Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biochem Parasitol ; 244: 111385, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34062177

RESUMEN

The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.


Asunto(s)
Culicidae/parasitología , Gametogénesis , Insectos Vectores/parasitología , Estadios del Ciclo de Vida/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Eritrocitos/parasitología , Femenino , Hepatocitos/parasitología , Interacciones Huésped-Parásitos/genética , Humanos , Malaria Falciparum/transmisión , Masculino , Microtúbulos/parasitología , Microtúbulos/ultraestructura , Plasmodium falciparum/citología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Reproducción Asexuada
2.
PLoS Negl Trop Dis ; 14(7): e0008396, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32722702

RESUMEN

The parasitophorous vacuoles (PVs) that insulate Leishmania spp. in host macrophages are vacuolar compartments wherein promastigote forms differentiate into amastigote that are the replicative form of the parasite and are also more resistant to host responses. We revisited the biogenesis of tight-fitting PVs that insulate L. infantum in promastigote-infected macrophage-like RAW 264.7 cells by time-dependent confocal laser multidimensional imaging analysis. Pharmacological disassembly of the cellular microtubule network and silencing of the dynein gene led to an impaired interaction of L. infantum-containing phagosomes with late endosomes and lysosomes, resulting in the tight-fitting parasite-containing phagosomes never transforming into mature PVs. Analysis of the shape of the L. infantum parasite within PVs, showed that factors that impair promastigote-amastigote differentiation can also result in PVs whose maturation is arrested. These findings highlight the importance of the MT-dependent interaction of L. infantum-containing phagosomes with the host macrophage endolysosomal pathway to secure the intracellular fate of the parasite.


Asunto(s)
Leishmania infantum/fisiología , Leishmaniasis Visceral/parasitología , Macrófagos/parasitología , Microtúbulos/parasitología , Animales , Endosomas/metabolismo , Humanos , Leishmania infantum/crecimiento & desarrollo , Leishmaniasis Visceral/metabolismo , Ratones , Microtúbulos/metabolismo , Fagosomas/metabolismo , Células RAW 264.7
3.
J Biol Chem ; 295(3): 729-742, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31819011

RESUMEN

The basal body in the human parasite Trypanosoma brucei is structurally equivalent to the centriole in animals and functions in the nucleation of axonemal microtubules in the flagellum. T. brucei lacks many evolutionarily conserved centriolar protein homologs and constructs the basal body through unknown mechanisms. Two evolutionarily conserved centriole/basal body cartwheel proteins, TbSAS-6 and TbBLD10, and a trypanosome-specific protein, BBP65, play essential roles in basal body biogenesis in T. brucei, but how they cooperate in the regulation of basal body assembly remains elusive. Here using RNAi, endogenous epitope tagging, immunofluorescence microscopy, and 3D-structured illumination super-resolution microscopy, we identified a new trypanosome-specific protein named BBP164 and found that it has an essential role in basal body biogenesis in T. brucei Further investigation of the functional interplay among BBP164 and the other three regulators of basal body assembly revealed that BBP164 and BBP65 are interdependent for maintaining their stability and depend on TbSAS-6 and TbBLD10 for their stabilization in the basal body. Additionally, TbSAS-6 and TbBLD10 are independent from each other and from BBP164 and BBP65 for maintaining their stability in the basal body. These findings demonstrate that basal body cartwheel proteins are required for stabilizing other basal body components and uncover that regulation of protein stability is an unusual control mechanism for assembly of the basal body in T. brucei.


Asunto(s)
Cuerpos Basales/metabolismo , Microtúbulos/metabolismo , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Animales , Axonema/química , Axonema/genética , Axonema/metabolismo , Cuerpos Basales/química , Cuerpos Basales/parasitología , Centriolos/química , Centriolos/genética , Centriolos/parasitología , Flagelos/química , Flagelos/genética , Flagelos/parasitología , Humanos , Microtúbulos/química , Microtúbulos/parasitología , Estabilidad Proteica , Proteínas Protozoarias/química , Interferencia de ARN , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidad
4.
Methods Mol Biol ; 1370: 137-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26659960

RESUMEN

Mitosis which is a major step during plant development can also be observed in physiopathological conditions. During the compatible interaction between the root-knot nematode Meloidogyne incognita and its host Arabidopsis, the pathogen induce through repeated divisions without complete cytokinesis the formation of hypertrophied and multinucleate feeding cells, named giant cells. Due to the presence of hypertrophied plant cell material surrounding the giant cells, classical live cell imaging gave therefore very poor resolution. Here, we describe a protocol which allows the in vivo observation of the mitotic apparatus in developing giant cells using confocal imaging of vibrosliced tissues. This approach can also be used to visualize in vivo other cellular processes occurring in different steps of giant cells.


Asunto(s)
Arabidopsis/parasitología , Arabidopsis/ultraestructura , Células Gigantes/ultraestructura , Interacciones Huésped-Parásitos , Microscopía Confocal/métodos , Microtúbulos/ultraestructura , Tylenchoidea/fisiología , Animales , Arabidopsis/citología , Células Gigantes/parasitología , Microtúbulos/parasitología , Mitosis , Imagen Óptica/métodos
5.
PLoS One ; 8(5): e64693, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23741372

RESUMEN

Toxoplasma gondii critically relies on cell invasion as a survival strategy to evade immune clearance during infection. Although it was widely thought that Toxoplasma entry is parasite directed and that the host cell is largely a passive victim, recent studies have suggested that host components such as microfilaments and microtubules indeed contribute to entry. Hence to identify additional host factors, we performed a high-throughput siRNA screen of a human siRNA library targeting druggable proteins using a novel inducible luciferase based invasion assay. The top 100 hits from the primary screen that showed the strongest decreases in invasion were subjected to confirmation by secondary screening, revealing 24 proteins that are potentially involved in Toxoplasma entry into host cells. Interestingly, 6 of the hits appear to affect parasite invasion by modifying host cell actin dynamics, resulting in increased deposition of F-actin at the periphery of the cell. These findings support the emerging notion that host actin dynamics are important for Toxoplasma invasion along with identifying several novel host factors that potentially participate in parasite entry.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Microtúbulos/metabolismo , ARN Interferente Pequeño/genética , Toxoplasma/fisiología , Citoesqueleto de Actina/parasitología , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Genes Reporteros , Células HeLa , Ensayos Analíticos de Alto Rendimiento/instrumentación , Interacciones Huésped-Parásitos , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Microtúbulos/parasitología , Microtúbulos/ultraestructura , ARN Interferente Pequeño/metabolismo
6.
PLoS Pathog ; 9(5): e1003346, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23675298

RESUMEN

The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.


Asunto(s)
Antígenos de Protozoos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/parasitología , Theileria annulata/fisiología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/genética , Western Blotting , Células COS , Bovinos , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas/fisiología , Esquizontes/metabolismo
7.
Eukaryot Cell ; 12(2): 265-77, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23243063

RESUMEN

The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia/fisiología , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Células Cultivadas , Centrosoma/metabolismo , Centrosoma/microbiología , Centrosoma/parasitología , Ceramidas/metabolismo , Infecciones por Chlamydia/parasitología , Infecciones por Chlamydia/patología , Coinfección , Fibroblastos/microbiología , Fibroblastos/parasitología , Fibroblastos/patología , Aparato de Golgi/microbiología , Aparato de Golgi/parasitología , Aparato de Golgi/patología , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiología , Membranas Intracelulares/parasitología , Viabilidad Microbiana , Microtúbulos/metabolismo , Microtúbulos/microbiología , Microtúbulos/parasitología , Mitocondrias/microbiología , Mitocondrias/parasitología , Mitocondrias/patología , Toxoplasmosis/microbiología , Toxoplasmosis/patología , Vacuolas/microbiología , Vacuolas/parasitología
8.
Eukaryot Cell ; 9(11): 1680-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20435700

RESUMEN

Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell's periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Microtúbulos/parasitología , Toxoplasma/patogenicidad , Secuencia de Aminoácidos , Animales , Antígenos CD59/genética , Antígenos CD59/fisiología , Línea Celular , Citoesqueleto/parasitología , Citoesqueleto/fisiología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Datos de Secuencia Molecular , Nocodazol/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tromboplastina/genética , Tromboplastina/fisiología , Virulencia/fisiología
9.
Cell Microbiol ; 10(2): 465-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17970763

RESUMEN

The obligate intracellular parasite Toxoplasma develops within a parasitophorous vacuole (PV) uniquely adapted for its survival in mammalian cells. Post-invasion events extensively modify the PV, resulting in interactions with host cell structures. Recent studies emphasized that Toxoplasma is able to co-opt host gene expression, suggesting that host transcriptional activities are required for parasite infection. By using an experimental enucleation model, we investigated the potential need for Toxoplasma to modify its PV by modulating gene expression in the cell wherein it resides. Unexpectedly, cytoplasts can be actively invaded by Toxoplasma and sustain its replication inside a vacuole until egress and transmission to neighbouring cells. Although randomly distributed in the cytoplast, the PV associates with host centrosomes and the Golgi, is surrounded by host microtubules, and recruits host endoplasmic reticulum and mitochondria. Parasites are proficient in diverting exogenous nutrients from the endocytic network of cytoplasts. In enucleated cells invaded by an avirulent strain of T. gondii, the PV can normally transform into cysts. These observations suggest that new host nuclear functions are not proximately required for the post-invasion events underlying the remodelling of the host cell in which the parasites are confined, and therefore for the generation of infectious parasites in vitro.


Asunto(s)
Núcleo Celular/fisiología , Toxoplasma/patogenicidad , Vacuolas/parasitología , Animales , Línea Celular , Núcleo Celular/parasitología , Centrosoma/parasitología , Centrosoma/ultraestructura , Chlorocebus aethiops , LDL-Colesterol/metabolismo , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/ultraestructura , Regulación de la Expresión Génica , Aparato de Golgi/parasitología , Aparato de Golgi/ultraestructura , Interacciones Huésped-Parásitos , Humanos , Microtúbulos/parasitología , Microtúbulos/ultraestructura , Mitocondrias/parasitología , Mitocondrias/ultraestructura , Porcinos , Toxoplasma/fisiología , Toxoplasma/ultraestructura , Transcripción Genética
10.
Bioorg Med Chem ; 15(18): 6071-9, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17618122

RESUMEN

Dinitroanilines are of interest as antiprotozoal lead compounds because of their selective activity against the tubulin of these organisms, but concern has been raised due to the potentially mutagenic nitro groups. Analogues of N(1)-phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (GB-II-150, compound 2b), a selective antimitotic agent against African trypanosomes and Leishmania, have been prepared where the nitro groups are replaced with amino, chloro, cyano, carboxylate, methyl ester, amide, and methyl ketone moieties. Dicyano compound 5 displays IC(50) values that are comparable to 2b against purified leishmanial tubulin assembly (6.6 vs 7.4 microM), Trypanosoma brucei brucei growth in vitro (0.26 vs 0.18 microM), Leishmania donovani axenic amastigote growth in vitro (4.4 vs 2.3 microM), and in vitro toxicity against Vero cells (16 vs 9.7 microM). Computational studies provide a rationale for the antiparasitic order of activity of these analogues and further insight into the role of the substituents at the 3 and 5 positions of the sulfanilamide ring.


Asunto(s)
Kinetoplastida/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Sulfanilamidas/síntesis química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Línea Celular , Kinetoplastida/metabolismo , Kinetoplastida/parasitología , Leishmania donovani/metabolismo , Leishmania donovani/parasitología , Microtúbulos/metabolismo , Microtúbulos/parasitología , Modelos Químicos , Modelos Moleculares , Relación Estructura-Actividad , Sulfanilamidas/química , Sulfanilamidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Tripanosomiasis Africana/tratamiento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
11.
J Parasitol ; 91(5): 995-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16419739

RESUMEN

Although accumulating evidence supports an active role for host cells during Cryptosporidium parvum invasion of epithelia, our knowledge of the underlying parasite-specific processes triggering such events is limited. In an effort to better understand the invasion strategy of C. parvum, we characterized the presence and distribution of the apical organelles (micronemes, dense granules, and rhoptry) through the stages of attachment to, and internalization by, human biliary epithelia, using serial-section electron microscopy. Novel findings include an apparent organized rearrangement of micronemes upon host cell attachment. The apically segregated micronemes were apposed to a central microtubule-like filamentous structure, and the more distal micronemes localized to the periphery and apical region of the parasite during internalization, coinciding with the formation of the anterior vacuole. The morphological observations presented here extend our understanding of parasite-specific processes that occur during attachment to, and internalization by, host epithelial cells.


Asunto(s)
Conductos Biliares/parasitología , Cryptosporidium parvum/ultraestructura , Orgánulos/ultraestructura , Animales , Conductos Biliares/citología , Línea Celular Transformada , Cryptosporidium parvum/fisiología , Gránulos Citoplasmáticos/parasitología , Gránulos Citoplasmáticos/ultraestructura , Células Epiteliales/parasitología , Interacciones Huésped-Parásitos , Humanos , Microscopía Electrónica de Transmisión/métodos , Microtúbulos/parasitología , Microtúbulos/ultraestructura , Orgánulos/parasitología , Vacuolas/parasitología , Vacuolas/ultraestructura
12.
Mol Pharmacol ; 64(6): 1325-33, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645662

RESUMEN

Analogs of the antimitotic herbicide oryzalin (3,5-dinitro-N4,N4-di-n-propylsulfanilamide) were recently prepared that were more potent in vitro than the parent compound against the kinetoplastid parasite Leishmania donovani (Bioorg Med Chem Lett 12:2395-2398, 2002). In the present work, we show that the most active molecule in the group, N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5), is a potent, selective antimitotic agent against kinetoplastid parasites. GB-II-5 possesses IC50 values of 0.41 and 0.73 microM in vitro against two strains of the related parasite Trypanosoma brucei but is much less toxic to J774 murine macrophages and PC3 prostate cancer cells, exhibiting IC50 values of 29 and 35 microM against these lines, respectively. Selectivity is also observed for GB-II-5 with purified leishmanial and mammalian tubulin. The assembly of 15 microM leishmanial tubulin is completely inhibited by 10 microM GB-II-5, whereas 40 microM GB-II-5 inhibits the assembly of 15 microM porcine brain tubulin by only 17%. In cultured L. donovani and T. brucei, treatment with 5 and 0.5 microM GB-II-5, respectively, causes a striking increase in the fraction of G2M cells compared with control. Given the potency and selectivity of this agent against kinetoplastid tubulin, GB-II-5 emerges as an exciting new antitrypanosomal and antileishmanial lead compound.


Asunto(s)
Antiprotozoarios/farmacología , Dinitrobencenos/farmacología , Kinetoplastida/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Sulfanilamidas/farmacología , Animales , Antiprotozoarios/química , Dinitrobencenos/química , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/farmacología , Herbicidas/química , Herbicidas/farmacología , Leishmania donovani/metabolismo , Leishmania donovani/parasitología , Microtúbulos/metabolismo , Microtúbulos/parasitología , Ratas , Sulfanilamidas/química , Porcinos , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/parasitología
13.
J Clin Pharm Ther ; 27(5): 313-20, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12383131

RESUMEN

Microtubules are cytoskeletal polymers essential for the survival of all eukaryotes. These proteins are the proposed cellular targets of many anticancerous, antifungal and antihelminthic drugs. Sufficient differences exist between the microtubules of kinetoplastid parasites like Leishmania and humans to explore the selective targeting of these proteins for therapeutic purposes. This review describes the basic structure of microtubules and its dynamics in general, with specific insights into leishmanial microtubules, the salient features of microtubule-drug interactions including the specificity of certain drugs for parasitic microtubules. Chemotherapy against leishmanial parasites is failing because of the emergence of drug resistant strains. The possible mechanisms of resistance to antimicrotubule agents along with insights into the role of microtubules in mediating drug resistance in Leishmania are discussed.


Asunto(s)
Interacciones Farmacológicas/fisiología , Resistencia a Medicamentos/fisiología , Leishmania/efectos de los fármacos , Microtúbulos/parasitología , Animales
14.
J Submicrosc Cytol Pathol ; 33(3): 337-41, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11846102

RESUMEN

The intracellular fate of Toxoplasma gondii was studied in primary cultures of skeletal muscle cells (SMC). The labelling of secondary lysosomes with BSA-Au particles showed no phagolysosomal fusion with the vacuole containing the parasite. After internalization of the parasites, the parasitophorous vacuole became involved by closely apposed endoplasmic reticulum (ER) and mitochondria; within 18 h of interaction, microtubules were visualized in association with the parasitophorous vacuole, suggesting that they could form a barrier for the phagolysosomal fusion.


Asunto(s)
Microtúbulos/parasitología , Músculo Esquelético/parasitología , Fagosomas/parasitología , Toxoplasma/fisiología , Toxoplasmosis Animal/fisiopatología , Vacuolas/parasitología , Animales , Células Cultivadas , Ratones , Microtúbulos/ultraestructura , Músculo Esquelético/ultraestructura , Fagosomas/ultraestructura , Toxoplasma/ultraestructura , Vacuolas/ultraestructura
15.
Microbes Infect ; 1(14): 1181-8, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10580273

RESUMEN

Theileria parasites transform bovine leukocytes and induce uncontrolled lymphoproliferation only in the macroschizont stage of their life cycle. The isolation of highly purified stage-specific parasite RNA and proteins is an essential prerequisite when studying the Theileria-host relationship. We therefore improved a protocol based on the cytolytic bacterial toxin aerolysin by taking advantage of the microtubule inhibitor nocodazole. In this report we describe that nocodazole-mediated separation of the parasite from the host cell microtubule network was used with success to improve quantity and quality of purified parasites. We furthermore show that nocodazole is a useful tool to study cell cycle checkpoints due to its capacity to induce reversible cell cycle arrest in Theileria-infected B cells.


Asunto(s)
Linfocitos B/citología , Linfocitos B/parasitología , Ciclo Celular/efectos de los fármacos , Nocodazol/farmacología , Theileria parva/aislamiento & purificación , Animales , Linfocitos B/química , Linfocitos B/efectos de los fármacos , Toxinas Bacterianas/farmacología , Bovinos , Línea Celular , Membrana Celular/química , Membrana Celular/parasitología , Proteínas Hemolisinas/farmacología , Immunoblotting , Microscopía Electrónica , Microtúbulos/efectos de los fármacos , Microtúbulos/parasitología , Proteínas Citotóxicas Formadoras de Poros , Proteínas Tirosina Quinasas/análisis , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas c-hck , Theileria parva/ultraestructura , Factores de Tiempo
16.
Parasitology ; 118 ( Pt 1): 43-8, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10070660

RESUMEN

We investigated the segregation of an intracellular microsporidian parasite during host cell division. A time-course experiment was carried out to examine the distribution of parasites relative to host chromosomal DNA via light and electron microscopy. Fluorescent light microscopy and EM studies showed that the parasite lay in the perinuclear zone of the host cell during interphase and segregated to daughter cells at mitosis. At metaphase, the parasite was frequently closely associated with host microtubules and mitochondria. Electron-dense bridges were observed between the parasites and the host microtubules and also between host mitochondria and microtubules. The study suggests that both the parasite and the host cell organelles segregate in association with spindle microtubules.


Asunto(s)
Crustáceos/parasitología , Mitocondrias/parasitología , Mitosis , Nosema/aislamiento & purificación , Animales , Crustáceos/citología , Crustáceos/ultraestructura , Femenino , Interacciones Huésped-Parásitos , Interfase , Masculino , Microscopía Electrónica , Microtúbulos/parasitología , Microtúbulos/ultraestructura
17.
J Cell Sci ; 110 ( Pt 17): 2117-28, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9378762

RESUMEN

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


Asunto(s)
Orgánulos/metabolismo , Orgánulos/parasitología , Toxoplasma/fisiología , Animales , Antígenos de Protozoos/análisis , Antígenos de Protozoos/aislamiento & purificación , Biomarcadores , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/aislamiento & purificación , Calnexina , Carbonatos , Fraccionamiento Celular , Centrifugación por Gradiente de Densidad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/parasitología , Retículo Endoplásmico/ultraestructura , Femenino , Interacciones Huésped-Parásitos/fisiología , Proteínas de la Membrana/análisis , Proteínas de la Membrana/aislamiento & purificación , Ratones , Microscopía Electrónica , Microtúbulos/parasitología , Microtúbulos/fisiología , Mitocondrias/metabolismo , Mitocondrias/parasitología , Mitocondrias/ultraestructura , Orgánulos/ultraestructura , Proteínas Protozoarias/análisis , Proteínas Protozoarias/aislamiento & purificación , Sacarosa , Toxoplasma/patogenicidad , Toxoplasma/ultraestructura , Vacuolas/metabolismo , Vacuolas/parasitología , Vacuolas/ultraestructura , Virulencia
18.
J Protozool ; 22(1): 66-71, 1975 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1117437

RESUMEN

The fine structure of the 1st generation merozoites of Eimeria labbeana from the ileal mucosa of artificially infected pigeons (Columba livia) was investigated and described. The 1st generation merozoites which appeared between 36-48 hr after infection averaged 4.4 times 2.1 mum in size. The 3-membraned pellicle was irregular in texture and harbored a single micropore, and many micropore-like invaginations. Closely apposed to the inner pellicular membrane were seen 22 microtubules, each 22-25 nm in diameter. An apical vesicle, 50 nm in diameter, seen at the anterior extremity, was connected with the common duct of the micronemes. The conoid consisted of 9 spiral elements, each 30 times 25 nm. The paired organelle (rhoptries) varied in length (1.4-2.2 mum), and the ductules (23 nm diameter) were composed of 2 inner tubules, each 6 nm in diameter. A unit membrane enveloped the partially alveolar and differentially osmiophilic interior of the bulbous regions of the rhoptries. The "rod-like structure" was found to be tubular and represented the common duct of the micronemes.


Asunto(s)
Eimeria/ultraestructura , Animales , Núcleo Celular/ultraestructura , Columbidae/parasitología , Gránulos Citoplasmáticos/ultraestructura , Eimeria/crecimiento & desarrollo , Eimeria/aislamiento & purificación , Retículo Endoplásmico/ultraestructura , Heces/parasitología , Íleon/parasitología , Microtúbulos/parasitología , Organoides/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...