RESUMEN
Histone H3mm18 is a non-allelic H3 variant expressed in skeletal muscle and brain in mice. However, its function has remained enigmatic. We found that H3mm18 is incorporated into chromatin in cells with low efficiency, as compared to H3.3. We determined the structures of the nucleosome core particle (NCP) containing H3mm18 by cryo-electron microscopy, which revealed that the entry/exit DNA regions are drastically disordered in the H3mm18 NCP. Consistently, the H3mm18 NCP is substantially unstable in vitro. The forced expression of H3mm18 in mouse myoblast C2C12 cells markedly suppressed muscle differentiation. A transcriptome analysis revealed that the forced expression of H3mm18 affected the expression of multiple genes, and suppressed a group of genes involved in muscle development. These results suggest a novel gene expression regulation system in which the chromatin landscape is altered by the formation of unusual nucleosomes with a histone variant, H3mm18, and provide important insight into understanding transcription regulation by chromatin.
Asunto(s)
Histonas/química , Nucleosomas/química , Transcriptoma , Animales , Microscopía por Crioelectrón , Histonas/genética , Histonas/metabolismo , Ratones , Mioblastos/metabolismo , Mioblastos/ultraestructura , Células 3T3 NIH , Nucleosomas/metabolismo , Nucleosomas/ultraestructuraRESUMEN
A combinatorial code of identity transcription factors (iTFs) specifies the diversity of muscle types in Drosophila. We previously showed that two iTFs, Lms and Ap, play critical role in the identity of a subset of larval body wall muscles, the lateral transverse (LT) muscles. Intriguingly, a small portion of ap and lms mutants displays an increased number of LT muscles, a phenotype that recalls pathological split muscle fibers in human. However, genes acting downstream of Ap and Lms to prevent these aberrant muscle feature are not known. Here, we applied a cell type specific translational profiling (TRAP) to identify gene expression signatures underlying identity of muscle subsets including the LT muscles. We found that Gelsolin (Gel) and dCryAB, both encoding actin-interacting proteins, displayed LT muscle prevailing expression positively regulated by, the LT iTFs. Loss of dCryAB function resulted in LTs with irregular shape and occasional branched ends also observed in ap and lms mutant contexts. In contrast, enlarged and then split LTs with a greater number of myonuclei formed in Gel mutants while Gel gain of function resulted in unfused myoblasts, collectively indicating that Gel regulates LTs size and prevents splitting by limiting myoblast fusion. Thus, dCryAB and Gel act downstream of Lms and Ap and contribute to preventing LT muscle branching and splitting. Our findings offer first clues to still unknown mechanisms of pathological muscle splitting commonly detected in human dystrophic muscles and causing muscle weakness.
Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Gelsolina/fisiología , Regulación de la Expresión Génica , Genes de Insecto , Músculos/ultraestructura , Distrofia Muscular Animal/genética , Cadena B de alfa-Cristalina/fisiología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Fusión Celular , Forma de la Célula , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Gelsolina/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Larva , Mutación con Pérdida de Función , Familia de Multigenes , Células Musculares/metabolismo , Músculos/metabolismo , Distrofia Muscular Animal/patología , Mioblastos/metabolismo , Mioblastos/ultraestructura , ARN Mensajero/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética , Cadena B de alfa-Cristalina/genéticaRESUMEN
A spheroid is an aggregation of single cells with structural and functional characteristics similar to those of 3D native tissues, and it has been utilized as one of the typical in vitro three-dimensional (3D) cell models. Scaffold-free spheroids provide outstanding reflection of tissue complexity in a 3D in vivo-like environment, but they can neither fabricate realistic macroscale 3D complex structures without avoiding necrosis nor receive direct external stimuli (i.e., stimuli from mechanical or topographical cues). Here, we propose a spheroid-laden electrospinning process to obtain in vitro model achieved using the synergistic effect of the unique bioactive components provided by the spheroids and stimulating effects provided by the aligned nanofibers. Methods: To show the functional activity of the spheroid-laden structures, we used myoblast-spheroids to obtain skeletal muscle, comprising highly aligned myotubes, utilizing an uniaxially arranged topographical cue. The spheroid-electrospinning was used to align spheroids directly by embedding them in aligned alginate nanofibers, which were controlled with various materials and processing parameters. Results: The spheroids laden in the alginate nanofibers showed high cell viability (>90%) and was compared with that of a cell-laden alginate nanofiber that was electrospun with single cells. Consequently, the spheroids laden in the aligned nanofibers showed a significantly higher degree of myotube formation and maturation. Conclusion: Results suggested that the in vitro model using electrospun spheroids could potentially be employed to understand myogenic responses for various in vitro drug tests.
Asunto(s)
Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Alginatos/química , Alginatos/farmacología , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas Electroquímicas , Ratones , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Mioblastos/fisiología , Mioblastos/ultraestructura , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructuraRESUMEN
Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.
Asunto(s)
Ácidos Indolacéticos/uso terapéutico , Mitocondrias Musculares/metabolismo , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Fenilbutiratos/uso terapéutico , Adenosina Trifosfato/biosíntesis , Anciano , Anciano de 80 o más Años , Butionina Sulfoximina/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , ADN Mitocondrial/genética , Evaluación Preclínica de Medicamentos , Dinaminas/biosíntesis , Dinaminas/genética , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Fibroblastos/efectos de los fármacos , GTP Fosfohidrolasas/biosíntesis , GTP Fosfohidrolasas/genética , Factor 15 de Diferenciación de Crecimiento/biosíntesis , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Ácidos Indolacéticos/farmacología , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/ultraestructura , Miositis por Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/patología , Consumo de Oxígeno , Fenilbutiratos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estudios RetrospectivosRESUMEN
Glutamine and glucose are both oxidized in the mitochondria to supply the majority of usable energy for processes of cellular function. Low levels of plasma and skeletal muscle glutamine are associated with severe illness. We hypothesized that glutamine deficiency would disrupt mitochondrial integrity and impair cell function. C2C12 mouse myoblasts were cultured in control media supplemented with 5.6 mmol/L glucose and 2 mmol/L glutamine, glutamine depletion (Gln-) or glucose depletion (Glc-) media. We compared mitochondrial morphology and function, as well as cell proliferation, myogenic differentiation, and heat-shock response in these cells. Glc- cells exhibited slightly elongated mitochondrial networks and increased mitochondrial mass, with normal membrane potential (ΔΨm). Mitochondria in Gln- cells became hyperfused and swollen, which were accompanied by severe disruption of cristae and decreases in ΔΨm, mitochondrial mass, the inner mitochondrial membrane remodeling protein OPA1, electron transport chain complex IV protein expression, and markers of mitochondrial biogenesis and bioenergetics. In addition, Gln- increased the autophagy marker LC3B-II on the mitochondrial membrane. Notably, basal mitochondrial respiration was increased in Glc- cells as compared to control cells, whereas maximal respiration remained unchanged. In contrast, basal respiration, maximal respiration and reserve capacity were all decreased in Gln- cells. Consistent with the aforementioned mitochondrial deficits, Gln- cells had lower growth rates and myogenic differentiation, as well as a higher rate of cell death under heat stress conditions than Glc- and control cells. We conclude that glutamine is essential for mitochondrial integrity and function; glutamine depletion impairs myoblast proliferation, differentiation, and the heat-shock response.
Asunto(s)
Glutamina/metabolismo , Respuesta al Choque Térmico , Mitocondrias Musculares/metabolismo , Mioblastos/fisiología , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Metabolismo Energético , Ratones , Mitocondrias Musculares/ultraestructura , Mitofagia , Desarrollo de Músculos , Mioblastos/citología , Mioblastos/metabolismo , Mioblastos/ultraestructura , Biogénesis de Organelos , Consumo de OxígenoRESUMEN
Defects in membrane repair contribute to the development of some muscular dystrophies, highlighting the importance to decipher the membrane repair mechanisms in human skeletal muscle. In murine myofibers, the formation of a cap subdomain composed notably by annexins (Anx) is critical for membrane repair. We applied membrane damage by laser ablation to human skeletal muscle cells and assessed the behavior of annexin-A6 (AnxA6) tagged with GFP by correlative light and electron microscopy (CLEM). We show that AnxA6 was recruited to the site of membrane injury within a few seconds after membrane injury. In addition, we show that the deficiency in AnxA6 compromises human sarcolemma repair, demonstrating the crucial role played by AnxA6 in this process. An AnxA6-containing cap-subdomain was formed in damaged human myotubes in about one minute. Through transmission electron microscopy (TEM), we observed that extension of the sarcolemma occurred during membrane resealing, which participated in forming a dense lipid structure in order to plug the hole. By properties of membrane folding and curvature, AnxA6 helped in the formation of this tight structure. The compaction of intracellular membranes-which are used for membrane resealing and engulfed in extensions of the sarcolemma-may also facilitate elimination of the excess of lipid and protein material once cell membrane has been repaired. These data reinforce the role played by AnxA6 and the cap subdomain in membrane repair of skeletal muscle cells.
Asunto(s)
Anexina A6/química , Anexina A6/metabolismo , Membrana Celular/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/patología , Anexina A5/metabolismo , Anexina A6/ultraestructura , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Mioblastos/metabolismo , Mioblastos/ultraestructura , Dominios Proteicos , Fracciones Subcelulares/metabolismoRESUMEN
Cell polarity refers to the intrinsic asymmetry of cells, including the orientation of the cytoskeleton. It affects cell shape and structure as well as the distribution of proteins and organelles. In migratory cells, front-rear polarity is essential and dictates movement direction. While the link between the cytoskeleton and nucleus is well-studied, we aim to investigate if front-rear polarity can be transmitted to the nucleus. We show that the knock-down of emerin, an integral protein of the nuclear envelope, abolishes preferential localization of several nuclear proteins. We propose that the frontally biased localization of the endoplasmic reticulum, through which emerin reaches the nuclear envelope, is sufficient to generate its observed bias. In primary emerin-deficient myoblasts, its expression partially rescues the polarity of the nucleus. Our results demonstrate that front-rear cell polarity is transmitted to the nucleus and that emerin is an important determinant of nuclear polarity.
Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Línea Celular , Núcleo Celular/ultraestructura , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mioblastos/metabolismo , Mioblastos/ultraestructura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Interferencia de ARNRESUMEN
CSRP3/MLP (cysteine-rich protein 3/muscle Lim protein), a member of the cysteine-rich protein family, is a muscle-specific LIM-only factor specifically expressed in skeletal muscle. CSRP3 is critical in maintaining the structure and function of normal muscle. To investigate the mechanism of disease in CSRP3 myopathy, we performed siRNA-mediated CSRP3 knockdown in chicken primary myoblasts. CSRP3 silencing resulted in the down-regulation of the expression of myogenic genes and the up-regulation of atrophy-related gene expressions. We found that CSRP3 interacted with LC3 protein to promote the formation of autophagosomes during autophagy. CSRP3-silencing impaired myoblast autophagy, as evidenced by inhibited autophagy-related ATG5 and ATG7 mRNA expression levels, and inhibited LC3II and Beclin-1 protein accumulation. In addition, impaired autophagy in CSRP3-silenced cells resulted in increased sensitivity to apoptosis cell death. CSRP3-silenced cells also showed increased caspase-3 and caspase-9 cleavage. Moreover, apoptosis induced by CSRP3 silencing was alleviated after autophagy activation. Together, these results indicate that CSRP3 promotes the correct formation of autophagosomes through its interaction with LC3 protein, which has an important role in skeletal muscle remodeling and maintenance.
Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Proteínas con Dominio LIM/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Mioblastos/metabolismo , Animales , Apoptosis/genética , Autofagosomas/ultraestructura , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Caspasas/metabolismo , Células Cultivadas , Embrión de Pollo , Pollos , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ontología de Genes , Silenciador del Gen , Proteínas con Dominio LIM/genética , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Distrofias Musculares/genética , Mioblastos/ultraestructura , ARN Interferente Pequeño , RNA-SeqRESUMEN
Lysine-specific demethylase 1 (LSD1) is a well characterized transcriptional regulator functioning on the chromatin to remove mono- and di-methyl groups from lysine 4 or lysine 9 of histone 3 (H3K4 or H3K9). LSD1 also has non-transcriptional activities via targeting non-histone substrates that participate in diverse biological processes. In this report, we determined that LSD1 negatively regulates autophagy in skeletal muscle cells by promoting PTEN degradation in a transcription-independent mechanism. In C2C12 cells, LSD1 inhibition or depletion significantly induced the initiation of autophagy; and autophagy resulted from LSD1 inhibition is associated with AKT/mTORC1 inactivation. Notably, the proteins of PTEN, a prominent repressive AKT modulator, are stabilized by LSD1 inhibition despite a decrease of its mRNA levels. Further data demonstrated that LSD1 interacts with PTEN protein and enhances its ubiquitination and degradation. Together, our findings identify a novel biological function of LSD1 in autophagy, mediated by regulating the stability of PTEN and the activity of AKT/mTORC1.
Asunto(s)
Autofagia , Histona Demetilasas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteolisis , Animales , Línea Celular , Activación Enzimática , Estabilidad de Enzimas , Histona Demetilasas/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mioblastos/ultraestructura , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcripción Genética , UbiquitinaciónRESUMEN
The main step in the assessment of nanomaterial safety and suitability for biomedical use is the location and the dynamic tracking of nanoparticles (NPs) inside cells or tissues. To precisely investigate the uptake mechanisms and intracellular fate of NPs, transmission electron microscopy is the technique of choice; however, the detection of NPs may sometimes be problematic. In fact, while NPs containing strongly electron dense (e.g., metal) components do not require specific detection methods at the ultrastructural level, organic NPs are hardly detectable in the intracellular environment due to their intrinsic moderate electron density. In this study, the critical-electrolyte-concentration Alcian Blue method set up by Schofield et al. in 1975 was applied to track hyaluronic-acid-based NPs in muscle cells in vitro. This long-established histochemical method proved to be a powerful tool allowing to identify not only whole NPs while entering cells and moving into the cytoplasm, but also their remnants following lysosomal degradation and extrusion.
Asunto(s)
Azul Alcián/química , Colorantes/química , Ácido Hialurónico/metabolismo , Nanopartículas/metabolismo , Animales , Línea Celular , Lisosomas/metabolismo , Ratones , Microscopía Electrónica de Transmisión/métodos , Mioblastos/ultraestructura , Coloración y EtiquetadoRESUMEN
AIM: To elucidate whether different cytokinetic features (i.e., presence or absence of mitotic activity) may influence cell uptake and distribution of nanocarriers, in vitro tests on liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were carried out on C2C12 murine muscle cells either able to proliferate as myoblasts (cycling cells) or terminally differentiate into myotubes (noncycling cells). MATERIALS & METHODS: Cell uptake and intracellular fate of liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were investigated by confocal fluorescence microscopy and transmission electron microscopy. RESULTS: Nanocarrier internalization and distribution were similar in myoblasts and myotubes; however, myotubes demonstrated a lower uptake capability. CONCLUSION: All nanocarriers proved to be suitably biocompatible for both myoblasts and myotubes. The lower uptake capability of myotubes is probably due to different plasma membrane composition related to the differentiation process.
Asunto(s)
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efectos de los fármacos , Nanopartículas/química , Animales , Línea Celular , Portadores de Fármacos/efectos adversos , Liposomas/química , Liposomas/metabolismo , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Fibras Musculares Esqueléticas/ultraestructura , Mioblastos/ultraestructura , Nanopartículas/ultraestructuraRESUMEN
Progressive cardiomyocyte loss in Duchenne muscular dystrophy (DMD) leads to cardiac fibrosis, cardiomyopathy, and eventually heart failure. In the present study, we observed that myogenic progenitor cells (MPC) carry mRNA for the dystrophin gene. We tested whether cardiac function can be improved in DMD by allograft transplantation of MPC-derived exosomes (MPC-Exo) into the heart to restore dystrophin protein expression. Exo from C2C12 cells (an MPC cell line) or vehicle were delivered locally into the hearts of MDX mice. After 2 days of treatment, we observed that MPC-Exo restored dystrophin expression in the hearts of MDX mice, which correlated with improved myocardial function in dystrophin-deficient MDX mouse hearts. In conclusion, this study demonstrated that allogeneic WT-MPC-Exo transplantation transiently restored dystrophin gene expression and improved cardiac function in MDX mice, suggesting that allogenic exosomal delivery may serve as an alternative treatment for cardiomyopathy of DMD.
Asunto(s)
Cardiomiopatías/cirugía , Distrofina/metabolismo , Exosomas/trasplante , Distrofia Muscular de Duchenne/complicaciones , Mioblastos/trasplante , Miocardio/metabolismo , Trasplante de Células Madre/métodos , Función Ventricular Izquierda , Aloinjertos , Animales , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Distrofina/genética , Exosomas/metabolismo , Exosomas/ultraestructura , Masculino , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Mioblastos/metabolismo , Mioblastos/ultraestructura , Miocardio/patología , Recuperación de la FunciónRESUMEN
The proteolytic autophagy pathway is enhanced in the lower limb muscles of patients with chronic obstructive pulmonary disease (COPD). Reactive oxygen species (ROS) have been shown to regulate autophagy in the skeletal muscles, but the role of oxidative stress in the muscle autophagy of patients with COPD is unknown. We used cultured myoblasts and myotubes from the quadriceps of eight healthy subjects and twelve patients with COPD (FEV1% predicted: 102.0% and 32.0%, respectively; p < 0.0001). We compared the autophagosome formation, the expression of autophagy markers, and the autophagic flux in healthy subjects and the patients with COPD, and we evaluated the effects of the 3-methyladenine (3-MA) autophagy inhibitor on the atrophy of COPD myotubes. Autophagy was also assessed in COPD myotubes treated with an antioxidant molecule, ascorbic acid. Autophagosome formation was increased in COPD myoblasts and myotubes (p = 0.011; p < 0.001), and the LC3 2/LC3 1 ratio (p = 0.002), SQSTM1 mRNA and protein expression (p = 0.023; p = 0.007), BNIP3 expression (p = 0.031), and autophagic flux (p = 0.002) were higher in COPD myoblasts. Inhibition of autophagy with 3-MA increased the COPD myotube diameter (p < 0.001) to a level similar to the diameter of healthy subject myotubes. Treatment of COPD myotubes with ascorbic acid decreased ROS concentration (p < 0.001), ROS-induced protein carbonylation (p = 0.019), the LC3 2/LC3 1 ratio (p = 0.037), the expression of SQSTM1 (p < 0.001) and BNIP3 (p < 0.001), and increased the COPD myotube diameter (p < 0.001). Thus, autophagy signaling is enhanced in cultured COPD muscle cells. Furthermore, the oxidative stress level contributes to the regulation of autophagy, which is involved in the atrophy of COPD myotubes in vitro.
Asunto(s)
Autofagia , Células Musculares/patología , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/patología , Adenina/análogos & derivados , Adenina/farmacología , Anciano , Ácido Ascórbico/farmacología , Autofagia/efectos de los fármacos , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Células Musculares/efectos de los fármacos , Células Musculares/ultraestructura , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Atrofia Muscular/patología , Mioblastos/efectos de los fármacos , Mioblastos/patología , Mioblastos/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructuraRESUMEN
Spectrin is a membrane skeletal protein best known for its structural role in maintaining cell shape and protecting cells from mechanical damage. Here, we report that α/ßH-spectrin (ßH is also called karst) dynamically accumulates and dissolves at the fusogenic synapse between fusing Drosophila muscle cells, where an attacking fusion partner invades its receiving partner with actin-propelled protrusions to promote cell fusion. Using genetics, cell biology, biophysics and mathematical modelling, we demonstrate that spectrin exhibits a mechanosensitive accumulation in response to shear deformation, which is highly elevated at the fusogenic synapse. The transiently accumulated spectrin network functions as a cellular fence to restrict the diffusion of cell-adhesion molecules and a cellular sieve to constrict the invasive protrusions, thereby increasing the mechanical tension of the fusogenic synapse to promote cell membrane fusion. Our study reveals a function of spectrin as a mechanoresponsive protein and has general implications for understanding spectrin function in dynamic cellular processes.
Asunto(s)
Fusión Celular , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mecanotransducción Celular , Fusión de Membrana , Mioblastos/metabolismo , Espectrina/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Membrana Celular/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Ratones , Microscopía Fluorescente , Modelos Biológicos , Mioblastos/ultraestructura , Mioblastos Esqueléticos/metabolismo , Espectrina/genética , Estrés Mecánico , Factores de TiempoRESUMEN
The mammalian nucleus has invaginations from the cytoplasm, termed nucleoplasmic reticulum (NR). With increased resolution of cellular imaging, progress has been made in understanding the formation and function of NR. In fact, nucleoplasmic Ca2+ homeostasis has been implicated in the regulation of gene expression, DNA repair, and cell death. However, the majority of studies focus on cross-sectional or single-plane analyses of NR invaginations, providing an incomplete assessment of its distribution and content. Here, we provided advanced imaging and three-dimensional reconstructive analyses characterizing the molecular constituents of nuclear invaginations in the nucleoplasm in HEK293 cells, murine C2C12 muscle cells, and cardiac myocytes. We demonstrated the presence of critical Ca2+ regulatory channels, including sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a), stromal interaction molecule 1 (STIM1), and Ca2+ release-activated Ca2+ channel protein 1 (ORAI1), in the nucleoplasm in isolated primary mouse cardiomyocytes. We have shown for the first time the presence of STIM1 and ORAI1 in the nucleoplasm, suggesting the presence of store-operated calcium entry (SOCE) mechanism in nucleoplasmic Ca2+ regulation. These results show that nucleoplasmic invaginations contain continuous endoplasmic reticulum components, mitochondria, and intact nuclear membranes, highlighting the extremely detailed and complex nature of this organellar structure.
Asunto(s)
Retículo Endoplásmico/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mitocondrias Cardíacas/ultraestructura , Mioblastos/ultraestructura , Miocitos Cardíacos/ultraestructura , Membrana Nuclear/ultraestructura , Retículo Sarcoplasmático/ultraestructura , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Mioblastos/metabolismo , Miocitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Proteína ORAI1/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Molécula de Interacción Estromal 1/metabolismo , TransfecciónAsunto(s)
Núcleo Celular/genética , MicroARNs/genética , Proteínas Asociadas a Matriz Nuclear/genética , Factores de Transcripción de Octámeros/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Animales , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Proteínas de Unión al ADN , Células HeLa , Humanos , Ratones , MicroARNs/metabolismo , Mioblastos/metabolismo , Mioblastos/ultraestructura , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismoRESUMEN
Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM) scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM) proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h-1) and migration (0.26 ± 0.04 µm/min), while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h-1) and migration (0.23 ± 0.03 µm/min). Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.
Asunto(s)
Laminina , Músculo Esquelético/citología , Mioblastos/citología , Nanofibras , Polimetil Metacrilato , Andamios del Tejido , Técnicas de Cultivo de Célula , Movimiento Celular , Proliferación Celular , Colágeno , Fibroblastos , Humanos , Laminina/química , Mioblastos/ultraestructura , Nanofibras/química , Nanofibras/ultraestructura , Polimetil Metacrilato/química , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de TejidosRESUMEN
Multiple myeloma (MM) accounts for â¼13% of all hematologic malignancies. Bortezomib treatment is effective in MM, but can be complicated with neurological side effects. We describe a patient with symptomatic MM who had a reversible metabolic myopathy associated with bortezomib administration and pathologically characterized by excessive storage of lipid droplets together with mitochondrial abnormalities. In a single-center prospective study, 14 out of 24 patients with symptomatic MM were treated with bortezomib and, among these, 7 developed muscular signs and/or symptoms. The myopathy was characterized by a proximal muscle weakness involving lower limbs and was an early complication. Complete resolution of muscle weakness occurred after treatment discontinuation. Conversely, none of the patients who received a treatment without bortezomib developed muscular symptoms. Experimental studies demonstrate that in primary human myoblasts bortezomib at low concentrations leads to excessive storage of lipid droplets together with structural mitochondrial abnormalities, recapitulating the pathologic findings observed in patient's muscle. Our data suggest that patients treated with bortezomib should be monitored for muscular signs and/or symptoms and muscle weakness should alert the clinician to the possibility of myopathy. Bortezomib-induced metabolic myopathy is a potentially reversible entity with important implications for management and treatment of patients with MM.
Asunto(s)
Bortezomib/efectos adversos , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Enfermedades Musculares/inducido químicamente , Anciano , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Bortezomib/farmacología , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Persona de Mediana Edad , Enfermedades Musculares/patología , Mioblastos/efectos de los fármacos , Mioblastos/ultraestructura , Estudios Prospectivos , Factores de Tiempo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismoRESUMEN
The human genome has been decoded, but we are still far from understanding the regulation of all gene activities. A largely unexplained role in these regulatory mechanisms is played by the spatial organization of the genome in the cell nucleus which has far-reaching functional consequences for gene regulation. Until recently, it appeared to be impossible to study this problem on the nanoscale by light microscopy. However, novel developments in optical imaging technology have radically surpassed the limited resolution of conventional far-field fluorescence microscopy (ca. 200nm). After a brief review of available super-resolution microscopy (SRM) methods, we focus on a specific SRM approach to study nuclear genome structure at the single cell/single molecule level, Spectral Precision Distance/Position Determination Microscopy (SPDM). SPDM, a variant of localization microscopy, makes use of conventional fluorescent proteins or single standard organic fluorophores in combination with standard (or only slightly modified) specimen preparation conditions; in its actual realization mode, the same laser frequency can be used for both photoswitching and fluorescence read out. Presently, the SPDM method allows us to image nuclear genome organization in individual cells down to few tens of nanometer (nm) of structural resolution, and to perform quantitative analyses of individual small chromatin domains; of the nanoscale distribution of histones, chromatin remodeling proteins, and transcription, splicing and repair related factors. As a biomedical research application, using dual-color SPDM, it became possible to monitor in mouse cardiomyocyte cells quantitatively the effects of ischemia conditions on the chromatin nanostructure (DNA). These novel "molecular optics" approaches open an avenue to study the nuclear landscape directly in individual cells down to the single molecule level and thus to test models of functional genome architecture at unprecedented resolution.
Asunto(s)
Carbocianinas/química , Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Expresión Génica , Células HeLa , Humanos , Ratones , Microscopía Fluorescente/instrumentación , Mioblastos/metabolismo , Mioblastos/ultraestructura , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismoRESUMEN
The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell-cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs.