Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605605

RESUMEN

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Disfunción Cognitiva/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Ratones , Humanos , Envejecimiento/fisiología , Masculino , Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptor trkB/metabolismo , Leucocitos Mononucleares/metabolismo , Anciano , Femenino , Ratones Endogámicos C57BL
2.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429926

RESUMEN

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Asunto(s)
Regeneración Ósea , Inflamación , Células Madre Mesenquimatosas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Osteogénesis , Proteína Wnt4 , Células Madre Mesenquimatosas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Osteogénesis/genética , Regeneración Ósea/genética , Animales , Ratones , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Regulación de la Expresión Génica , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Vía de Señalización Wnt , Masculino , Transcripción Genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474099

RESUMEN

Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.


Asunto(s)
Receptores Nucleares Huérfanos , Receptores de Esteroides , Humanos , Receptores Nucleares Huérfanos/genética , Monocitos/metabolismo , Hipercapnia , Dióxido de Carbono , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores de Esteroides/metabolismo , Proteínas de Unión al ADN , Receptores de Hormona Tiroidea
4.
Biomolecules ; 14(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540704

RESUMEN

Bis-indole derived compounds such as 1,1-bis(3'-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled with the >60% similarity of the ligand-binding domains (LBDs) of NR4A1 and NR4A2 and the pro-oncogenic activities of both receptors lead us to hypothesize that these compounds may act as dual NR4A1 and NR4A2 ligands. Using a fluorescence binding assay, it was shown that 22 synthetic DIM8-3,5 and DIM-3,5 analogs bound the LBD of NR4A1 and NR4A2 with most KD values in the low µM range. Moreover, the DIM-3,5 and DIM8-3,5 analogs also decreased NR4A1- and NR4A2-dependent transactivation in U87G glioblastoma cells transfected with GAL4-NR4A1 or GAL4-NR4A2 chimeras and a UAS-luciferase reporter gene construct. The DIM-3,5 and DIM8-3,5 analogs were cytotoxic to U87 glioblastoma and RKO colon cancer cells and the DIM-3,5 compounds were more cytotoxic than the DIM8-3,5 compounds. These studies show that both DIM-3,5 and DIM8-3,5 compounds previously identified as NR4A1 ligands bind both NR4A1 and NR4A2 and are dual NR4A1/2 ligands.


Asunto(s)
Glioblastoma , Humanos , Ligandos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Línea Celular Tumoral , Indoles/farmacología , Indoles/química , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
5.
Biochem Biophys Res Commun ; 700: 149582, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38306930

RESUMEN

Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1ß and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.


Asunto(s)
Cardiotoxicidad , Inflamasomas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Ratones , Apoptosis , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Inflamasomas/genética , Inflamasomas/metabolismo , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
6.
Cancer Lett ; 585: 216693, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38301909

RESUMEN

Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Quinasas , Humanos , Proteínas Quinasas/metabolismo , Necroptosis/fisiología , Muerte Celular , Necrosis , Neoplasias Colorrectales/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
7.
J Neurogenet ; 37(4): 115-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37922205

RESUMEN

Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the NR4A1 promoter. MPP+ treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP+-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP+-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with NR4A1 promoter. In addition, in MPP+-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with NR4A1 promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP+-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP+-treated SH-SY5Y cells.YY1 binds with NR4A1 promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Apoptosis , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Estrés Oxidativo , Yin-Yang
8.
BMC Biol ; 21(1): 218, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833706

RESUMEN

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS: The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.


Asunto(s)
Inmunidad Innata , Pulmón , Animales , Ratones , Pulmón/metabolismo , Linfocitos , Receptor de Muerte Celular Programada 1/metabolismo , Citocinas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
9.
Neurosci Lett ; 814: 137469, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37669713

RESUMEN

About 10% of the population suffers from depression in winter at high latitude. Although it has become a serious public health issue, its underlying mechanism remains unknown and new treatments and therapies are required. As an adaptive strategy, many animals also exhibit depression-like behavior in winter. Previously, it has been reported that celastrol, a traditional Chinese medicine, can rescue winter depression-like behavior in medaka, an excellent model of winter depression. Nuclear receptor subfamily 4 group A member 1 (nr4a1, also known as nur77) is a known target of celastrol, and the signaling pathway of nr4a1 was suggested to be inactive in medaka brain during winter, implying the association of nr4a1 and winter depression-like behavior. However, the direct evidence for its involvement in winter depression-like behavior remains unclear. The present study found that nr4a1 was suppressed in the medaka brain under winter conditions. Cytosporone B, nr4a1 chemical activator, reversed winter depression-like behavior under winter conditions. Additionally, nr4a1 mutant fish generated by CRISPR/Cas9 system showed decreased sociability under summer conditions. Therefore, our results demonstrate that the seasonal regulation of nr4a1 regulates winter depression-like behavior and offers potential therapeutic target.


Asunto(s)
Oryzias , Trastorno Afectivo Estacional , Animales , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Encéfalo
10.
Endocrinology ; 164(10)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37652054

RESUMEN

Nuclear receptor 4A1 (NR4A1) plays an important role in endometriosis progression; levels of NR4A1 in endometriotic lesions are higher than in normal endometrium, and substituted bis-indole analogs (NR4A1) antagonists suppress endometriosis progression in mice with endometriosis. In addition, the flavonoids kaempferol and quercetin are natural products that directly bind NR4A1 and significantly repress the intrinsic NR4A1-dependent transcriptional activity in human endometriotic epithelial and stromal cells and Ishikawa endometrial cancer cells. NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin suppressed proliferation of human endometriotic epithelial cells and Ishikawa cells by inhibiting epidermal growth factor receptor/c-Myc/survivin-mediated growth-promoting and survival pathways, The mammalian target of rapamycin (mTOR) signaling and αSMA/CTGF/COL1A1/FN-mediated fibrosis signaling but increasing Thioredoxin domain Containing 5/SESN2-mediated oxidative/estrogen receptors stress signaling. In human endometriotic stromal cells, NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin primarily inhibited mTOR signaling by suppressing proliferation of human endometrial stromal cells. In addition, kaempferol and quercetin treatment also effectively suppressed the growth of endometriotic lesions in mice with endometriosis compared with the vehicle without any body weight changes. Therefore, kaempferol and quercetin are NR4A1 antagonists with potential as nutritional therapy for endometriosis.


Asunto(s)
Endometriosis , Quercetina , Humanos , Femenino , Animales , Ratones , Quercetina/farmacología , Quercetina/uso terapéutico , Flavonoides , Endometriosis/tratamiento farmacológico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Serina-Treonina Quinasas TOR , Mamíferos , Sestrinas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
11.
PLoS Biol ; 21(7): e3002226, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37490433

RESUMEN

Microglia play a dual role in stroke depending on their pro-inflammatory and anti-inflammatory polarization. A study in PLOS Biology identifies a new mechanism, through which the transcription factor NR4A1 negatively regulates TNF expression in microglia.


Asunto(s)
Microglía , Accidente Cerebrovascular , Humanos , Microglía/metabolismo , Factores de Transcripción/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Regulación de la Expresión Génica , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
12.
Immun Inflamm Dis ; 11(6): e883, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37382273

RESUMEN

PURPOSE: The aim of this study was to investigate the effect of dexmedetomidine (Dex) on inflammation and organ injury in sepsis, as well as the potential relationship between Dex and nuclear receptor 77 (Nur77). METHODS: We investigated the effects of dexmedetomidine on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells and organ injury in the cecal ligation and puncture (CLP) mouse model. Additionally, we examined the relationship between dexmedetomidine and Nur77. The expression levels of Nur77 in RAW264.7 cells were analyzed under various types of stimulation using quantitative reverse transcription polymerase chain reaction and western blot analysis. Inflammatory cytokine levels in the cells were evaluated using enzyme-linked immunoassay. Organ injuries were assessed by examining tissue histology and pathology of the lung, liver, and kidney. RESULTS: Dexmedetomidine increased the expression of Nur77 and IL-10, and downregulated inflammatory cytokines (IL-1ß and TNF-α) in LPS-treated RAW264.7 cells. The effect of dexmedetomidine on inhibiting inflammation in LPS-treated RAW264.7 cells was promoted by overexpressing Nur77, while it was reversed by downregulating Nur77. Additionally, dexmedetomidine promoted the expression of Nur77 in the lung and CLP-induced pathological changes in the lung, liver, and kidney. Activation of Nur77 with the agonist Cytosporone B (CsnB) significantly suppressed the production of IL-1ß and TNF-α in LPS-treated RAW264.7 cells. In contrast, knockdown of Nur77 augmented IL-1ß and TNF-α production in LPS-treated RAW264.7 cells. CONCLUSION: Dexmedetomidine can attenuate inflammation and organ injury, at least partially, via upregulating Nur77 in sepsis.


Asunto(s)
Dexmedetomidina , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Sepsis , Animales , Ratones , Citocinas , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Sepsis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
13.
Mol Med ; 29(1): 63, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161357

RESUMEN

BACKGROUND: Renal interstitial fibrosis (RIF) is a common pathway to end-stage renal disease regardless of the initial etiology. Currently, the molecular mechanisms for RIF remains not fully elucidated. Nuclear receptor subfamily 4 group A member 1(Nr4a1), a member of the NR4A subfamily of nuclear receptors, is a ligand-activated transcription factor. The role of Nr4a1 in RIF remains largely unknown. METHODS: In this study, we determined the role and action mechanism of Nr4a1 in RIF. We used unilateral ureteral obstruction (UUO) mice and transforming growth factor (TGF)-ß1-treated human renal proximal tubular epithelial cells (HK-2 cells) as in vivo and in vitro models of RIF. A specific Nr4a1 agonist Cytosporone B (Csn-B) was applied to activate Nr4a1 both in vivo and in vitro, and Nr4a1 small interfering RNA was applied in vitro. Renal pathological changes were evaluated by hematoxylin and eosin and Masson staining, and the expression of fibrotic proteins including fibronectin (Fn) and collagen-I (Col-I), and phosphorylated p38 MAPK was measure by immunohistochemical staining and western blot analysis. RESULTS: The results showed that Nr4a1 was upregulated in UUO mouse kidneys, and was positively correlated with the degree of interstitial kidney injury and the levels of fibrotic proteins. Csn-B treatment aggravated UUO-induced renal interstitial fibrosis, and induced p38 MAPK phosphorylation. In vitro, TGF-ß induced Nr4a1 expression, and Nr4a1 downregulation prevented TGF-ß1-induced expression of Fn and Col-I and the activation of p38 MAPK. Csn-B induced fibrotic proteins expression and p38 MAPK phosphorylation, and moreover Csn-B induced fibrotic proteins expression was abrogated by treatment with p38 MAPK inhibitor SB203580. We provided further evidence that Csn-B treatment promoted cytoplasmic accumulation of Nr4a1. CONCLUSION: The findings in the present study indicate that Nr4a1 promotes renal fibrosis potentially through activating p38 MAPK kinase.


Asunto(s)
Enfermedades Renales , Humanos , Animales , Ratones , Fosforilación , Enfermedades Renales/etiología , Fenilacetatos , Riñón , Colágeno Tipo I , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
14.
J Cardiovasc Transl Res ; 16(5): 1050-1063, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37249897

RESUMEN

Mitochondrial fusion is an important process that protects the myocardium. However, mitochondrial fusion is often inhibited in myocardial ischaemia-reperfusion injury (IR). The upstream mechanism of this effect is unclear. Nuclear receptor subfamily 4 group A member 1 (NR4A1) can aggravate myocardial IR and increase the level of oxidative stress, thereby affecting mitochondrial function and morphology. Inhibiting NR4A1 can improve oxidative stress levels and mitochondrial function and morphology, thereby reducing IR. Downregulating NR4A1 increases the expression level of the mitochondrial fusion-related protein optic atrophy 1 (OPA1), which is associated with these benefits. Inhibiting OPA1 expression with MYLS22 abrogates the effects of NR4A1 downregulation on IR. Furthermore, NR4A1 disrupts mitochondrial dynamics and activates the STING and NF-κB pathways. Insufficient mitochondrial fusion and increased apoptosis and inflammatory reactions worsen irreversible damage to cardiomyocytes. In conclusion, NR4A1 can exacerbate IR by inhibiting OPA1, causing mitochondrial damage.


Asunto(s)
Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Transducción de Señal , Dinámicas Mitocondriales/fisiología , Mitocondrias/metabolismo , Miocardio/metabolismo , Apoptosis , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
15.
Cell Biochem Funct ; 41(5): 590-598, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37222456

RESUMEN

Bone formation is regulated by numerous factors, such as transcription factors, cytokines, and extracellular matrix molecules. Human hormone nuclear receptors (hHNR) are a family of ligand-regulated transcription factors that are activated by steroid hormones, such as estrogen and progesterone, and various lipid-soluble signals, including retinoic acid, oxysterols, and thyroid hormone. We found that an hHNR called NR4A1 was the most highly expressed after human MSC differentiation into osteoblasts by whole-genome microarray. NR4A1 knockout decreased the osteoblastic differentiation of hMSCs in terms of ALPL expression and key marker gene expression. Whole-genome microarray analysis further confirmed the decrease in key pathways when we knocked down NR4A1. Further studies with small molecule activators identified a novel molecule called Elesclomol (STA-4783), which could activate and enhance osteoblast differentiation. Elesclomol activation of hMSCs also induced the gene expression of NR4A1 and rescued the phenotype of NR4A1 KD. In addition, Elesclomol activated the TGF-ß pathway by regulating key marker genes. In conclusion, we first identified the role of NR4A1 in osteoblast differentiation and that Elesclomol is a positive regulator of NR4A1 through activation of the TGF-ß signalling pathway.


Asunto(s)
Osteoblastos , Osteogénesis , Humanos , Regulación hacia Abajo , Fenotipo , Osteoblastos/metabolismo , Diferenciación Celular , Factores de Transcripción/genética , Proteínas Portadoras/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
16.
Discov Med ; 35(174): 82-94, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024444

RESUMEN

PURPOSE: Although numerous studies have revealed that various long-non coding RNA (lncRNA) are implicated in multiple myeloma (MM) regulation, MM lncRNA profile and novel functional lncRNAs in MM need to be elucidated. METHODS: Herein, lncRNAs and mRNAs (messenger ribonucleic acids) patterns in MM were evaluated using RNA-sequencing (RNAseq). Differentially expressed (DE) genes were defined and a complex regulatory network based on validation and predication was shaped. RESULTS: LncRNA-seq data analysis identified 539 DE lncRNAs and RP11-1100L3.8 was the most up-regulated known lncRNA. Subsequently, the upregulation and clinical RP11-1100L3.8 utilization value was verified in an expanded cohort. Based on the results of Cis nearby-targets and co-expression analysis, 1 correlation pair RP11-1100L3.8-nuclear receptor subfamily 4 group A member 1 (NR4A1) was defined. It is worth noting that NR4A1 is one of the top 5 significantly up-regulated DE mRNAs in MM patients. Moreover, it was found that NR4A1 overexpression is associated with poor prognosis in MM patients, making it suitable as biomarker. Additionally, spearman correlation analysis revealed the positive association between RP11-1100L3.8 and NR4A1 in MM patients. Furthermore, the dominant NR4A1 interacted genes were predicated and it was found that the genes containing NR4A1 were remarkably enriched in phosphatidylinositol 3-kinase (PI3K)-AKT (protein kinase B) signaling pathway. In addition, in vitro experiment suggested that RP11-1100L3.8 downregulation decreased NR4A1 expression in U266 and RPMI 8226 MM cells. RP11-1100L3.8 inhibition declined proliferation and promoted apoptosis in MM cells, which were rescued by NR4A1 overexpression. Moreover, it was found that RP11-1100L3.8 inhibition impeded PI3K and AKT phosphorylation and rapamycin mammalian target in MM cells, which was rescued by NR4A1 overexpression. CONCLUSIONS: This study identifies RP11-1100L3.8 as a potential MM biomarker, and it may be involved in MM pathophysiology by regulating NR4A1-mediated PI3K-AKT signaling pathway. This study provides a novel biomarker candidate for MM therapy.


Asunto(s)
Mieloma Múltiple , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Mieloma Múltiple/genética , Biomarcadores , ARN Mensajero/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
17.
Molecules ; 28(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36770929

RESUMEN

Prostate adenocarcinoma (PRAD) is the most frequent malignancy, and is the second leading cause of death due to cancer in men. Thus, new prognostic biomarkers and drug targets for PRAD are urgently needed. As we know, nuclear receptor Nur77 is important in cancer development and changes in the tumor microenvironment; whereas, the function of Nur77 in PRAD remains to be elucidated. The TCGA database was used to explore the Nur77 expression and its role in the prognosis of PRAD. It was shown that Nur77 was down regulated in PRAD, and low Nur77 expression was correlated with advanced clinical pathologic characteristics (high grade, histological type, age) and poor prognosis. Furthermore, key genes screening was examined by univariate Cox analysis and Kaplan-Meier survival. Additionally, Nur77 was closely related to immune infiltration and some anti-tumor immune functions. The differentially expressed genes (DEGs) were presented by protein-protein interaction (PPI) network analysis. Therefore, the expression level of Nur77 might help predict the survival of PRAD cases, which presents a new insight and a new target for the treatment of PRAD. In vitro experiments verified that natural product malayoside targeting Nur77 exhibited significant therapeutic effects on PRAD and largely induced cell apoptosis by up-regulating the expression of Nur77 and its mitochondrial localization. Taken together, Nur77 is a prognostic biomarker for patients with PRAD, which may refresh the profound understanding of PRAD individualized treatment.


Asunto(s)
Adenocarcinoma , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Neoplasias de la Próstata , Humanos , Masculino , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Biomarcadores , Pronóstico , Próstata , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Microambiente Tumoral/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
18.
Molecules ; 28(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36770940

RESUMEN

Angiogenesis contributes to plaque instability in atherosclerosis and further increases cardio-cerebrovascular risk. Circular RNAs (circRNAs) are promising biomarkers and potential therapeutic targets for atherosclerosis. Previous studies have demonstrated that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination treatment (TMP-PF) inhibited oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis in vitro. However, whether circRNAs regulate angiogenesis in atherosclerosis and whether TMP-PF can regulate angiogenesis-related target circRNAs in atherosclerosis are unknown. In this study, human RNA sequencing (RNA-seq) data were analysed to identify differentially expressed (DE) circRNAs in atherosclerosis and to obtain angiogenesis-associated circRNA-microRNA (miRNA)-messenger RNA (mRNA) networks. Target circRNA-related mechanisms in angiogenesis in atherosclerosis and the regulatory effects of TMP-PF on target circRNA signalling were studied in ox-LDL-induced human umbilical vein endothelial cells (HUVECs) by cell proliferation, migration, tube formation, and luciferase reporter assays, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. A novel circRNA (circular stimulator of chondrogenesis 1, circSCRG1) was initially identified associated with angiogenesis in atherosclerosis, and circSCRG1 silencing up-regulated miR-1268b expression, increased nuclear receptor subfamily 4 group A member 1 (NR4A1) expression and then promoted ox-LDL-induced angiogenesis. TMP-PF (1 µmol/L TMP combined with 10 µmol/L PF) up-regulated circSCRG1 expression, mediated miR-1268b to suppress NR4A1 expression and then inhibited ox-LDL-induced angiogenesis. However, circSCRG1 silencing abolished the inhibitory effects of TMP-PF on ox-LDL-induced angiogenesis, which were rescued by the miR-1268b inhibitor. In conclusion, circSCRG1 might serve as a new target regulating angiogenesis in atherosclerosis via the circSCRG1/miR-1268b/NR4A1 axis and TMP-PF could regulate the circSCRG1/miR-1268b/NR4A1 axis to inhibit angiogenesis in atherosclerosis in vitro, indicating a novel angiogenesis signalling circSCRG1/miR-1268b/NR4A1 pathway in atherosclerosis and the regulatory effects of TMP-PF, which might provide a new pharmaceutical strategy to combat atherosclerotic plaque instability.


Asunto(s)
Aterosclerosis , MicroARNs , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Placa Aterosclerótica , ARN Circular , Humanos , Apoptosis , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lipoproteínas LDL/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN Circular/genética
19.
Immunology ; 169(1): 69-82, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36420610

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most fatal tumours worldwide and has a high recurrence rate. Nevertheless, the mechanism of HCC genesis remains partly unexplored, while the efficiency of HCC treatments remains limited. The present study analysed the expression of nuclear receptor subfamily 4 group A member 1 (NR4A1) in tumour-infiltrating natural killer (NK) cells derived from both human patients with HCC and tumour-bearing mouse models, as well as the features of NR4A1high and NR4A1low NK cells. In addition, knockout of NR4A1 by CRISPR/Cas9 and adoptive transfer experiments were applied to verify the function of NR4A1 in both tumour-infiltrating NK cells and anti-PD-1 therapy. The present study found that NR4A1 was significantly highly expressed in tumour-infiltrating NK cells, which mediated the dysfunction of tumour-infiltrating NK cells by regulating the IFN-γ/p-STAT1/IRF1 signalling pathway. Knockout of NR4A1 in NK cells not only restored the antitumour function of NK cells but also enhanced the efficacy of anti-PD-1 therapy. The present findings suggest a regulatory role of NR4A1 in the immune progress of NK cells against HCC, which may provide a new direction for immunotherapies of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Ratones Noqueados , Células Asesinas Naturales , Inmunoterapia , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
20.
Inflammation ; 46(2): 700-717, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36422840

RESUMEN

LncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) was found to be upregulated in plasma of patients with bronchial asthma. This study aimed to explore the roles and mechanisms of CDKN2B-AS1 in childhood asthma. We found that CDKN2B-AS1 was upregulated and zinc finger protein 36 (ZFP36) mRNA was downregulated in blood samples of children with asthma compared with healthy controls as measured by RT-qPCR. Human bronchial epithelial cell line BEAS-2B was treated with LPS to induce inflammation model. Small interfering RNA against CDKN2B-AS1 (si-CDKN2B-AS1) was transfected into LPS-treated BEAS-2B cells, and we observed that CDKN2B-AS1 silencing increased cell viability and inhibited apoptosis and inflammation cytokine levels in LPS-treated BEAS-2B cells. Methylation-specific PCR, ChIP, and RIP assays indicated that CDKN2B-AS1 inhibited ZFP36 expression by recruiting DNMT1 to promote ZFP36 promoter methylation. Co-immunoprecipitation (Co-IP) assay verified the interaction between ZFP36 and nuclear receptor subfamily 4 group A member 1 (NR4A1) proteins. Then rescue experiments revealed that ZFP36 knockdown reversed the effects of CDKN2B-AS1 silencing on BEAS-2B cell functions. ZFP36 overexpression facilitated apoptosis, inflammation, and p-p65 expression in BEAS-2B cells, while NR4A1 knockdown reversed these effects. Additionally, CDKN2B-AS1 silencing alleviated airway hyperresponsiveness and inflammation in ovalbumin (OVA)-induced asthma mice. In conclusion, silencing lncRNA CDKN2B-AS1 enhances BEAS-2B cell viability, reduces apoptosis and inflammation in vitro, and alleviated asthma symptoms in OVA-induced asthma mice in vivo through inhibiting ZFP36 promoter methylation and NR4A1-mediated NF-κB signaling pathway.


Asunto(s)
Asma , ARN Largo no Codificante , Niño , Humanos , Ratones , Animales , ARN Largo no Codificante/metabolismo , Tristetraprolina/metabolismo , Metilación , Lipopolisacáridos/metabolismo , Asma/inducido químicamente , Asma/genética , Inflamación , Proliferación Celular/genética , Línea Celular Tumoral , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA