Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
J Headache Pain ; 25(1): 148, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261750

RESUMEN

BACKGROUND: Migraine is a highly prevalent and complex neurovascular disease. However, the currently available therapeutic drugs often fall to adequately meet clinical needs due to limited effectiveness and numerous undesirable side effects. This study aims to identify putative novel targets for migraine treatment through proteome-wide Mendelian randomization (MR). METHODS: We utilized MR to estimate the causal effects of plasma proteins on migraine and its two subtypes, migraine with aura (MA) and without aura (MO). This analysis integrated plasma protein quantitative trait loci (pQTL) data with genome-wide association studies (GWAS) findings for these migraine phenotypes. Moreover, we conducted a phenome-wide MR assessment, enrichment analysis, protein-protein interaction networks construction, and mediation MR analysis to further validate the pharmaceutical potential of the identified protein targets. RESULTS: We identified 35 protein targets for migraine and its subtypes (p < 8.04 × 10-6), with prioritized targets showing minimal side effects. Phenome-wide MR identified novel protein targets-FCAR, UBE2L6, LATS1, PDCD1LG2, and MMP3-that have no major disease side effects and interacted with current acute migraine medication targets. Additionally, MMP3, PDCD1LG2, and HBQ1 interacted with current preventive migraine medication targets. The causal effects of plasma protein on migraine were partly mediated by plasma metabolites (proportion of mediation from 3.8% to 21.0%). CONCLUSIONS: A set of potential protein targets for migraine and its subtypes were identified. These proteins showed rare side effects and were responsible for biological mechanisms involved in migraine pathogenesis, indicating priority for the development of migraine treatments.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Proteoma , Sitios de Carácter Cuantitativo , Humanos , Proteoma/efectos de los fármacos , Trastornos Migrañosos/genética , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/sangre , Mapas de Interacción de Proteínas/genética , Migraña con Aura/genética , Migraña con Aura/tratamiento farmacológico , Migraña con Aura/sangre , Migraña sin Aura/genética , Migraña sin Aura/tratamiento farmacológico , Migraña sin Aura/sangre , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
2.
Handb Clin Neurol ; 203: 135-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39174245

RESUMEN

Hemiplegic migraine consists of attacks of migraine with aura that includes reversible motor weakness. It is classified as familial or sporadic depending on the involvement or not of a first or second degree relative. The most described subtypes of familial hemiplegic migraine include FHM1, FHM2, and FHM3. These have been demonstrated to have a mutation in either CACNA1A, ATP1A2 or SCN1A, which encode different subunits of channels, involving P/Q-type calcium channel, Na/K pump and Na channel, respectively, located in neurons and glial cells. Mutations localized in different genes are defined as "other loci." Patients with a known mutation can have different genetic penetrance, and may present a more complex and disabling phenotype that develops earlier in life. The clinical manifestations can be similar in the three mutations, including neurologic comorbidities other than muscular weakness, such as episodes of loss of consciousness, epilepsy, gait or limb ataxia or movement disorders, among others. Treatment includes antiepileptics such as lamotrigine, valproate or topiramate, calcium blockers such as flunarizine or verapamil and acetazolamide.


Asunto(s)
Migraña con Aura , Humanos , Migraña con Aura/genética , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canales de Calcio
3.
Stem Cell Res ; 79: 103465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880015

RESUMEN

Peripheral blood mononuclear cells (PBMCs) were obtained from a patient diagnosed with Familial Hemiplegic Migraine Type 3, who carried a heterozygous A > C mutation in the SCN1A gene and reprogrammed using CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit. The iPSC line maintained the mutation while expressing markers of pluripotency. Additionally, it exhibited a normal karyotype and demonstrated potential for in vitro differentiation into cells representing all three embryonic germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucocitos Mononucleares , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología , Diferenciación Celular , Línea Celular , Migraña con Aura/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Masculino , Femenino
4.
Genes (Basel) ; 15(4)2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38674378

RESUMEN

Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.


Asunto(s)
Migraña con Aura , Humanos , Migraña con Aura/genética , Mutación , Predisposición Genética a la Enfermedad , Canal de Sodio Activado por Voltaje NAV1.1/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Ligamiento Genético , Canales de Calcio/genética
5.
Acta Neurol Belg ; 124(4): 1295-1301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38625499

RESUMEN

BACKGROUND: Current studies have shown emerging roles of lncRNAs in the pathobiology of neuropathic pain and migraine. METHODS: We have chosen five lncRNAs, namely, PVT1, DSCAM-AS, MEG3, LINC-ROR, and SPRY4-IT1 for assessment of their expression in the circulation of migraineurs. RESULTS: Expressions of PVT1 and MEG3 were higher in total migraineurs and both subgroups compared with controls (P < 0.0001). Meanwhile, expression of both lncRNA was higher in migraineurs with aura versus migraineurs without aura (P value < 0.0001 and = 0.01, respectively). Expression of DSCAM-AS1 was not different between any groups of patients compared with controls. Expression of LINC-ROR was elevated in total patients and patients with aura compared with controls (P value = 0.0002 and < 0.0001, respectively). It was also over-expressed in migraineurs with aura vs. migraineurs without aura (P = 0.01). Finally, expression of SPRY4-IT1 was higher in total patients and patients without aura compared with migraine-free persons (P values < 0.0001). Expressions of five mentioned lncRNAs were correlated in almost all study groups. In patients without aura, correlations were significant only for two pairs (SPRY4-IT1/PVT1 and SPRY4-IT1/DSCAM-AS1). PVT1 and MEG3 had the appropriate AUC, sensitivity and specificity values for separation of total migraineurs and both groups of patients from controls. The highest AUC value was reported for PVT1 in separation of migraineurs with aura from healthy controls (AUC = 0.98). CONCLUSION: Cumulatively, our study shows evidence for deregulation of lncRNAs in migraineurs.


Asunto(s)
Trastornos Migrañosos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Migraña con Aura/genética
6.
Headache ; 64(6): 624-631, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38679912

RESUMEN

OBJECTIVE: To assess whether systemic lupus erythematosus (SLE) may be genetically causally associated with migraine, including the two primary subtypes: migraine with aura (MWA) and migraine without aura (MWoA). BACKGROUND: The association between SLE and migraine has been investigated extensively. Previous studies have shown a higher prevalence of migraine in patients with SLE, although the exact relationship remains unclear. This study investigated the potential causal association between SLE and migraine using the powerful analytical tool of Mendelian randomization (MR). METHODS: We performed two-sample MR analysis of publicly available summary statistic datasets using inverse variance-weighted (IVW), weighted median, and MR-Egger methods based on an SLE genome-wide association study (GWAS; 5201 cases; 9066 controls; the exposure frequency is 36.5%) as an exposure and migraine GWAS (15,905 cases; 264,662 controls) in individuals with European ancestry as outcomes, focusing on the two migraine subtypes MWA (6780 cases; 264,662 controls) and MWoA (5787 cases; 264,662 controls). Thepleiotropy and heterogeneity were performed. RESULTS: We selected 42 single-nucleotide polymorphisms from SLE GWAS as instrumental variables (IVs) for SLE on migraine, and 41 SNP IVs for SLE on MWA or MWoA. The IVW (odds ratio [OR] = 1.01, 95% confidence interval [CI] = [0.99, 1.03], p = 0.271), weighted median (OR = 1.00, 95% CI = [0.97, 1.03], p = 0.914), and MR-Egger (OR = 1.04, 95% CI = [0.99, 1.09], p = 0.153) methods showed no causal effect of SLE on migraine. A causal effect of SLE was observed on MWA (IVW: OR = 1.05, 95% CI = [1.02, 1.08], p = 0.001; weighted median: OR = 1.05, 95% CI = [1.01, 1.10], p = 0.018; MR-Egger: OR = 1.07, 95% CI = [1.01, 1.14], p = 0.035 and pIVW < 0.017 [Bonferroni correction]) but not MWoA (IVW: OR = 0.99, 95% CI = [0.96, 1.02], p = 0.331; weighted median: OR = 0.98, 95% CI = [0.94, 1.03], p = 0.496; MR-Egger: OR = 1.02, 95% CI = [0.95, 1.09], p = 0.652). The results showed no significant pleiotropy or heterogeneity. CONCLUSION: Our MR analysis demonstrated the complex relationship between SLE and migraine, suggesting a potential effect of SLE on the risk of MWA but not MWoA. These findings can aid in the development of improved subtype-specific management of migraine in patients with SLE.


Asunto(s)
Estudio de Asociación del Genoma Completo , Lupus Eritematoso Sistémico , Análisis de la Aleatorización Mendeliana , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/epidemiología , Trastornos Migrañosos/genética , Trastornos Migrañosos/epidemiología , Polimorfismo de Nucleótido Simple , Migraña con Aura/genética , Migraña con Aura/epidemiología , Migraña sin Aura/genética , Migraña sin Aura/epidemiología , Predisposición Genética a la Enfermedad
7.
J Trop Pediatr ; 70(3)2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580379

RESUMEN

Familial hemiplegic migraine (FHM), an autosomal dominant subtype of hemiplegic migraine, is a channelopathy presenting with severe headache, visual field defect, paresthesia, unilateral motor deficit, encephalopathy, seizures and aphasia. This cross-sectional study was conducted over 10 months in children aged 1-18 years suspected of hemiplegic migraine at a tertiary care pediatric hospital. Fourteen children were screened and five children with genetically confirmed FHM were included. The symptoms in the study population were paroxysmal hemiparesis (5/5), headache (5/5) and focal seizures (1/5). The hemiplegia episodes lasted from 4 h to 7 days. The mean age at the onset of neurological symptoms was 6.8 ± 0.7 years and the mean age at diagnosis was 12.8 ± 1.7 years, with a mean delay of 6.1 ± 1.9 years for the diagnosis. Neuroimaging during acute episodes revealed accentuated gray, white differentiation in the contralateral cerebral hemisphere with mild effacement of sulcal spaces in T2/fluid-attenuated inversion recovery (FLAIR) images. Genetic testing revealed ATP1A2 mutations (FHM2) in 4/5 and SCN1A (FHM3) in 1/5 patients. All of them (5/5) were initiated on oral topiramate and had favorable treatment responses with a mean follow-up duration of 7 ± 1.4 months. Diagnosis of FHM is mainly clinical and can be confirmed by genetic analysis. Perfusion and diffusion-weighted MRI should be considered during acute headache episodes, as it is mostly normal in symptom-free periods. Routine MRI sequences like T1 weighted, T2 weighted, FLAIR and contrast remain normal even during acute attacks.


Asunto(s)
Encefalopatías , Migraña con Aura , Humanos , Niño , Adolescente , Migraña con Aura/diagnóstico , Migraña con Aura/tratamiento farmacológico , Migraña con Aura/genética , Hemiplejía/diagnóstico , Hemiplejía/genética , Estudios Transversales , Mutación , Cefalea , Convulsiones
8.
Proc Natl Acad Sci U S A ; 121(14): e2309000121, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547067

RESUMEN

Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.


Asunto(s)
Apnea , Mutación con Ganancia de Función , Bloqueadores de los Canales de Sodio , Animales , Humanos , Ratones , Apnea/tratamiento farmacológico , Apnea/genética , Tronco Encefálico , Células HEK293 , Migraña con Aura/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Bloqueadores de los Canales de Sodio/uso terapéutico , Lactante , Femenino
9.
Cell Calcium ; 118: 102851, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308916

RESUMEN

The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Migraña con Aura , Humanos , Ratones , Animales , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Migraña con Aura/genética , Migraña con Aura/metabolismo , Astrocitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo
10.
Handb Clin Neurol ; 199: 353-365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38307656

RESUMEN

Hemiplegic migraine (HM) is a rare subtype of migraine with aura in which the aura phase includes transient motor weakness. Diagnosis is based on the International Classification of Headache Disorders criteria (ICHD-3). The most important diagnostic tools remain a patient interview, neurological examination during attacks, and exclusion of other disorders, such as epilepsy, stroke, encephalitis and secondary headache syndromes. Hemiplegic migraine can occur either familial or sporadic. Three genes, CACNA1A, ATP1A2, and SCN1A have been identified. Taken together, mutations in these three genes predict increased neurotransmitter and potassium ion levels at the synaptic cleft, which facilitates cortical spreading depolarization, the phenomenon underlying the migraine aura. The presence of several symptoms, including extensive weakness and brainstem manifestations increase the likelihood of finding a monogenic cause. While the diagnosis can be confirmed by genetic testing, it cannot be excluded if one of the known (F)HM genes is not implicated. Most patients with hemiplegic migraine without a mutation in CACNA1A, ATP1A2, or SCN1A display a mild phenotype that is more akin to that of common (nonhemiplegic) migraine. Additional diagnostics such as brain imaging, cerebrospinal fluid analysis or an electroencephalography are mainly performed to exclude other causes of focal neurologic symptoms associated with hemiparesis and headache. Due to the rarity of the disorder, current treatment recommendations are based on small, unblinded studies and empirical data.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Migraña con Aura/diagnóstico , Migraña con Aura/genética , Migraña con Aura/terapia , Hemiplejía , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/genética , Mutación/genética , Cefalea
11.
J Headache Pain ; 25(1): 11, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273253

RESUMEN

BACKGROUND: Migraine and epilepsy are two paroxysmal chronic neurological disorders affecting a high number of individuals and being responsible for a high individual and socioeconomic burden. The link between these disorders has been of interest for decades and innovations concerning diagnosing and treatment enable new insights into their relationship. FINDINGS: Although appearing to be distinct at first glance, both diseases exhibit a noteworthy comorbidity, shared pathophysiological pathways, and significant overlaps in characteristics like clinical manifestation or prophylactic treatment. This review aims to explore the intricate relationship between these two conditions, shedding light on shared pathophysiological foundations, genetic interdependencies, common and distinct clinical features, clinically overlapping syndromes, and therapeutic similarities. There are several shared pathophysiological mechanisms, like CSD, the likely underlying cause of migraine aura, or neurotransmitters, mainly Glutamate and GABA, which represent important roles in triggering migraine attacks and seizures. The genetic interrelations between the two disorders can be observed by taking a closer look at the group of familial hemiplegic migraines, which are caused by mutations in genes like CACNA1A, ATP1A2, or SCN1A. The intricate relationship is further underlined by the high number of shared clinical features, which can be observed over the entire course of migraine attacks and epileptic seizures. While the variety of the clinical manifestation of an epileptic seizure is naturally higher than that of a migraine attack, a distinction can indeed be difficult in some cases, e.g. in occipital lobe epilepsy. Moreover, triggering factors like sleep deprivation or alcohol consumption play an important role in both diseases. In the period after the seizure or migraine attack, symptoms like speech difficulties, tiredness, and yawning occur. While the actual attack of the disease usually lasts for a limited time, research indicates that individuals suffering from migraine and/or epilepsy are highly affected in their daily life, especially regarding cognitive and social aspects, a burden that is even worsened using antiseizure medication. This medication allows us to reveal further connections, as certain antiepileptics are proven to have beneficial effects on the frequency and severity of migraine and have been used as a preventive drug for both diseases over many years. CONCLUSION: Migraine and epilepsy show a high number of similarities in their mechanisms and clinical presentation. A deeper understanding of the intricate relationship will positively advance patient-oriented research and clinical work.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/genética , Trastornos Migrañosos/epidemiología , Epilepsia/etiología , Epilepsia/genética , Migraña con Aura/genética , Anticonvulsivantes/uso terapéutico , Comorbilidad
12.
Eur J Pain ; 28(6): 978-986, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38183343

RESUMEN

BACKGROUND: The association between serum lipids and migraine is controversial. However, randomized controlled trials have suggested that statins may be efficacious for the prevention of migraine. In this study, we aim to investigate the relationship between lipids metabolism and migraine risk. METHODS: Single-nucleotide polymorphisms (SNPs), relating to the serum lipid traits and the effect of lipid-lowering drugs that target APOB, CETP, HMGCR, NPC1L1, and PCSK9, were extracted from genome-wide association studies (GWAS) summary data. The GWAS summary data were obtained from the Global Lipids Genetic Consortium (GLGC), the UK Biobank, and the FinnGen study, respectively. Mendelian randomization (MR) analysis was performed to evaluate the association between serum lipid traits and lipid-lowering drugs with migraine risk. RESULTS: Regarding serum lipids, it was found that SNPs related to high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol (TC), or triglycerides (TG) levels were not associated with migraine, migraine with aura (MA) or migraine without aura (MO). In addition, genotypes of HMGCR related to higher LDL-C levels were associated with increased risk of migraine (OR = 1.46, p = 0.035) and MA (OR = 2.03, p = 0.008); However, genotypes of PCSK9 related to higher LDL-C levels were associated with decreased risk of migraine (OR = 0.75, p = 0.001) and MA (OR = 0.69, p = 0.004); And genotypes of APOB related to higher LDL-C levels were associated with decreased risk of MO (OR = 0.62, p = 0.000). CONCLUSIONS: There is a relationship between lipid metabolism characteristics and migraine risk. SIGNIFICANCE: Based on the genome-wide association summary data, single-nucleotide polymorphisms (SNPs) related to high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol (TC), or triglycerides (TG) level were not associated with risk of migraine, migraine with aura (MA) or migraine without aura (MO). However, genotypes of HMGCR related to higher LDL-C levels have shown an increased risk on migraine and MA. And genotypes of APOB or PCSK9 related to higher LDL-C levels have shown a decreased risk on MO, or migraine and MA, respectively. These results suggested that there may be a relationship between lipid metabolism characteristics and the risk for migraine development.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hidroximetilglutaril-CoA Reductasas , Metabolismo de los Lípidos , Análisis de la Aleatorización Mendeliana , Trastornos Migrañosos , Polimorfismo de Nucleótido Simple , Humanos , Metabolismo de los Lípidos/genética , Trastornos Migrañosos/genética , Trastornos Migrañosos/sangre , Hidroximetilglutaril-CoA Reductasas/genética , Proproteína Convertasa 9/genética , Proteínas de Transferencia de Ésteres de Colesterol/genética , Migraña con Aura/genética , Migraña con Aura/sangre , LDL-Colesterol/sangre , Factores de Riesgo , Lípidos/sangre , Triglicéridos/sangre , HDL-Colesterol/sangre , Migraña sin Aura/genética , Migraña sin Aura/sangre , Proteínas de Transporte de Membrana , Apolipoproteína B-100
13.
Neurobiol Dis ; 192: 106405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211710

RESUMEN

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.


Asunto(s)
Ataxia Cerebelosa , Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Depresión de Propagación Cortical/fisiología , Trastornos Migrañosos/genética , Potenciales Evocados
15.
Brain ; 147(2): 680-697, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831655

RESUMEN

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Asunto(s)
Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Canales de Calcio Tipo N/genética , Calcio/metabolismo , Trastornos Migrañosos/genética , Mutación/genética , Depresión de Propagación Cortical/fisiología
16.
Handb Clin Neurol ; 198: 71-83, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38043972

RESUMEN

Migraine aura occurs in about a third of patients with migraine and consists of a group of transient focal neurological symptoms that appear from 5 to 60min and then resolve prior to or in the early phase of a migraine headache attack. Migraine auras may consist of visual, language, unilateral sensory, or motor symptoms. There has been considerable debate as to the origins of the migrainous aura. Investigations during physiologically induced visual auras suggest that the phenomenon of cortical spreading depression or its human equivalent underpins the migraine aura. Single gene defects have been linked to relatively rare forms of the motor subtypes of aura known as familial hemiplegic migraine (FHM). These include CACNA1A (FHM1), ATP1A2 (FHM2), and SCN1A (FHM3). In the familial hemiplegic forms of migraine, the more typical forms of aura are almost always also present. Despite ample epidemiological evidence of increased heritability of migraine with aura compared to migraine without aura, identification of the specific variants driving susceptibility to the more common forms of aura has been problematic thus far. In the first genome-wide association study (GWAS) that focused migraine with aura, a single SNP rs835740 reached genome-wide significance. Unfortunately, the SNP did show statistical significance in a later meta-analysis which included GWAS data from subsequent studies. Here, we review the clinical features, pathophysiological theories, and currently available potential evidence for the genetic basis of migraine aura.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Migraña con Aura/genética , Estudio de Asociación del Genoma Completo , Trastornos Migrañosos/genética
17.
Mol Brain ; 16(1): 76, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924146

RESUMEN

Familial hemiplegic migraine type-1 (FHM-1) is a form of migraine with aura caused by mutations in the P/Q-type (Cav2.1) voltage-gated calcium channel. Pregabalin, used clinically in the treatment of chronic pain and epilepsy, inhibits P/Q-type calcium channel activity and recent studies suggest that it may have potential for the treatment of migraine. Spreading Depolarization (SD) is a neurophysiological phenomenon that can occur during migraine with aura by propagating a wave of silenced neuronal function through cortex and sometimes subcortical brain structures. Here, utilizing an optogenetic stimulation technique optimized to allow for non-invasive initiation of cortical SD, we demonstrate that chronic pregabalin administration [12 mg/kg/day (s.c.)] in vivo increased the threshold for cortical spreading depolarization in transgenic mice harboring the clinically-relevant Cav2.1S218L mutation (S218L). In addition, chronic pregabalin treatment limited subcortical propagation of recurrent spreading depolarization events to the striatum and hippocampus in both wild-type and S218L mice. To examine contributing underlying mechanisms of action of chronic pregabalin, we performed whole-cell patch-clamp electrophysiology in CA1 neurons in ex vivo brain slices from mice treated with chronic pregabalin vs vehicle. In WT mice, chronic pregabalin produced a decrease in spontaneous excitatory postsynaptic current (sEPSC) amplitude with no effect on frequency. In contrast, in S218L mice chronic pregabalin produced an increase in sEPSC amplitude and decreased frequency. These electrophysiological findings suggest that in FHM-1 mice chronic pregabalin acts through both pre- and post-synaptic mechanisms in CA1 hippocampal neurons to elicit FHM-1 genotype-specific inhibitory action. The results highlight the potential of chronic pregabalin to limit recurrent SD to subcortical brain structures during pathophysiological events in both the genetically-normal and FHM-1 brain. The work further provides insights into FHM-1 pathophysiology and the potential for chronic pregabalin treatment to prevent SD in migraineurs.


Asunto(s)
Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/tratamiento farmacológico , Migraña con Aura/genética , Pregabalina/farmacología , Pregabalina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Ratones Transgénicos , Hipocampo
18.
Nat Genet ; 55(11): 1843-1853, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884687

RESUMEN

Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Estudio de Asociación del Genoma Completo , Trastornos Migrañosos/genética , Migraña con Aura/genética , Fenotipo
20.
J Headache Pain ; 24(1): 96, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495957

RESUMEN

BACKGROUND: Cortical spreading depolarization (CSD), the neurophysiological correlate of the migraine aura, can activate trigeminal pain pathways, but the neurobiological mechanisms and behavioural consequences remain unclear. Here we investigated effects of optogenetically-induced CSDs on headache-related behaviour and neuroinflammatory responses in transgenic mice carrying a familial hemiplegic migraine type 1 (FHM1) mutation. METHODS: CSD events (3 in total) were evoked in a minimally invasive manner by optogenetic stimulation through the intact skull in freely behaving wildtype (WT) and FHM1 mutant mice. Related behaviours were analysed using mouse grimace scale (MGS) scoring, head grooming, and nest building behaviour. Neuroinflammatory changes were investigated by assessing HMGB1 release with immunohistochemistry and by pre-treating mice with a selective Pannexin-1 channel inhibitor. RESULTS: In both WT and FHM1 mutant mice, CSDs induced headache-related behaviour, as evidenced by increased MGS scores and the occurrence of oculotemporal strokes, at 30 min. Mice of both genotypes also showed decreased nest building behaviour after CSD. Whereas in WT mice MGS scores had normalized at 24 h after CSD, in FHM1 mutant mice scores were normalized only at 48 h. Of note, oculotemporal stroke behaviour already normalized 5 h after CSD, whereas nest building behaviour remained impaired at 72 h; no genotype differences were observed for either readout. Nuclear HMGB1 release in the cortex of FHM1 mutant mice, at 30 min after CSD, was increased bilaterally in both WT and FHM1 mutant mice, albeit that contralateral release was more pronounced in the mutant mice. Only in FHM1 mutant mice, contralateral release remained higher at 24 h after CSD, but at 48 h had returned to abnormal, elevated, baseline values, when compared to WT mice. Blocking Panx1 channels by TAT-Panx308 inhibited CSD-induced headache related behaviour and HMGB1 release. CONCLUSIONS: CSDs, induced in a minimally invasive manner by optogenetics, investigated in freely behaving mice, cause various migraine relevant behavioural and neuroinflammatory phenotypes that are more pronounced and longer-lasting in FHM1 mutant compared to WT mice. Prevention of CSD-related neuroinflammatory changes may have therapeutic potential in the treatment of migraine.


Asunto(s)
Depresión de Propagación Cortical , Proteína HMGB1 , Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/genética , Migraña con Aura/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/farmacología , Optogenética , Depresión de Propagación Cortical/fisiología , Modelos Animales de Enfermedad , Trastornos Migrañosos/genética , Ratones Transgénicos , Cefalea , Inflamación , Proteínas del Tejido Nervioso/genética , Conexinas/genética , Conexinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...