Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.097
Filtrar
1.
J R Soc Interface ; 21(214): 20230745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745460

RESUMEN

Migratory songbirds may navigate by extracting positional information from the geomagnetic field, potentially with a magnetic-particle-based receptor. Previous studies assessed this hypothesis experimentally by exposing birds to a strong but brief magnetic pulse aimed at remagnetizing the particles and evoking an altered behaviour. Critically, such studies were not ideally designed because they lacked an adequate sham treatment controlling for the induced electric field that is fundamentally associated with a magnetic pulse. Consequently, we designed a sham-controlled magnetic-pulse experiment, with sham and treatment pulse producing a similar induced electric field, while limiting the sham magnetic field to a value that is deemed insufficient to remagnetize particles. We tested this novel approach by pulsing more than 250 wild, migrating European robins (Erithacus rubecula) during two autumn seasons. After pulsing them, five traits of free-flight migratory behaviour were observed, but no effect of the pulse could be found. Notably, one of the traits, the migratory motivation of adults, was significantly affected in only one of the two study years. Considering the problem of reproducing experiments with wild animals, we recommend a multi-year approach encompassing large sample size, blinded design and built-in sham control to obtain future insights into the role of magnetic-particle-based magnetoreception in bird navigation.


Asunto(s)
Migración Animal , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Migración Animal/fisiología , Campos Magnéticos , Vuelo Animal/fisiología
2.
Sci Adv ; 10(19): eadi6580, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728390

RESUMEN

The impact of dams on global migratory fish stocks is a major challenge and remains seriously underestimated. China has initiated a dozen fish rescue programs for the dams on the Yangtze River, focusing on five flagship species-Chinese sturgeon, Chinese paddlefish, Yangtze sturgeon, Chinese sucker, and Coreius guichenoti. Despite 40 years of effort, these five fishes are on the verge of extinction. Here, we propose an analytical tool that includes a framework of fish migration taxonomy and six life cycle models, the concepts of invalid stock and the dam impact coefficient, and a simplified population model. We then clarify the migration patterns and life cycles of these fishes and show that the Yangtze dams have severely disrupted the life cycle integrity of these species, causing seven types of invalid stocks and their exponential population declines. Last, we discuss six scientific misjudgments underpinning the fish rescue programs and recommend reforms to China's fish rescue strategy.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Peces , Dinámica Poblacional , Animales , Peces/fisiología , Migración Animal/fisiología , China , Ríos
3.
Sci Rep ; 14(1): 11472, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769407

RESUMEN

Fin whales, Balenoptera physalus, are capital breeders, having the potential to separate breeding and feeding both spatially and temporally. Fin whales occur throughout the Northwest Atlantic, but stock structure and seasonal movements remain unclear. By deploying satellite transmitters on 28 individuals, we examine movement patterns within and beyond the Gulf of St. Lawrence (GSL), Canada, and challenge the current understanding of stock structure. Eight individuals left the GSL in autumn, with five tags persisting into January. Migration patterns of these whales showed considerable variation in timing and trajectory, with movements extending south to 24°N, and thus beyond the assumed distribution limit of the species in the Northwest Atlantic. A rapid return to the Scotian Shelf or Gulf of Maine was observed from several whales after incursions in southern waters, suggesting that fin whales in the Northwest Atlantic may not have a common winter destination that fits the definition of a breeding ground. Area-restricted search (ARS) behavior dominated fin whale activities during summer (92%) and fall (72%), with persistence into the winter (56%); ARS occurred at multiple locations in the GSL, Scotian Shelf and Shelf edge, and near seamounts of the North Atlantic, having characteristics consistent with foraging areas.


Asunto(s)
Migración Animal , Ballena de Aleta , Estaciones del Año , Animales , Migración Animal/fisiología , Ballena de Aleta/fisiología , Océano Atlántico , Canadá
4.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771864

RESUMEN

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Asunto(s)
Aves , Vuelo Animal , Viento , Animales , Vuelo Animal/fisiología , Aves/fisiología , Orientación/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Orientación Espacial/fisiología , Migración Animal/fisiología
5.
Curr Biol ; 34(10): 2272-2277.e2, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772328

RESUMEN

Human conflicts can have impacts on wildlife, from direct mortality and environmental damage to the displacement of people, changing institutional dynamics and altering economies.1,2,3 Extreme anthropogenic disturbances related to conflict may act as a barrier to migrating birds and increase the energetic costs of migration.4 On February 24th, 2022, the Russian Federation invaded Ukraine, with targeted attacks on Kyiv and the eastern regions.5 By March 3rd, when the first of 19 tagged Greater Spotted Eagles entered Ukraine on migration, the conflict had spread to most major cities, including parts of western Ukraine.6 We quantified how conflict impacted the migratory behavior of this species using GPS tracks and conflict data from the Armed Conflict Location and Event Data (ACLED) project7,8 in a quasi-experimental before-after control-impact design, accounting for meteorological conditions. Migrating eagles were exposed to conflict events along their migration through Ukraine and exhibited different behavior compared with previous years, using fewer stopover sites and making large route deviations. This delayed their arrival to the breeding grounds and likely increased the energetic cost of migration, with sublethal fitness effects. Our findings provide a rare window into how human conflicts affect animal behavior and highlight the potential impacts of exposure to conflict events or other extreme anthropogenic disturbances on wildlife.


Asunto(s)
Migración Animal , Animales , Ucrania , Águilas/fisiología , Federación de Rusia , Humanos
6.
Sci Rep ; 14(1): 11531, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773173

RESUMEN

The biogeographical range shift of insect pests is primarily governed by temperature. However, the range shift of seasonal long-distance migratory insects may be very different from that of sedentary insects. Nilaparvata lugens (BPH), a serious rice pest, can only overwinter in tropical-to-subtropical regions, and some populations migrate seasonally to temperate zones with the aid of low-level jet stream air currents. This study utilized the CLIMEX model to project the overwintering area under the climate change scenarios of RCP2.6 and RCP8.5, both in 2030s and 2080s. The overwintering boundary is predicted to expand poleward and new overwintering areas are predicted in the mid-latitude regions of central-to-eastern China and mid-to-southern Australia. With climate change, the habitable areas remained similar, but suitability decreased substantially, especially in the near-equatorial regions, owing to increasing heat stress. The range shift is similar between RCP2.6-2030s, RCP2.6-2080s, and RCP8.5-2030s, but extreme changes are projected under RCP8.5-2080s with marginal areas increasing from 27.2 to 38.8% and very favorable areas dropping from 27.5 to 3.6% compared to the current climate. These findings indicate that climate change will drive range shifts in BPH and alter regional risks differently. Therefore, international monitoring programs are needed to effectively manage these emerging challenges.


Asunto(s)
Migración Animal , Cambio Climático , Hemípteros , Oryza , Animales , Oryza/parasitología , Hemípteros/fisiología , Migración Animal/fisiología , Australia , Estaciones del Año , China , Temperatura
7.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771086

RESUMEN

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Asunto(s)
Migración Animal , Cambio Climático , Comportamiento de Nidificación , Estaciones del Año , Animales , Regiones Árticas , Migración Animal/fisiología , Femenino , Charadriiformes/fisiología , Reproducción
8.
Commun Biol ; 7(1): 568, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745082

RESUMEN

Interpretations of Late Pleistocene hominin adaptative capacities by archaeologists have focused heavily on their exploitation of certain prey and documented contemporary behaviours for these species. However, we cannot assume that animal prey-taxa ecology and ethology were the same in the past as in the present, or were constant over archaeological timescales. Sequential isotope analysis of herbivore teeth has emerged as a particularly powerful method of directly reconstructing diet, ecology and mobility patterns on sub-annual scales. Here, we apply 87Sr/86Sr isotope analysis, in combination with δ18O and δ13C isotope analysis, to sequentially sampled tooth enamel of prevalent herbivore species that populated Europe during the Last Glacial Period, including Rangifer tarandus, Equus sp. and Mammuthus primigenius. Our samples come from two open-air archaeological sites in Central Germany, Königsaue and Breitenbach, associated with Middle Palaeolithic and early Upper Palaeolithic cultures, respectively. We identify potential inter- and intra-species differences in range size and movement through time, contextualised through insights into diet and the wider environment. However, homogeneous bioavailable 87Sr/86Sr across large parts of the study region prevented the identification of specific migration routes. Finally, we discuss the possible influence of large-herbivore behaviour on hominin hunting decisions at the two sites.


Asunto(s)
Isótopos de Carbono , Herbivoria , Animales , Isótopos de Carbono/análisis , Fósiles , Hominidae/fisiología , Isótopos de Estroncio/análisis , Arqueología , Europa (Continente) , Migración Animal , Esmalte Dental/química , Dieta , Alemania , Isótopos de Oxígeno/análisis
9.
Nat Commun ; 15(1): 4111, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750018

RESUMEN

Clarifying migration timing and its link with underlying drivers is fundamental to understanding the evolution of bird migration. However, previous studies have focused mainly on environmental drivers such as the latitudes of seasonal distributions and migration distance, while the effect of intrinsic biological traits remains unclear. Here, we compile a global dataset on the annual cycle of migratory birds obtained by tracking 1531 individuals and 177 populations from 186 species, and investigate how body mass, a key intrinsic biological trait, influenced timings of the annual cycle using Bayesian structural equation models. We find that body mass has a strong direct effect on departure date from non-breeding and breeding sites, and indirect effects on arrival date at breeding and non-breeding sites, mainly through its effects on migration distance and a carry-over effect. Our results suggest that environmental factors strongly affect the timing of spring migration, while body mass affects the timing of both spring and autumn migration. Our study provides a new foundation for future research on the causes of species distribution and movement.


Asunto(s)
Migración Animal , Teorema de Bayes , Aves , Estaciones del Año , Migración Animal/fisiología , Animales , Aves/fisiología , Peso Corporal , Factores de Tiempo
10.
J Environ Manage ; 359: 121053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723501

RESUMEN

Biodiversity preservation is a primary challenge of the 21st century, focusing on restoring unobstructed river flows and mitigating the effects of barriers, supported by European biodiversity strategies up to 2030. Maintaining ecological continuity, such as unblocking fishways clogged by floating debris disrupting natural fish migration paths, remains a challenge despite conventional protective methods. This study, taking a vertical slot fish pass in Wroclaw on the Odra River as a case study and based on research on bridge piers, suggests modifying pier shapes from rectangular to rounded in order to reduce debris accumulation. Field studies, utilizing an OTT MF Pro flow meter, were conducted to validate the numerical model. The measured flow rate in the field was 3.15 [m³·s-1], while the numerical modeling yielded a flow of 3.19 [m³·s-1]. Focusing on optimizing the shape of cross-wall piers to enhance fish migration conditions, the study examined six different pier configurations, analyzing flow speed in the main slot, crucial for migration. Using 2D hydraulic modeling with Iber, it assessed the migratory potential of different pier designs by analyzing hydraulic conditions and comparing them with the swimming capabilities of fish species native to the Odra River. Results indicate that rounding the pier edges positively affects flow speeds in the main slot, enhancing fish migration possibilities, contributing to fish pass functionality improvement and supporting broader biodiversity and ecosystem health goals.


Asunto(s)
Migración Animal , Biodiversidad , Peces , Ríos , Animales , Peces/fisiología , Conservación de los Recursos Naturales
11.
Naturwissenschaften ; 111(3): 28, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695961

RESUMEN

Sedentary animals choose appropriate refuges against predators, while migratory ones may not necessarily do so. In ectotherms, refuge selection is critical during low temperatures, because they cannot actively evade predators. To understand how migratory ectotherms alter their defensive behaviors depending on refuge quality in cold temperatures, we evaluated migratory gregarious desert locust nymphs (Schistocerca gregaria) in the Sahara Desert, where daily thermal constraints occur. We recorded how roosting plant type (bush/shrub) and its height influenced two alternative defense behaviors (dropping/stationary) during cold mornings, in response to an approaching simulated ground predator. Most locusts in bushes dropped within the bush and hid irrespective of their height, whereas those roosting > 2 m height in shrubs remained stationary. These defenses are effective and match with refuge plant types because dynamic locomotion is not required. When nymphs roosted on shrubs < 1.5-m height, which was an unsafe position, nearly half showed both defensive behaviors, indicating that escaping decisions become ambiguous when the refuges are inappropriate. These results suggest that locusts display flexible defensive behaviors when finding appropriate refuges and selecting refuge before daily thermal limitations occur could be critical for migratory ectotherms, which is a risk associated with migration.


Asunto(s)
Migración Animal , Saltamontes , Ninfa , Animales , Ninfa/fisiología , Ninfa/crecimiento & desarrollo , Saltamontes/fisiología , Saltamontes/crecimiento & desarrollo , Migración Animal/fisiología , Frío , Clima Desértico
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230115, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705175

RESUMEN

Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Migración Animal , Vuelo Animal , Insectos , Animales , Insectos/fisiología , Iluminación , Radar , Luna , Temperatura
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230116, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705191

RESUMEN

Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Altitud , Migración Animal , Vuelo Animal , Insectos , Animales , Vuelo Animal/fisiología , Europa (Continente) , Insectos/fisiología , Estaciones del Año
14.
Commun Biol ; 7(1): 585, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755288

RESUMEN

Exposure to pollutants is a potentially crucial but overlooked driver of population declines in shorebirds along the East Asian-Australasian Flyway. We combined knowledge of moult strategy and life history with a standardised sampling protocol to assess mercury (Hg) contamination in 984 individuals across 33 migratory shorebird species on an intercontinental scale. Over one-third of the samples exceeded toxicity benchmarks. Feather Hg was best explained by moulting region, while habitat preference (coastal obligate vs. non-coastal obligate), the proportion of invertebrates in the diet and foraging stratum (foraging mostly on the surface vs. at depth) also contributed, but were less pronounced. Feather Hg was substantially higher in South China (Mai Po and Leizhou), Australia and the Yellow Sea than in temperate and Arctic breeding ranges. Non-coastal obligate species (Tringa genus) frequently encountered in freshwater habitats were at the highest risk. It is important to continue and expand biomonitoring research to assess how other pollutants might impact shorebirds.


Asunto(s)
Migración Animal , Mercurio , Animales , Mercurio/análisis , Mercurio/toxicidad , Aves , Monitoreo del Ambiente , Australia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/efectos adversos , Plumas/química , Ecosistema , Contaminantes Ambientales/análisis , Charadriiformes , China , Pueblos del Este de Asia
15.
Sci Rep ; 14(1): 11212, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755300

RESUMEN

The sei whale (Balaenoptera borealis) is an important species among baleen whales in the North Pacific and plays a significant role in the ecosystem. Despite the importance of this species, information regarding its migration patterns and breeding locations remains limited. To enhance the understanding of the phenology of North Pacific sei whales, we deployed satellite-monitored tags on these whales in the western and central North Pacific from 2017 to 2023. We fitted 55 sei whale tracks to a state-space model to describe the whales' seasonal movements at feeding grounds and their migratory behavior. The whales typically leave their feeding grounds between November and December, with migration pathways extending from off Japan to the west of the Hawaiian Islands. These southward transits converge in the waters of the Marshall Islands and north of Micronesia between 20° N and 7° N, which appear to be breeding grounds. After a brief stay at these breeding grounds, the whales migrate northward from January to February, reaching their feeding grounds around 30°N by March. To the best of our knowledge, this is the first study to present the phenology of feeding and breeding seasons and the migration pattern of North Pacific sei whales.


Asunto(s)
Migración Animal , Estaciones del Año , Animales , Migración Animal/fisiología , Océano Pacífico , Balaenoptera/fisiología , Ecosistema , Reproducción/fisiología , Cruzamiento , Ballenas/fisiología
16.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739790

RESUMEN

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Asunto(s)
Migración Animal , Aves , Especiación Genética , Animales , Migración Animal/fisiología , Aves/genética , Aves/fisiología , Aves/clasificación , Ecosistema , Altitud , Evolución Biológica
17.
Ecol Evol Physiol ; 97(1): 11-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717370

RESUMEN

AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.


Asunto(s)
Migración Animal , Músculo Esquelético , Fenotipo , Estaciones del Año , Gorriones , Animales , Migración Animal/fisiología , Músculo Esquelético/fisiología , Composición Corporal/fisiología , Masculino , Músculos Pectorales/fisiología , Femenino
18.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38726821

RESUMEN

Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day antiparasitic intervention towards the end of the livestock's time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.


Asunto(s)
Cabras , Ganado , Animales , India/epidemiología , Cabras/parasitología , Ganado/parasitología , Ovinos/parasitología , Migración Animal , Enfermedades de las Cabras/parasitología , Enfermedades de las Cabras/transmisión , Animales Salvajes/parasitología , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/transmisión , Enfermedades de las Ovejas/prevención & control , Infecciones por Nematodos/transmisión , Infecciones por Nematodos/veterinaria , Infecciones por Nematodos/prevención & control , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/epidemiología , Estaciones del Año , Larva/parasitología , Nematodos/patogenicidad
19.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38632979

RESUMEN

Birds remodel their flight muscle metabolism prior to migration to meet the physiological demands of migratory flight, including increases in both oxidative capacity and defence against reactive oxygen species. The degree of plasticity mediated by changes in these mitochondrial properties is poorly understood but may be explained by two non-mutually exclusive hypotheses: variation in mitochondrial quantity or in individual mitochondrial function. We tested these hypotheses using yellow-rumped warblers (Setophaga coronata), a Nearctic songbird which biannually migrates 2000-5000 km. We predicted higher flight muscle mitochondrial abundance and substrate oxidative capacity, and decreased reactive oxygen species emission in migratory warblers captured during autumn migration compared with a short-day photoperiod-induced non-migratory phenotype. We assessed mitochondrial abundance via citrate synthase activity and assessed isolated mitochondrial function using high-resolution fluororespirometry. We found 60% higher tissue citrate synthase activity in the migratory phenotype, indicating higher mitochondrial abundance. We also found 70% higher State 3 respiration (expressed per unit citrate synthase) in mitochondria from migratory warblers when oxidizing palmitoylcarnitine, but similar H2O2 emission rates between phenotypes. By contrast, non-phosphorylating respiration was higher and H2O2 emission rates were lower in the migratory phenotype. However, flux through electron transport system complexes I-IV, II-IV and IV was similar between phenotypes. In support of our hypotheses, these data suggest that flight muscle mitochondrial abundance and function are seasonally remodelled in migratory songbirds to increase tissue oxidative capacity without increasing reactive oxygen species formation.


Asunto(s)
Migración Animal , Especies Reactivas de Oxígeno , Pájaros Cantores , Animales , Pájaros Cantores/metabolismo , Pájaros Cantores/fisiología , Especies Reactivas de Oxígeno/metabolismo , Migración Animal/fisiología , Citrato (si)-Sintasa/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Vuelo Animal/fisiología
20.
Proc Natl Acad Sci U S A ; 121(19): e2311146121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648469

RESUMEN

The pace and scale of environmental change represent major challenges to many organisms. Animals that move long distances, such as migratory birds, are especially vulnerable to change since they need chains of intact habitat along their migratory routes. Estimating the resilience of such species to environmental changes assists in targeting conservation efforts. We developed a migration modeling framework to predict past (1960s), present (2010s), and future (2060s) optimal migration strategies across five shorebird species (Scolopacidae) within the East Asian-Australasian Flyway, which has seen major habitat deterioration and loss over the last century, and compared these predictions to empirical tracks from the present. Our model captured the migration strategies of the five species and identified the changes in migrations needed to respond to habitat deterioration and climate change. Notably, the larger species, with single or few major stopover sites, need to establish new migration routes and strategies, while smaller species can buffer habitat loss by redistributing their stopover areas to novel or less-used sites. Comparing model predictions with empirical tracks also indicates that larger species with the stronger need for adaptations continue to migrate closer to the optimal routes of the past, before habitat deterioration accelerated. Our study not only quantifies the vulnerability of species in the face of global change but also explicitly reveals the extent of adaptations required to sustain their migrations. This modeling framework provides a tool for conservation planning that can accommodate the future needs of migratory species.


Asunto(s)
Migración Animal , Aves , Cambio Climático , Ecosistema , Animales , Migración Animal/fisiología , Aves/fisiología , Conservación de los Recursos Naturales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA