrays is creation of new polymers. Although nucleation has been the major focus of study for microtubule generation, severing has been proposed as an alternative mechanism to create new polymers, a mechanism recently shown to drive the reorientation of cortical arrays of higher plants in response to blue light perception. Severing produces new plus ends behind the stabilizing GTP-cap. An important and unanswered question is how these ends are stabilized in vivo to promote net microtubule generation. Here we identify the conserved protein CLASP as a potent stabilizer of new plus ends created by katanin severing in plant cells. Clasp mutants are defective in cortical array reorientation. In these mutants, both rescue of shrinking plus ends and the stabilization of plus ends immediately after severing are reduced. Computational modeling reveals that it is the specific stabilization of severed ends that best explains CLASP's function in promoting microtubule amplification by severing and array reorientation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Katanina/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Estadísticos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Reporteros , Katanina/metabolismo , Luz , Fototransducción , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación , Microtúbulos/ultraestructura , Mutación , Células Vegetales/metabolismo , Células Vegetales/efectos de la radiación , Células Vegetales/ultraestructura , Estabilidad Proteica , Procesos Estocásticos , Proteína Fluorescente Roja
15.
Nat Cell Biol ; 20(3): 252-261, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29379139

RESUMEN

End-binding proteins (EBs) are adaptors that recruit functionally diverse microtubule plus-end-tracking proteins (+TIPs) to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue-light-sensitive protein-protein interaction module between the microtubule-binding and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. By contrast, blue-light-mediated π-EB1 photodissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (also known as ch-TOG and XMAP215). Local π-EB1 photodissociation allows subcellular control of microtubule dynamics at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as a template to optically control other intracellular protein activities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Optogenética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/efectos de la radiación , Microtúbulos/genética , Microtúbulos/patología , Microtúbulos/efectos de la radiación , Fotólisis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo
16.
Plant Physiol ; 176(1): 678-690, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167353

RESUMEN

Precise regulation of hypocotyl cell elongation is essential for plant growth and survival. Light suppresses hypocotyl elongation by degrading transcription factor phytochrome-interacting factor 3 (PIF3), whereas the phytohormone ethylene promotes hypocotyl elongation by activating PIF3. However, the underlying mechanisms regarding how these two pathways coordinate downstream effectors to mediate hypocotyl elongation are largely unclear. In this study, we identified the novel Microtubule-Destabilizing Protein 60 (MDP60), which plays a positive role in hypocotyl cell elongation in Arabidopsis (Arabidopsis thaliana); this effect is mediated through PIF3. Ethylene signaling up-regulates MDP60 expression via PIF3 binding to the MDP60 promoter. MDP60 loss-of-function mutants exhibit much shorter hypocotyls, whereas MDP60 overexpression significantly promotes hypocotyl cell elongation when grown in light compared to the control. MDP60 protein binds to microtubules in vitro and in vivo. The organization of cortical microtubules was significantly disrupted in mdp60 mutant cells and MDP60-overexpressing seedlings. These findings indicate that MDP60 is an important mediator of hypocotyl cell elongation. This study reveals a mechanism in which light and ethylene signaling coordinate MDP60 expression to modulate hypocotyl cell elongation by altering cortical microtubules in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Etilenos/farmacología , Hipocótilo/citología , Luz , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de la radiación , Modelos Biológicos , Epidermis de la Planta/citología , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
17.
Biochem Biophys Res Commun ; 493(1): 388-392, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28887032

RESUMEN

Recent studies suggested a link between diversity of beta tubulin isotypes in microtubule structures and the regulatory roles that they play not only on microtubules' intrinsic dynamic, but also on the translocation characteristics of some of the molecular motors along microtubules. Remarkably, unlike porcine brain microtubules, MCF7 microtubules are structured from a different beta tubulin distribution. These types of cancer microtubules show a relatively stable and slow dynamic. In addition, the translocation parameters of some molecular motors are distinctly different along MCF7 as compared to those parameters on brain microtubules. It is known that the diversity of beta tubulin isotypes differ predominantly in the specifications and the electric charge of their carboxy-terminal tails. A key question is to identify whether the negative electrostatic charge of tubulin isotypes and, consequently, microtubules, can potentially be considered as one of the sources of functional differences in MCF7 vs. brain microtubules. We tested this possibility experimentally by monitoring the electro-orientation of these two types of microtubules inside a uniform electric field. Through this evaluation, we quantified and compared the average normalized polarization coefficient of MCF7 vs. Porcine brain microtubules. The higher value obtained for the polarization of MCF7 microtubules, which is associated to the higher negative charge of these types of microtubules, is significant as it can further explain the slow intrinsic dynamic that has been recently reported for single MCF7 microtubules in vitro. Furthermore, it can be potentially considered as a factor that can directly impact the translocation parameters of some molecular motors along MCF7 microtubules, by altering the mutual electrostatic interactions between microtubules and molecular motors.


Asunto(s)
Química Encefálica , Campos Electromagnéticos , Microtúbulos/efectos de la radiación , Microtúbulos/ultraestructura , Proteínas Motoras Moleculares/efectos de la radiación , Proteínas Motoras Moleculares/ultraestructura , Electricidad Estática , Animales , Humanos , Células MCF-7 , Microtúbulos/química , Proteínas Motoras Moleculares/química , Movimiento (Física) , Dosímetros de Radiación , Porcinos
18.
J Cell Biol ; 215(6): 801-821, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27956467

RESUMEN

The Caenorhabditis elegans SUN domain protein, UNC-84, functions in nuclear migration and anchorage in the soma. We discovered a novel role for UNC-84 in DNA damage repair and meiotic recombination. Loss of UNC-84 leads to defects in the loading and disassembly of the recombinase RAD-51. Similar to mutations in Fanconi anemia (FA) genes, unc-84 mutants and human cells depleted of Sun-1 are sensitive to DNA cross-linking agents, and sensitivity is rescued by the inactivation of nonhomologous end joining (NHEJ). UNC-84 also recruits FA nuclease FAN-1 to the nucleoplasm, suggesting that UNC-84 both alters the extent of repair by NHEJ and promotes the processing of cross-links by FAN-1. UNC-84 interacts with the KASH protein ZYG-12 for DNA damage repair. Furthermore, the microtubule network and interaction with the nucleoskeleton are important for repair, suggesting that a functional linker of nucleoskeleton and cytoskeleton (LINC) complex is required. We propose that LINC complexes serve a conserved role in DNA repair through both the inhibition of NHEJ and the promotion of homologous recombination at sites of chromosomal breaks.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga , Complejos Multiproteicos/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Cisplatino/farmacología , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Células Germinativas/citología , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Células Germinativas/efectos de la radiación , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Humanos , Hidroxiurea/farmacología , Meiosis/efectos de los fármacos , Meiosis/efectos de la radiación , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación , Modelos Biológicos , Proteínas Nucleares/metabolismo , Polimerizacion/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Radiación Ionizante
19.
Lab Chip ; 16(24): 4702-4709, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27785507

RESUMEN

Artificial control of bio-nanomachines should have a major impact on the development of controllable transport systems for specific cargo transport on chips. Precise spatiotemporal control and local regulation of the bio-motor activity will, however, be necessary if we are to accomplish such a goal. In this study, we exploited the photoswitching properties of azobenzene-based high-energy molecules and inhibitors to control a single kinesin-driven microtubule that has potential to work as a nanocarrier for molecular cargos. In particular, we could influence the local concentration and dispersion of the microtubules at any desired position and time by irradiating a local area of the motility system at one wavelength, while irradiating the entire area at another wavelength, to enrich either cis or trans isomers of photoswitches in the selected region. Furthermore, various regulations (e.g., transporting, bending, breaking) of single microtubules were possible while almost arresting ambient microtubules-all without the need for any surface patterning.


Asunto(s)
Cinesinas/metabolismo , Luz , Fenómenos Mecánicos , Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación , Fenómenos Biomecánicos , Humanos , Análisis Espacio-Temporal
20.
DNA Cell Biol ; 35(3): 140-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26717101

RESUMEN

The tumor suppressor, cylindromatosis (CYLD), is a negative regulator of NF-κB signaling by removing lysine 63-linked ubiquitin chains from multiple NF-κB signaling components, including TRAF2, TRAF6, and NEMO. How CYLD itself is regulated, however, remains yet to be characterized. In this study, we present the first evidence that UV irradiation is able to induce CYLD translocation from the cytoplasm to microtubules and that the cytoskeleton-associated CYLD is subject to posttranslational modification and degradation in a proteasome-independent manner. By immunostaining, we found that CYLD displayed microtubule-like filament localization under ultraviolet (UV) irradiation. Further studies revealed that the cytoskeleton-associated CYLD underwent posttranslational modification, which in turn contributed to CYLD degradation in an unknown manner, distinct from proteasome-mediated degradation under normal conditions. Collectively, our data suggest that UV-induced CYLD degradation might serve as an underlying mechanism for UV-induced NF-κB pathway activation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Rayos Ultravioleta/efectos adversos , Citoplasma/metabolismo , Citoplasma/efectos de la radiación , Citoesqueleto/metabolismo , Enzima Desubiquitinante CYLD , Células HeLa/efectos de la radiación , Humanos , Células MCF-7/efectos de la radiación , Microtúbulos/metabolismo , Microtúbulos/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación , Transporte de Proteínas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...