Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219269

RESUMEN

Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dose­dependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dose­dependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcription­quantitative PCR (RT­qPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dose­dependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dose­dependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dose­dependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKI­induced cardiotoxicities.


Asunto(s)
Cardiotoxicidad , Mesilato de Imatinib , Imidazoles , Miocitos Cardíacos , Piridazinas , Pez Cebra , Animales , Pez Cebra/embriología , Imidazoles/toxicidad , Piridazinas/efectos adversos , Piridazinas/farmacología , Piridazinas/toxicidad , Mesilato de Imatinib/toxicidad , Mesilato de Imatinib/efectos adversos , Mesilato de Imatinib/farmacología , Cardiotoxicidad/etiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/toxicidad , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Ratas
3.
Cell Biol Int ; 48(9): 1378-1391, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38922770

RESUMEN

Oxidative stress plays a pivotal role in the development of diabetic cardiomyopathy (DCM). Previous studies have revealed that inhibition of mitochondrial fission suppressed oxidative stress and alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. However, no research has confirmed whether mitochondria fission accentuates hyperglycemia-induced cardiomyoblast oxidative stress through regulating fatty acid oxidation (FAO). We used H9c2 cardiomyoblasts exposed to high glucose (HG) 33 mM to simulate DCM in vitro. Excessive mitochondrial fission, poor cell viability, and lipid accumulation were observed in hyperglycemia-induced H9c2 cardiomyoblasts. Also, the cells were led to oxidative stress injury, lower adenosine triphosphate (ATP) levels, and apoptosis. Dynamin-related protein 1 (Drp1) short interfering RNA (siRNA) decreased targeted marker expression, inhibited mitochondrial fragmentation and lipid accumulation, suppressed oxidative stress, reduced cardiomyoblast apoptosis, and improved cell viability and ATP levels in HG-exposed H9c2 cardiomyoblasts, but not in carnitine palmitoyltransferase 1 (CPT1) inhibitor etomoxir treatment cells. We also found subcellular localization of CPT1 on the mitochondrial membrane, FAO, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) were suppressed after exposure to HG treatment, whereas Drp1 siRNA normalized mitochondrial CPT1, FAO, and NADPH. However, the blockade of FAO with etomoxir abolished the above effects of Drp1 siRNA in hyperglycemia-induced H9c2 cardiomyoblasts. The preservation of mitochondrial function through the Drp1/CPT1/FAO pathway is the potential mechanism of inhibited mitochondria fission in attenuating oxidative stress injury of hyperglycemia-induced H9c2 cardiomyoblasts.


Asunto(s)
Ácidos Grasos , Hiperglucemia , Dinámicas Mitocondriales , Oxidación-Reducción , Estrés Oxidativo , Animales , Dinámicas Mitocondriales/efectos de los fármacos , Hiperglucemia/metabolismo , Ratas , Línea Celular , Ácidos Grasos/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dinaminas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Mitocondrias/metabolismo , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/efectos de los fármacos , Glucosa/farmacología , Adenosina Trifosfato/metabolismo
4.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758505

RESUMEN

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Asunto(s)
Cardiomegalia , Isoproterenol , Canal de Sodio Activado por Voltaje NAV1.5 , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ratas , Línea Celular , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Humanos , Mioblastos Cardíacos/metabolismo , Metabolismo Energético/genética , Regulación de la Expresión Génica/genética
5.
PLoS One ; 19(3): e0295131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446773

RESUMEN

H9c2 myoblasts are a cell line derived from embryonic rat heart tissue and demonstrate the ability to differentiate to cardiac myotubes upon reduction of the serum concentration (from 10% to 1%) and addition of all-trans retinoic acid in the growth medium. H9c2 cells are increasingly being used as an easy-to-culture proxy for some functions of cardiomyocytes. The cryobiology of cardiac cells including H9c2 myoblasts has not been studied as extensively as that of some cell types. Consequently, it is important to characterize the cryobiological response and systematically develop well-optimized cryopreservation protocols for H9c2 cells to have optimal and consistent viability and functionality after thaw for high quality studies with this cell type. In this work, an interrupted slow cooling protocol (graded freezing) was applied to characterize H9c2 response throughout the cooling profile. Important factors that affect the cell response were examined, and final protocols that provided the highest post-thaw viability are reported. One protocol uses the common cryoprotectant dimethyl sulfoxide combined with hydroxyethyl starch, which will be suitable for applications in which the presence of dimethyl sulfoxide is not an issue; and the other protocol uses glycerol as a substitute when there is a desire to avoid dimethyl sulfoxide. Both protocols achieved comparable post-thaw viabilities (higher than 80%) based on SYTO 13/GelRed flow cytometry results. H9c2 cells cryopreserved by either protocol showed ability to differentiate to cardiac myotubes comparable to fresh (unfrozen) H9c2 cells, and their differentiation to cardiac myotubes was confirmed with i) change in cell morphology, ii) expression of cardiac marker troponin I, and iii) increase in mitochondrial mass.


Asunto(s)
Mioblastos Cardíacos , Animales , Ratas , Dimetilsulfóxido/farmacología , Criopreservación , Mioblastos , Miocitos Cardíacos , Suspensiones
6.
ACS Appl Bio Mater ; 6(10): 4269-4276, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37774367

RESUMEN

Exosomes are natural endogenous extracellular vesicles with phospholipid-based bilayer membrane structures. Due to their unique protein-decorated membrane properties, exosomes have been regarded as promising drug carriers to deliver small molecules and genes. A number of approaches have been developed for exosome-based drug loading. However, the drug loading capability of exosomes is inconsistent, and the effects of loading methods on the therapeutic efficacy have not been investigated in detail. Herein, we developed anti-inflammatory drug-loaded exosomes as an immunomodulatory nanoplatform. Naïve macrophage-derived exosomes (Mϕ-EVs) were loaded with the anti-inflammatory drug mycophenolic acid (MPA) by three major loading methods. Loading into exosomes significantly enhanced anti-inflammatory and antioxidation effects of MPA in vitro compared to free drugs. These findings provide a scientific basis for developing naïve macrophage-secreted exosomes as drug carriers for immunotherapy.


Asunto(s)
Vesículas Extracelulares , Mioblastos Cardíacos , Ácido Micofenólico/farmacología , Portadores de Fármacos/química , Macrófagos , Antiinflamatorios
7.
Protein Pept Lett ; 29(11): 937-945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35986525

RESUMEN

BACKGROUND: Diabetes mellitus, a common metabolic disorder that causes high blood glucose, is due to impaired insulin secretion. Prolonged high blood sugar is associated with heart disease. Many proteins are involved in metabolic pathways and contractility of cardiac cells regulate cardiac hypertrophy, altering normal cardiac physiology and function. Moreover, microRNAs are essential regulators of these proteins. Thus, there is a need to study the protein and microRNA alterations in cardiomyocytes to better understand the mechanisms activated during cardiac stress. OBJECTIVE: The study aims to profile differentially expressed sarcomere proteins in H9C2 cell lines under high glucose conditions compared with normal conditions, along with the identification of miRNAs regulating these proteins. METHODS: Cardiac myoblast cell lines were treated with D-Glucose at three concentrations (10 mM, 25 mM, and 50 mM). Total cell protein was analyzed by Tandem Mass spectrometry Nano LCMS/ MS. Furthermore, next-generation sequencing data were analyzed for detecting microRNAs regulating cardiac cell protein expression. Bioinformatics databases such as Uniprot, Ingenuity Pathway Analysis (IPA), PANTHER, and Target scan were used. RESULTS: The Nano LC-MS/MS analysis showed 2891 protein, 1351 protein groups, and 4381 peptide groups in both glucose-treated and control samples. Most proteins were metabolite interconversion enzymes, translation proteins, and proteins regulating the cytoskeleton. IPA analysis revealed differentially expressed proteins involved in EIF2 signaling, actin cytoskeleton signaling, cardiac fibrosis, and cell death. Moreover, the proteins troponin, tropomyosin, myosin, alpha-actin, and ATP synthase were found to be downregulated, thus responsible for altering sarcomere protein expression. Rno-mir-92b-5p was observed to be highly upregulated at 50 mM. Its target genes namely TPM2, ATP1A2, and CORO1C were mostly components of the sarcomere complex and its regulators. CONCLUSION: A combination of proteomic profile and microRNA profile of hyperglycemic cells provides an insight into advanced therapeutics. Our study has highlighted the role of sarcomere proteins, activation of Eukaryotic Initiation Factor 2 (EIF2) signaling, and suppression of actin cytoskeleton signaling in the pathophysiology of cardiomyopathy. MiR-92b-5p has an important role in regulating sarcomere protein complex activated.


Asunto(s)
MicroARNs , Mioblastos Cardíacos , Glucosa/farmacología , Proteómica , Mioblastos Cardíacos/metabolismo , Sarcómeros/metabolismo , Factor 2 Eucariótico de Iniciación , Espectrometría de Masas en Tándem , MicroARNs/genética , MicroARNs/metabolismo
8.
Sci Data ; 9(1): 98, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322035

RESUMEN

This three-dimensional structured illumination microscopy (3DSIM) dataset was generated to highlight the suitability of 3DSIM to investigate mitochondria-derived vesicles (MDVs) in H9c2 cardiomyoblasts in living or fixed cells. MDVs act as a mitochondria quality control mechanism. The cells were stably expressing the tandem-tag eGFP-mCherry-OMP25-TM (outer mitochondrial membrane) which can be used as a sensor for acidity. A part of the dataset is showing correlative imaging of lysosomes labeled using LysoTracker in fixed and living cells. The cells were cultivated in either normal or glucose-deprived medium containing galactose. The resulting 3DSIM data were of high quality and can be used to undertake a variety of studies. Interestingly, many dynamic tubules derived from mitochondria are visible in the 3DSIM videos under both glucose and galactose-adapted growth conditions. As the raw 3DSIM data, optical parameters, and reconstructed 3DSIM images are provided, the data is especially suitable for use in the development of SIM reconstruction algorithms, bioimage analysis methods, and for biological studies of mitochondria.


Asunto(s)
Galactosa , Lisosomas , Mitocondrias , Mioblastos Cardíacos , Animales , Glucosa , Iluminación , Microscopía , Mioblastos Cardíacos/ultraestructura , Ratas
9.
Hum Exp Toxicol ; 41: 9603271211065978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35135371

RESUMEN

The aim of this study was to examine the effects of lipid emulsions on carnitine palmitoyltransferase I (CPT-I), carnitine acylcarnitine translocase (CACT), carnitine palmitoyltransferase II (CPT-II), and the mitochondrial dysfunctions induced by toxic doses of local anesthetics in H9c2 rat cardiomyoblasts. The effects of local anesthetics and lipid emulsions on the activities of CPT-I, CACT, and CPT-II, and concentrations of local anesthetics were examined. The effects of lipid emulsions, N-acetyl-L-cysteine (NAC), and mitotempo on the bupivacaine-induced changes in cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and intracellular calcium levels were examined. CACT, without significantly altering CPT-I and CPT-II, was inhibited by toxic concentration of local anesthetics. The levobupivacaine- and bupivacaine-induced inhibition of CACT was attenuated by all concentrations of lipid emulsion, whereas the ropivacaine-induced inhibition of CACT was attenuated by medium and high concentrations of lipid emulsion. The concentration of levobupivacaine was slightly attenuated by lipid emulsion. The bupivacaine-induced increase of ROS and calcium and the bupivacaine-induced decrease of MMP were attenuated by ROS scavengers NAC and mitotempo, and the lipid emulsion. Collectively, these results suggested that the lipid emulsion attenuated the levobupivacaine-induced inhibition of CACT, probably through the lipid emulsion-mediated sequestration of levobupivacaine.


Asunto(s)
Bupivacaína/toxicidad , Carnitina Aciltransferasas/efectos de los fármacos , Carnitina Aciltransferasas/metabolismo , Levobupivacaína/toxicidad , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Ropivacaína/toxicidad , Anestésicos Locales/administración & dosificación , Anestésicos Locales/toxicidad , Animales , Bupivacaína/administración & dosificación , Emulsiones/administración & dosificación , Emulsiones/toxicidad , Inhibidores Enzimáticos/metabolismo , Levobupivacaína/administración & dosificación , Masculino , Ratas , Ropivacaína/administración & dosificación
10.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216404

RESUMEN

Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.


Asunto(s)
Cardiotoxicidad/etiología , Mesilato de Imatinib/efectos adversos , Mitocondrias Cardíacas/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sorafenib/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Transporte de Electrón/efectos de los fármacos , Glucólisis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas
11.
Mol Cell Biochem ; 477(3): 663-672, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34988854

RESUMEN

Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 µg/ml of BBE for 4 h and maintained in the presence of 100 µM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.


Asunto(s)
Apoptosis/efectos de los fármacos , Arándanos Azules (Planta)/química , Mioblastos Cardíacos/metabolismo , Norepinefrina/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Línea Celular , Extractos Vegetales/química , Ratas
12.
J Ethnopharmacol ; 287: 114967, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995692

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR) is a popular traditional Chinese medicine that has been used for more than 2000 years. It is a well-known tonic for weak people with chronic diseases, such as heart failure and cerebral ischemia. Previous studies have reported that AR could support the "weak heart" of cancer patients who suffered from doxorubicin (DOX)-induced cardiotoxicity (DIC). However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to uncover the critical pathways and molecular determinants for AR against DIC by fully characterizing the network-based relationship. MATERIALS AND METHODS: We integrated ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) profiling, database and literature searching, and the human protein-protein interactome to discover the specific network module associated with AR against DIC. To validate the network-based findings, a low-dose, long-term DIC mouse model and rat cardiomyoblast H9c2 cells were employed. The levels of potential key metabolites and proteins in hearts and cells were quantified by the LC-MS/MS targeted analysis and western blotting, respectively. RESULTS: We constructed one of the most comprehensive AR component-target network described to date, which included 730 interactions connecting 64 unique components and 359 unique targets. Relying on the network-based evaluation, we identified fatty acid metabolism as a putative critical pathway and peroxisome proliferator-activated receptors (PPARα and PPARγ) as potential molecular determinants. We then confirmed that DOX caused the accumulation of fatty acids in the mouse failing heart, while AR promoted fatty acid metabolism and preserved heart function. By inhibiting PPARγ in H9c2 cells, we further found that AR could alleviate DIC by activating PPARγ to maintain fatty acid homeostasis. CONCLUSIONS: Our findings imply that AR is a promising drug candidate that treats DIC by maintaining fatty acid homeostasis. More importantly, the network-based method developed here could facilitate the mechanism discovery of AR therapy and help catalyze innovation in its clinical application.


Asunto(s)
Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Medicamentos Herbarios Chinos/farmacología , Mioblastos Cardíacos/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/toxicidad , Astragalus propinquus , Cardiotoxicidad/etiología , Línea Celular , Cromatografía Líquida de Alta Presión , Ácidos Grasos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos Cardíacos/patología , Farmacología en Red , Ratas , Espectrometría de Masas en Tándem
13.
J Ethnopharmacol ; 284: 114728, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634367

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Solanum nigrum, commonly known as Makoi or black shade has been traditionally used in Asian countries and other regions of world to treat liver disorders, diarrhoea, inflammatory conditions, chronic skin ailments (psoriasis and ringworm), fever, hydrophobia, painful periods, eye diseases, etc. It has been observed that S. nigrum contains substances, like steroidal saponins, total alkaloid, steroid alkaloid, and glycoprotein, which show anti-tumor activity. However; there is no scientific evidence of the efficacy of S. nigrum in the treatment of cardiac hypertrophy. AIM: To investigate the ability of S. nigrum to attenuate Angiotensin II - induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation. MATERIALS AND METHODS: Cardiomyoblast cells (H9c2) were challenged with 100 nM Angiotensin-II (AngII) for 24 h and were then treated with different concentration of S.nigrum or Calphostin C for 24 h. The hypertrophic effect in cardiomyoblast cells were determined by immunofluorescence staining and the modulations in hypertrophic protein marker along with Protein Kinase C-ζ, MEL18, HSF2, and Insulin like growth factor II (IGFIIR), markers were analyzed by western blotting. In vivo experiments were performed using 12 week old male Wistar Kyoto rats (WKY) and Spontaneously hypertensive rats (SHR) separated into five groups. [1]Control WKY, [2] WKY -100 mg/kg of S.nigrum treatment, [3] SHR, [4] SHR-100 mg/kg of S.nigrum treatment, [5] SHR-300 mg/kg of S.nigrum treatment. S. nigrum was administered intraperitoneally for 8 week time interval. RESULTS: Western blotting results indicate that S. nigrum significantly attenuates AngII induced cardiac hypertrophy. Furthermore, actin staining confirmed the ability of S. nigrum to ameliorate AngII induced cardiac hypertrophy. Moreover, S. nigrum administration suppressed the hypertrophic signaling mediators like Protein Kinase C-ζ, Mel-18, and IGFIIR in a dose-dependent manner and HSF2 activation (restore deSUMOlyation) that leads to downregulation of IGF-IIR expression. Additionally in vivo experiments demonstrate the reduced heart sizes of S. nigrum treated SHRs rats when compared to control WKY rats. CONCLUSION: Collectively, the data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Cardiotónicos/farmacología , Extractos Vegetales/farmacología , Solanum nigrum/química , Angiotensina II , Animales , Cardiotónicos/administración & dosificación , Cardiotónicos/aislamiento & purificación , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas de Choque Térmico/metabolismo , Hipertensión/tratamiento farmacológico , Masculino , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/patología , Extractos Vegetales/administración & dosificación , Proteína Quinasa C/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor IGF Tipo 2/metabolismo , Factores de Transcripción/metabolismo
14.
J Cardiovasc Pharmacol ; 79(1): e50-e63, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694244

RESUMEN

ABSTRACT: Glucagon-like peptide (GLP)-1(7-36), a major active form of GLP-1 hormone, is rapidly cleaved by dipeptidyl peptidase-4 to generate a truncated metabolite, GLP-1(9-36) which has a low affinity for GLP-1 receptor (GLP-1R). GLP-1(7-36) has been shown to have protective effects on cardiovascular system through GLP-1R-dependent pathway. Nevertheless, the cardioprotective effects of GLP-1(9-36) have not fully understood. The present study investigated the effects of GLP-1(9-36), including its underlying mechanisms against oxidative stress and apoptosis in H9c2 cells. Here, we reported that GLP-1(9-36) protects H9c2 cardiomyoblasts from hydrogen peroxide (H2O2)-induced oxidative stress by promoting the synthesis of antioxidant enzymes, glutathione peroxidase-1, catalase, and heme oxygenase-1. In addition, treatment with GLP-1(9-36) suppressed H2O2-induced apoptosis by attenuating caspase-3 activity and upregulating antiapoptotic proteins, Bcl-2 and Bcl-xL. These protective effects of GLP-1(9-36) are attenuated by blockade of PI3K-mediated Akt phosphorylation and prevention of nitric oxide synthase-induced nitric oxide production. Thus, GLP-1(9-36) represents the potential therapeutic target for prevention of oxidative stress and apoptosis in the heart via PI3K/Akt/nitric oxide synthase signaling pathway.


Asunto(s)
Antioxidantes , Apoptosis , Péptido 1 Similar al Glucagón , Peróxido de Hidrógeno , Mioblastos Cardíacos , Óxido Nítrico Sintasa , Estrés Oxidativo , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiotoxicidad , Línea Celular , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Peróxido de Hidrógeno/toxicidad , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/enzimología , Mioblastos Cardíacos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
15.
Molecules ; 26(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34885888

RESUMEN

Although numerous studies have demonstrated the biological and multifaceted nature of dimethyl sulfoxide (DMSO) across different in vitro models, the direct effect of "non-toxic" low DMSO doses on cardiac and cancer cells has not been clearly explored. In the present study, H9c2 cardiomyoblasts and MCF-7 breast cancer cells were treated with varying concentrations of DMSO (0.001-3.7%) for 6 days. Here, DMSO doses < 0.5% enhanced the cardiomyoblasts respiratory control ratio and cellular viability relative to the control cells. However, 3.7% DMSO exposure enhanced the rate of apoptosis, which was driven by mitochondrial dysfunction and oxidative stress in the cardiomyoblasts. Additionally, in the cancer cells, DMSO (≥0.009) led to a reduction in the cell's maximal respiratory capacity and ATP-linked respiration and turnover. As a result, the reduced bioenergetics accelerated ROS production whilst increasing early and late apoptosis in these cells. Surprisingly, 0.001% DMSO exposure led to a significant increase in the cancer cells proliferative activity. The latter, therefore, suggests that the use of DMSO, as a solvent or therapeutic compound, should be applied with caution in the cancer cells. Paradoxically, in the cardiomyoblasts, the application of DMSO (≤0.5%) demonstrated no cytotoxic or overt therapeutic benefits.


Asunto(s)
Apoptosis/efectos de los fármacos , Dimetilsulfóxido/farmacología , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Células MCF-7 , Mitocondrias/metabolismo , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Lipids Health Dis ; 20(1): 151, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727932

RESUMEN

BACKGROUND: Acylcarnitine is an intermediate product of fatty acid oxidation. It is reported to be closely associated with the occurrence of diabetic cardiomyopathy (DCM). However, the mechanism of acylcarnitine affecting myocardial disorders is yet to be explored. This current research explores the different chain lengths of acylcarnitines as biomarkers for the early diagnosis of DCM and the mechanism of acylcarnitines for the development of DCM in-vitro. METHODS: In a retrospective non-interventional study, 50 simple type 2 diabetes mellitus patients and 50 DCM patients were recruited. Plasma samples from both groups were analyzed by high throughput metabolomics and cluster heat map using mass spectrometry. Principal component analysis was used to compare the changes occurring in the studied 25 acylcarnitines. Multivariable binary logistic regression was used to analyze the odds ratio of each group for factors and the 95% confidence interval in DCM. Myristoylcarnitine (C14) exogenous intervention was given to H9c2 cells to verify the expression of lipid metabolism-related protein, inflammation-related protein expression, apoptosis-related protein expression, and cardiomyocyte hypertrophy and fibrosis-related protein expression. RESULTS: Factor 1 (C14, lauroylcarnitine, tetradecanoyldiacylcarnitine, 3-hydroxyl-tetradecanoylcarnitine, arachidic carnitine, octadecanoylcarnitine, 3-hydroxypalmitoleylcarnitine) and factor 4 (octanoylcarnitine, hexanoylcarnitine, decanoylcarnitine) were positively correlated with the risk of DCM. Exogenous C14 supplementation to cardiomyocytes led to increased lipid deposition in cardiomyocytes along with the obstacles in adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways and affecting fatty acid oxidation. This further caused myocardial lipotoxicity, ultimately leading to cardiomyocyte hypertrophy, fibrotic remodeling, and increased apoptosis. However, this effect was mitigated by the AMPK agonist acadesine. CONCLUSIONS: The increased plasma levels in medium and long-chain acylcarnitine extracted from factors 1 and 4 are closely related to the risk of DCM, indicating that these factors can be an important tool for DCM risk assessment. C14 supplementation associated lipid accumulation by inhibiting the AMPK/ACC/CPT1 signaling pathway, aggravated myocardial lipotoxicity, increased apoptosis apart from cardiomyocyte hypertrophy and fibrosis were alleviated by the acadesine.


Asunto(s)
Carnitina/análogos & derivados , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Metabolismo de los Lípidos , Adulto , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Biomarcadores/sangre , Carnitina/sangre , Carnitina/química , Carnitina/farmacología , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Ácidos Mirísticos/farmacología , Ratas , Estudios Retrospectivos , Ribonucleósidos/farmacología , Factores de Riesgo
17.
Cell Rep ; 37(5): 109910, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731606

RESUMEN

RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts. RBFOX2-mediated APA modulates mRNA levels and/or isoform expression of a collection of genes, including contractile and mitochondrial genes. Depletion of RBFOX2 adversely affects mitochondrial health in myoblasts, correlating with disrupted APA of mitochondrial gene Slc25a4. Mechanistically, RBFOX2 regulation of Slc25a4 APA is mediated through consensus RBFOX2 binding motifs near the distal polyadenylation site, enforcing the use of the proximal polyadenylation site. In sum, our results unveil a role for RBFOX2 in fine-tuning expression of mitochondrial and contractile genes via APA in myoblasts relevant to heart diseases.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Cardíacos/metabolismo , Poliadenilación , Factores de Empalme de ARN/metabolismo , Translocador 1 del Nucleótido Adenina/genética , Translocador 1 del Nucleótido Adenina/metabolismo , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Mioblastos Cardíacos/ultraestructura , Factores de Empalme de ARN/genética , Ratas , Tropomiosina/genética , Tropomiosina/metabolismo
18.
Nutrients ; 13(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34836326

RESUMEN

Doxorubicin (Doxo) is a widely used antineoplastic drug which often induces cardiomyopathy, leading to congestive heart failure through the intramyocardial production of reactive oxygen species (ROS). Icariin (Ica) is a flavonoid isolated from Epimedii Herba (Berberidaceae). Some reports on the pharmacological activity of Ica explained its antioxidant and cardioprotective effects. The aim of our study was to assess the protective activities of Ica against Doxo-detrimental effects on rat heart-tissue derived embryonic cardiac myoblasts (H9c2 cells) and to identify, at least in part, the molecular mechanisms involved. Our results showed that pretreatment of H9c2 cells with 1 µM and 5 µM of Ica, prior to Doxo exposure, resulted in an improvement in cell viability, a reduction in ROS generation, the prevention of mitochondrial dysfunction and mPTP opening. Furthermore, for the first time, we identified one feasible molecular mechanism through which Ica could exerts its cardioprotective effects. Indeed, our data showed a significant reduction in Caveolin-1(Cav-1) expression levels and a specific inhibitory effect on phosphodiesterase 5 (PDE5a) activity, improving mitochondrial function compared to Doxo-treated cells. Besides, Ica significantly prevented apoptotic cell death and downregulated the main pro-autophagic marker Beclin-1 and LC3 lipidation rate, restoring physiological levels of activation of the protective autophagic process. These results suggest that Ica might have beneficial cardioprotective effects in attenuating cardiotoxicity in patients requiring anthracycline chemotherapy through the inhibition of oxidative stress and, in particular, through the modulation of Cav-1 expression levels and the involvement of PDE5a activity, thereby leading to cardiac cell survival.


Asunto(s)
Cardiotoxicidad/prevención & control , Caveolina 1/metabolismo , Flavonoides/farmacología , Mioblastos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Autofagia/efectos de los fármacos , Cardiotoxicidad/etiología , Doxorrubicina , Estrés Oxidativo/efectos de los fármacos , Ratas , Regulación hacia Arriba/efectos de los fármacos
19.
Molecules ; 26(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770979

RESUMEN

Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive-in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.


Asunto(s)
Membrana Celular/metabolismo , Electroporación , Proteínas de Transporte de Membrana/metabolismo , Mioblastos Cardíacos/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Mioblastos Cardíacos/citología , Ratas
20.
RNA Biol ; 18(sup2): 640-654, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34755591

RESUMEN

The roles of long non-coding RNA (LncRNA) have been highlighted in various development processes including congenital heart defects (CHD). Here, we characterized the molecular function of LncRNA, Moshe (1010001N08ik-203), one of the Gata6 antisense transcripts located upstream of Gata6, which is involved in both heart development and the most common type of congenital heart defect, atrial septal defect (ASD). During mouse embryonic development, Moshe was first detected during the cardiac mesoderm stage (E8.5 to E9.5) where Gata6 is expressed and continues to increase at the atrioventricular septum (E12.5), which is involved in ASD. Functionally, the knock-down of Moshe during cardiogenesis caused significant repression of Nkx2.5 in cardiac progenitor stages and resulted in the increase in major SHF lineage genes, such as cardiac transcriptional factors (Isl1, Hand2, Tbx2), endothelial-specific genes (Cd31, Flk1, Tie1, vWF), a smooth muscle actin (a-Sma) and sinoatrial node-specific genes (Shox2, Tbx18). Chromatin Isolation by RNA Purification showed Moshe activates Nkx2.5 gene expression via direct binding to its promoter region. Of note, Moshe was conserved across species, including human, pig and mouse. Altogether, this study suggests that Moshe is a heart-enriched lncRNA that controls a sophisticated network of cardiogenesis by repressing genes in SHF via Nkx2.5 during cardiac development and may play an important role in ASD.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , Animales , Línea Celular , Elementos de Facilitación Genéticos , Factor de Transcripción GATA6/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Organogénesis/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN sin Sentido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...