Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814992

RESUMEN

BACKGROUND: Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS: C2C12 myoblast cells were exposed to BjsuV (12.5 µg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кß, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-ß, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-ß, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE: These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.


Asunto(s)
Bothrops , Venenos de Crotálidos , Citocinas , Terapia por Luz de Baja Intensidad , Mioblastos , Miogenina , Animales , Mioblastos/efectos de los fármacos , Mioblastos/efectos de la radiación , Mioblastos/metabolismo , Ratones , Terapia por Luz de Baja Intensidad/métodos , Citocinas/metabolismo , Línea Celular , Venenos de Crotálidos/toxicidad , Miogenina/metabolismo , Miogenina/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , FN-kappa B/metabolismo , Proteína MioD/metabolismo , Proteína MioD/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Factor 5 Regulador Miogénico/metabolismo , Factor 5 Regulador Miogénico/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Mordeduras de Serpientes/radioterapia , Serpientes Venenosas
2.
Sci Rep ; 14(1): 9798, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684784

RESUMEN

Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.


Asunto(s)
Envejecimiento , Creatina , Músculo Esquelético , Entrenamiento de Fuerza , Sarcopenia , Ubiquinona/análogos & derivados , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Animales , Masculino , Ratas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal , Miogenina/metabolismo , Miogenina/genética , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Antioxidantes/metabolismo , Creatina Quinasa/sangre , Ratas Wistar
3.
Phytomedicine ; 128: 155449, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518644

RESUMEN

BACKGROUND: Peucedanum japonicum Thunb. (PJ) is a vegetable widely consumed in East Asia and is known to have anticancer and anti-inflammatory effects. However, the effect of PJ on muscle atrophy remains elusive. PURPOSE: This study aimed to investigate the effect of PJ and its active compound on dexamethasone (DEX)-induced muscle atrophy. METHODS: We performed qualitative and quantitative analysis of PJ using ultra-performance liquid chromatography-mass spectrometry tandem mass spectrometry (UPLC-MS/MS) and high-performance liquid chromatography (HPLC), respectively. The efficacy of PJ and its main compound 4-caffeoylquinic acid (CQA) on muscle atrophy was evaluated in DEX-induced myotube atrophy and DEX-induced muscle atrophy in mouse myoblasts (C2C12) and C57BL/6 mice, in vitro and in vivo, respectively. RESULTS: The UPLC-MS/MS and HPLC data showed that the concentration of 4-CQA in PJ was 18.845 mg/g. PJ and 4-CQA treatments significantly inhibited DEX-induced myotube atrophy by decreasing protein synthesis and glucocorticoid translocation to the nucleus in C2C12 myotubes. In addition, PJ enhanced myogenesis by upregulating myogenin and myogenic differentiation 1 in C2C12 cells. PJ supplementation effectively increased muscle function and mass, downregulated atrogenes, and decreased proteasome activity in C57BL/6 mice. Additionally, PJ effectively decreased the nuclear translocation of forkhead transcription factor 3 alpha by inhibiting glucocorticoid receptor. CONCLUSION: Overall, PJ and its active compound 4-CQA alleviated skeletal muscle atrophy by inhibiting protein degradation. Hence, our findings present PJ as a potential novel pharmaceutical candidate for the treatment of muscle atrophy.


Asunto(s)
Apiaceae , Dexametasona , Ratones Endogámicos C57BL , Atrofia Muscular , Extractos Vegetales , Ácido Quínico/análogos & derivados , Animales , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Dexametasona/farmacología , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apiaceae/química , Masculino , Línea Celular , Espectrometría de Masas en Tándem , Fibras Musculares Esqueléticas/efectos de los fármacos , Ácido Quínico/farmacología , Cromatografía Líquida de Alta Presión , Miogenina/metabolismo
4.
Front Biosci (Landmark Ed) ; 29(2): 49, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38420814

RESUMEN

BACKGROUND: Myogenin is well known as a crucial transcription factor in skeletal muscle development, yet its other biological functions remain unexplored. Previous research showed that myogenin suppresses apoptosis induced by angiotensin II in human induced pluripotent stem cell-derived cardiomyocytes, and offered a new perspective on myogenin's role in cardioprotection. However, the detailed mechanism of this cardioprotection, especially under oxidative stress, is still unclear. METHODS: In this study, hydrogen peroxide (H2O2) was used to generate reactive oxygen species in myogenin-overexpressing cardiomyocytes. The apoptosis was examined by flow cytometry. Transcriptome sequencing (RNA-seq) was performed to identify genes regulated by myogenin. Western blotting was used to detect the protein level of DUSP13 and the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). The dual-luciferase reporter assay and ChIP assay were used to confirm the binding of myogenin to the promoter region of DUSP13. DUSP13 overexpression and knockdown assays were performed to study its anti-apoptotic role. RESULTS: Flow cytometry analysis of apoptosis showed that overexpressing myogenin for 24 and 48 hours decreased the apoptotic ratio by 47.9% and 63.5%, respectively, compared with untreated controls. Transcriptome sequencing performed on cardiomyocytes that expressed myogenin for different amounts of time (6, 12, 24, and 48 hours) identified DUSP13 as being up-regulated by myogenin. Western blotting showed that overexpression of myogenin increased the expression of DUSP13 and decreased the phosphorylation level of p38 MAPK. A dual-luciferase reporter assay proved that myogenin bound directly to the promoter region of DUSP13 and led to strong relative luciferase activity. Direct expression of DUSP13A and DUSP13B significantly reduced the rates of apoptosis and necrosis in cells treated with H2O2. Knockdown of DUSP13B significantly increased the rate of apoptosis in cells treated with H2O2. CONCLUSIONS: The present findings suggest that myogenin might attenuate apoptosis induced by reactive oxygen species by up-regulating DUSP13 and inactivating the p38 MAPK pathway.


Asunto(s)
Peróxido de Hidrógeno , Células Madre Pluripotentes Inducidas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Miogenina/genética , Miogenina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Apoptosis , Estrés Oxidativo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Luciferasas/metabolismo
5.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373797

RESUMEN

Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber-type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , Animales , Ratones , Miogenina/genética , Miogenina/metabolismo , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética , Autofagia/genética , Proteínas de Unión al ARN/genética , Mamíferos/metabolismo
6.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321934

RESUMEN

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Miogenina , ARN Mensajero , Tanquirasas , Tanquirasas/metabolismo , Tanquirasas/genética , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Desarrollo de Músculos/genética , Animales , Fibras Musculares Esqueléticas/metabolismo , Ratones , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Estabilidad del ARN/genética , Poli ADP Ribosilación/genética , Línea Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciación Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HEK293
7.
FEBS J ; 291(13): 2836-2848, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38358038

RESUMEN

Myosin heavy chain-perinatal (MyHC-perinatal) is one of two development-specific myosin heavy chains expressed exclusively during skeletal muscle development and regeneration. The specific functions of MyHC-perinatal are unclear, although mutations are known to lead to contracture syndromes such as Trismus-pseudocamptodactyly syndrome. Here, we characterize the functions of MyHC-perinatal during skeletal muscle differentiation and regeneration. Loss of MyHC-perinatal function leads to enhanced differentiation characterized by increased expression of myogenic regulatory factors and differentiation index as well as reduced reserve cell numbers in vitro. Proteomic analysis revealed that loss of MyHC-perinatal function results in a switch from oxidative to glycolytic metabolism in myofibers, suggesting a shift from slow type I to fast type IIb fiber type, also supported by reduced mitochondrial numbers. Paracrine signals mediate the effect of loss of MyHC-perinatal function on myogenic differentiation, possibly mediated by non-apoptotic caspase-3 signaling along with enhanced levels of the pro-survival apoptosis regulator Bcl2 and nuclear factor kappa-B (NF-κB). Knockdown of MyHC-perinatal during muscle regeneration in vivo results in increased expression of the differentiation marker myogenin (MyoG) and impaired differentiation, evidenced by smaller myofibers, elevated fibrosis and reduction in the number of satellite cells. Thus, we find that MyHC-perinatal is a crucial regulator of myogenic differentiation, myofiber oxidative phenotype and regeneration.


Asunto(s)
Diferenciación Celular , Desarrollo de Músculos , Músculo Esquelético , Cadenas Pesadas de Miosina , Regeneración , Animales , Diferenciación Celular/genética , Regeneración/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Fenotipo , Caspasa 3/metabolismo , Caspasa 3/genética , Miogenina/metabolismo , Miogenina/genética , Oxidación-Reducción
8.
Exp Physiol ; 108(12): 1531-1547, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864311

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the hormone Klotho affect the myogenic response of muscle cells to mechanical loading or exercise? What is the main finding and its importance? Klotho prevents direct, mechanical activation of genes that regulate muscle differentiation, including genes that encode the myogenic regulatory factor myogenin and proteins in the canonical Wnt signalling pathway. Similarly, elevated levels of klotho expression in vivo prevent the exercise-induced increase in myogenin-expressing cells and reduce exercise-induced activation of the Wnt pathway. These findings demonstrate a new mechanism through which the responses of muscle to the mechanical environment are regulated. ABSTRACT: Muscle growth is influenced by changes in the mechanical environment that affect the expression of genes that regulate myogenesis. We tested whether the hormone Klotho could influence the response of muscle to mechanical loading. Applying mechanical loads to myoblasts in vitro increased RNA encoding transcription factors that are expressed in activated myoblasts (Myod) and in myogenic cells that have initiated terminal differentiation (Myog). However, application of Klotho to myoblasts prevented the loading-induced activation of Myog without affecting loading-induced activation of Myod. This indicates that elevated Klotho inhibits mechanically-induced differentiation of myogenic cells. Elevated Klotho also reduced the transcription of genes encoding proteins involved in the canonical Wnt pathway or their target genes (Wnt9a, Wnt10a, Ccnd1). Because the canonical Wnt pathway promotes differentiation of myogenic cells, these findings indicate that Klotho inhibits the differentiation of myogenic cells experiencing mechanical loading. We then tested whether these effects of Klotho occurred in muscles of mice experiencing high-intensity interval training (HIIT) by comparing wild-type mice and klotho transgenic mice. The expression of a klotho transgene combined with HIIT synergized to tremendously elevate numbers of Pax7+ satellite cells and activated MyoD+ cells. However, transgene expression prevented the increase in myogenin+ cells caused by HIIT in wild-type mice. Furthermore, transgene expression diminished the HIIT-induced activation of the canonical Wnt pathway in Pax7+ satellite cells. Collectively, these findings show that Klotho inhibits loading- or exercise-induced activation of muscle differentiation and indicate a new mechanism through which the responses of muscle to the mechanical environment are regulated.


Asunto(s)
Músculos , Células Satélite del Músculo Esquelético , Animales , Ratones , Diferenciación Celular , Hormonas/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculos/metabolismo , Proteína MioD/metabolismo , Miogenina/metabolismo , Células Satélite del Músculo Esquelético/metabolismo
9.
Cells ; 12(17)2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37681900

RESUMEN

Sarcopenia has a high prevalence among the aging population. Sarcopenia is of tremendous socioeconomic importance because it can lead to falls and hospitalization, subsequently increasing healthcare costs while limiting quality of life. In sarcopenic muscle fibers, the E3 ubiquitin ligase F-Box Protein 32 (Fbxo32) is expressed at substantially higher levels, driving ubiquitin-proteasomal muscle protein degradation. As one of the key regulators of muscular equilibrium, the transcription factor Forkhead Box O3 (FOXO3) can increase the expression of Fbxo32, making it a possible target for the regulation of this detrimental pathway. To test this hypothesis, murine C2C12 myoblasts were transduced with AAVs carrying a plasmid for four specific siRNAs against Foxo3. Successfully transduced myoblasts were selected via FACS cell sorting to establish single clone cell lines. Sorted myoblasts were further differentiated into myotubes and stained for myosin heavy chain (MHC) by immunofluorescence. The resulting area was calculated. Myotube contractions were induced by electrical stimulation and quantified. We found an increased Foxo3 expression in satellite cells in human skeletal muscle and an age-related increase in Foxo3 expression in older mice in silico. We established an in vitro AAV-mediated FOXO3 knockdown on protein level. Surprisingly, the myotubes with FOXO3 knockdown displayed a smaller myotube size and a lower number of nuclei per myotube compared to the control myotubes (AAV-transduced with a functionless control plasmid). During differentiation, a lower level of FOXO3 reduced the expression Fbxo32 within the first three days. Moreover, the expression of Myod1 and Myog via ATM and Tp53 was reduced. Functionally, the Foxo3 knockdown myotubes showed a higher contraction duration and time to peak. Early Foxo3 knockdown seems to terminate the initiation of differentiation due to lack of Myod1 expression, and mediates the inhibition of Myog. Subsequently, the myotube size is reduced and the excitability to electrical stimulation is altered.


Asunto(s)
Proteína Forkhead Box O3 , Proteína MioD , Miogenina , Calidad de Vida , Sarcopenia , Anciano , Animales , Humanos , Ratones , Proteína Forkhead Box O3/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Mioblastos , Miogenina/metabolismo , Proteína MioD/metabolismo
10.
J Cell Physiol ; 238(11): 2638-2650, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37683043

RESUMEN

Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.


Asunto(s)
Mioblastos , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Masculino , Ratones , Diferenciación Celular/genética , Línea Celular , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculos , Mioblastos/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética
11.
Cell Death Differ ; 30(8): 1900-1915, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400716

RESUMEN

Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.


Asunto(s)
Reparación del ADN , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Miogenina/genética , Miogenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones SCID , Daño del ADN , Desarrollo de Músculos , Caspasas/metabolismo , ADN
12.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37452493

RESUMEN

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Asunto(s)
MicroARNs , Rabdomiosarcoma Embrionario , Humanos , Niño , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/metabolismo , Rabdomiosarcoma Embrionario/patología , Miogenina/genética , Miogenina/metabolismo , Diferenciación Celular/genética , MicroARNs/genética , Desarrollo de Músculos/genética , Línea Celular Tumoral , Proteínas Represoras
13.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240382

RESUMEN

All-trans retinoic acid (ATRA) promotes myoblast differentiation into myotubes. Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is a candidate ATRA-responsive gene; however, its role in skeletal muscles remains unclear. Here, we demonstrated that during the differentiation of murine C2C12 myoblasts into myotubes, Lgr6 mRNA expression transiently increased before the increase in the expression of the mRNAs encoding myogenic regulatory factors, such as myogenin, myomaker, and myomerger. The loss of LGR6 decreased the differentiation and fusion indices. The exogenous expression of LGR6 up to 3 and 24 h after the induction of differentiation increased and decreased the mRNA levels of myogenin, myomaker, and myomerger, respectively. Lgr6 mRNA was transiently expressed after myogenic differentiation in the presence of a retinoic acid receptor α (RARα) agonist and an RARγ agonist in addition to ATRA, but not in the absence of ATRA. Furthermore, a proteasome inhibitor or Znfr3 knockdown increased exogenous LGR6 expression. The loss of LGR6 attenuated the Wnt/ß-catenin signaling activity induced by Wnt3a alone or in combination with Wnt3a and R-spondin 2. These results indicate that LGR6 promotes myogenic differentiation and that ATRA is required for the transient expression of LGR6 during differentiation. Furthermore, LGR6 expression appeared to be downregulated by the ubiquitin-proteasome system involving ZNRF3.


Asunto(s)
Tretinoina , Vía de Señalización Wnt , Ratones , Animales , Miogenina/genética , Miogenina/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Mioblastos/metabolismo , ARN Mensajero/genética , Diferenciación Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Cells ; 12(9)2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174683

RESUMEN

Myoblast fusion is essential for skeletal muscle development, growth, and regeneration. However, the molecular mechanisms underlying myoblast fusion and differentiation are not fully understood. Previously, we reported that interleukin-4 (IL-4) promotes myoblast fusion; therefore, we hypothesized that IL-4 signaling might regulate the expression of the molecules involved in myoblast fusion. In this study, we showed that in addition to fusion, IL-4 promoted the differentiation of C2C12 myoblast cells by inducing myoblast determination protein 1 (MyoD) and myogenin, both of which regulate the expression of myomerger and myomaker, the membrane proteins essential for myoblast fusion. Unexpectedly, IL-4 treatment increased the expression of myomerger, but not myomaker, in C2C12 cells. Knockdown of IL-4 receptor alpha (IL-4Rα) in C2C12 cells by small interfering RNA impaired myoblast fusion and differentiation. We also demonstrated a reduction in the expression of MyoD, myogenin, and myomerger by knockdown of IL-4Rα in C2C12 cells, while the expression level of myomaker remained unchanged. Finally, cell mixing assays and the restoration of myomerger expression partially rescued the impaired fusion in the IL-4Rα-knockdown C2C12 cells. Collectively, these results suggest that the IL-4/IL-4Rα axis promotes myoblast fusion and differentiation via the induction of myogenic regulatory factors, MyoD and myogenin, and myomerger.


Asunto(s)
Interleucina-4 , Factores Reguladores Miogénicos , Diferenciación Celular/genética , Interleucina-4/farmacología , Interleucina-4/metabolismo , Mioblastos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Animales , Ratones
15.
Histochem Cell Biol ; 160(2): 135-146, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37179509

RESUMEN

The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally. Then, muscles were subjected to histological, molecular, and functional analysis. Glutamine supplementation induced an increase in myofiber size of regenerating EDL muscles and prevented the decline in maximum tetanic strength of these muscles evaluated 10 days after injury. An accelerated upregulation of myogenin mRNA levels was detected in glutamine-supplemented injured muscles on day 3 post-cryolesion. The HSP70 expression increased only in the injured group supplemented with glutamine for 3 days. The increase in mRNA levels of NF-κB, the pro-inflammatory cytokines IL-1ß and TNF-α, and the calcium-binding proteins S100A8 and S100A9 on day 3 post-cryolesion in EDL muscles was attenuated by glutamine supplementation. In contrast, the decrease in S100A1 mRNA levels in the 3-day-injured EDL muscles was minimized by glutamine supplementation. Overall, our results suggest that glutamine supplementation accelerates the recovery of myofiber size and contractile function after injury by modulating the expression of myogenin, HSP70, NF-κB, pro-inflammatory cytokines, and S100 calcium-binding proteins.


Asunto(s)
Glutamina , FN-kappa B , Ratas , Animales , Glutamina/farmacología , Glutamina/metabolismo , Miogenina/metabolismo , Miogenina/farmacología , FN-kappa B/metabolismo , Ratas Wistar , Músculo Esquelético/metabolismo , Contracción Muscular/fisiología , Citocinas/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos , Proteínas de Unión al Calcio
16.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047747

RESUMEN

Myogenic differentiation is a complex biological process that is regulated by multiple factors, among which long noncoding RNAs (lncRNAs) play an essential role. However, in-depth studies on the regulatory mechanisms of long noncoding RNAs (lncRNAs) in myogenic differentiation are limited. In this study, we characterized the role of the novel lncRNA TCONS_00323213, which is upregulated during porcine skeletal muscle satellite cell (PSC) differentiation in myogenesis. We found that TCONS_00323213 affected the proliferation and differentiation of PSC in vitro. We performed quantitative polymerase chain reaction (qPCR), 5-ethynyl-20-deoxyuridine (EdU), western blotting, immunofluorescence staining, pull-down assays, and cleavage under targets and tagmentation (CUT and Tag) assays to clarify the effects and action mechanisms of TCONS_00323213. LncRNA TCONS_00323213 inhibited myoblast proliferation based on analyses of cell survival rates during PSC proliferation. Functional analyses revealed that TCONS_00323213 promotes cell differentiation and enhances myogenin (MyoG), myosin heavy chain (MyHC), and myocyte enhancer factor 2 (MEF2C) during myoblast differentiation. As determined by pull-down and RNA immunoprecipitation (RIP) assays, the lncRNA TCONS_00323213 interacted with PBX/Knotted Homeobox 2 (PKNOX2). CUT and Tag assays showed that PKNOX2 was significantly enriched on the MyoG promoter after lncRNA TCONS_00323213 knockdown. Our findings demonstrate that the interaction between lncRNA TCONS_00323213 and PKNOX2 relieves the inhibitory effect of PKNOX2 on the MyoG promoter, increases its expression, and promotes PSC differentiation. This novel role of lncRNA TCONS_00323213 sheds light on the molecular mechanisms by which lncRNAs regulate porcine myogenesis.


Asunto(s)
Desarrollo de Músculos , ARN Largo no Codificante , Células Satélite del Músculo Esquelético , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , Desarrollo de Músculos/genética , Diferenciación Celular/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología , Animales , Porcinos , Miogenina/genética , Miogenina/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Técnicas de Silenciamiento del Gen
17.
Mol Metab ; 71: 101704, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907509

RESUMEN

OBJECTIVE: Skeletal muscle regeneration is markedly impaired during aging. How adult muscle stem cells contribute to this decrease in regenerative capacity is incompletely understood. We investigated mechanisms of age-related changes in myogenic progenitor cells using the tissue-specific microRNA 501. METHODS: Young and old C57Bl/6 mice were used (3 months or 24 months of age, respectively) with or without global or tissue-specific genetic deletion of miR-501. Muscle regeneration was induced using intramuscular cardiotoxin injection or treadmill exercise and analysed using single cell and bulk RNA sequencing, qRT-PCR and immunofluorescence. Muscle fiber damage was assessed with Evan`s blue dye (EBD). In vitro analysis was performed in primary muscle cells obtained from mice and humans. RESULTS: Single cell sequencing revealed myogenic progenitor cells in miR-501 knockout mice at day 6 after muscle injury that are characterized by high levels of myogenin and CD74. In control mice these cells were less in number and already downregulated after day 3 of muscle injury. Muscle from knockout mice had reduced myofiber size and reduced myofiber resilience to injury and exercise. miR-501 elicits this effect by regulating sarcomeric gene expression through its target gene estrogen-related receptor gamma (Esrrg). Importantly, in aged skeletal muscle where miR-501 was significantly downregulated and its target Esrrg significantly upregulated, the number of myog+/CD74+ cells during regeneration was upregulated to similar levels as observed in 501 knockout mice. Moreover, myog+/CD74+-aged skeletal muscle exhibited a similar decrease in the size of newly formed myofibers and increased number of necrotic myofibers after injury as observed in mice lacking miR-501. CONCLUSIONS: miR-501 and Esrrg are regulated in muscle with decreased regenerative capacity and loss of miR-501 is permissive to the appearance of CD74+ myogenic progenitors. Our data uncover a novel link between the metabolic transcription factor Esrrg and sarcomere formation and demonstrate that stem cell heterogeneity in skeletal muscle during aging is under miRNA control. Targeting Esrrg or myog+/CD74+ progenitor cells might improve fiber size and myofiber resilience to exercise in aged skeletal muscle.


Asunto(s)
MicroARNs , Regeneración , Adulto , Anciano , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miogenina/farmacología , Regeneración/genética , Células Madre/metabolismo
18.
Exp Biol Med (Maywood) ; 248(6): 469-480, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852460

RESUMEN

In recent years, an increasing number of studies have reported that long non-coding RNAs (lncRNAs) play essential regulatory roles in myogenic differentiation. In this study, a specific LncRNA XLOC_015548 (Lnc000280) was identified. However, little research has explored its mechanism of action by constructing XLOC_015548 gene editing cell models. In this study, relevant sequences were obtained according to the RNA-seq results. Subsequently, XLOC_015548 knockdown and over-expression lentiviral vectors were constructed, and the C2C12 myoblast cell line was transfected to prepare the XLOC_015548 gene-edited myoblast model. The in vitro analysis revealed that over-expression of XLOC_015548 significantly promoted the proliferation and differentiation of myoblasts and the formation of myotubes, whereas the opposite result was obtained in the knockdown group. XLOC_015548 regulated myogenic differentiation and affected the expression of myogenic differentiation regulators such as Myod, myogenin, and MyHC. Regarding the signaling pathway, we found that XLOC_015548 correlated with the phosphorylation level of MAPK/MEK/ERK pathway proteins. And the degree of phosphorylation was positively correlated with the protein expression of myogenic differentiation regulators. In conclusion, a new gene-edited myoblast model was constructed based on the lncRNA regulator XLOC_015548. The in vitro cell experiments verified that XLOC_015548 had regulatory effects on muscle growth and myoblast differentiation. These findings provide a laboratory foundation for the clinical application of lncRNAs as regulatory factors in the treatment of disuse muscle atrophy.


Asunto(s)
Sistema de Señalización de MAP Quinasas , ARN Largo no Codificante , Sistema de Señalización de MAP Quinasas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Transducción de Señal/genética , Mioblastos/metabolismo , Proliferación Celular/genética , Miogenina/genética , Miogenina/metabolismo
19.
Int J Legal Med ; 137(3): 875-886, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36797435

RESUMEN

From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague-Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.


Asunto(s)
Contusiones , Células Satélite del Músculo Esquelético , Ratas , Animales , Masculino , Miogenina/genética , Miogenina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratas Sprague-Dawley , Músculo Esquelético/metabolismo , Contusiones/metabolismo , Biomarcadores/metabolismo , ARN Mensajero/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo
20.
Fish Physiol Biochem ; 49(1): 1-17, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36622623

RESUMEN

This study focuses on the relationship between myostatin (MyoS), myogenin (MyoG), and the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis for muscle growth and histopathological changes in muscle after an Aeromonas hydrophila infection. A total number of 90 Nile tilapia (55.85 g) were randomly allocated into two equal groups of three replicates each. The first group was an uninfected control group that was injected intraperitoneally (ip) with 0.2 ml phosphate buffer saline (PBS), while the second group was injected ip with 0.2 ml (1.3 × 108 CFU/ml) Aeromonas hydrophila culture suspension. Sections of white muscle and liver tissues were taken from each group 24 h, 48 h, 72 h, and 1 week after infection for molecular analysis and histopathological examination. The results revealed that with time progression, the severity of muscle lesions increased from edema between bundles and mononuclear inflammatory cell infiltration 24 h post-challenge to severe atrophy of muscle bundles with irregular and curved fibers with hyalinosis of the fibers 1 week postinfection. The molecular analysis showed that bacterial infection was able to induce the muscle expression levels of GH with reduced ILGF-1, MyoS, and MyoG at 24 h postinfection. However, time progression postinfection reversed these findings through elevated muscle expression levels of MyoS with regressed expression levels of muscle GH, ILGF-1, and MyoG. There have been no previous reports on the molecular expression analysis of the aforementioned genes and muscle histopathological changes in Nile tilapia following acute Aeromonas hydrophila infection. Our findings, collectively, revealed that the up-and down-regulation of the myostatin signaling is likely to be involved in the postinfection-induced muscle wasting through the negative regulation of genes involved in muscle growth, such as GH, ILGF-1, and myogenin, in response to acute Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Dieta , Aeromonas hydrophila , Miogenina/metabolismo , Miostatina/genética , Miostatina/metabolismo , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Músculo Esquelético , Enfermedades de los Peces/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...