Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 355, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742095

RESUMEN

Mechanical stress induced by contractions constantly threatens the integrity of muscle Z-disc, a crucial force-bearing structure in striated muscle. The PDZ-LIM proteins have been proposed to function as adaptors in transducing mechanical signals to preserve the Z-disc structure, however the underlying mechanisms remain poorly understood. Here, we show that LDB3, a well-characterized striated muscle PDZ-LIM protein, modulates mechanical stress signaling through interactions with the mechanosensing domain in filamin C, its chaperone HSPA8, and PKCα in the Z-disc of skeletal muscle. Studies of Ldb3Ala165Val/+ mice indicate that the myopathy-associated LDB3 p.Ala165Val mutation triggers early aggregation of filamin C and its chaperones at muscle Z-disc before aggregation of the mutant protein. The mutation causes protein aggregation and eventually Z-disc myofibrillar disruption by impairing PKCα and TSC2-mTOR, two important signaling pathways regulating protein stability and disposal of damaged cytoskeletal components at a major mechanosensor hub in the Z-disc of skeletal muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas con Dominio LIM/genética , Mecanotransducción Celular , Músculo Esquelético/enzimología , Miopatías Estructurales Congénitas/enzimología , Mutación Puntual , Proteína Quinasa C-alfa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia , Modelos Animales de Enfermedad , Regulación hacia Abajo , Filaminas/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/fisiopatología , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteína Quinasa C-alfa/genética , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
3.
EMBO Mol Med ; 10(2): 239-253, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29246969

RESUMEN

Rapid advances in allele-specific silencing by RNA interference established a strategy of choice to cure dominant inherited diseases by targeting mutant alleles. We used this strategy for autosomal-dominant centronuclear myopathy (CNM), a rare neuromuscular disorder without available treatment due to heterozygous mutations in the DNM2 gene encoding Dynamin 2. Allele-specific siRNA sequences were developed in order to specifically knock down the human and murine DNM2-mRNA harbouring the p.R465W mutation without affecting the wild-type allele. Functional restoration was achieved in muscle from a knock-in mouse model and in patient-derived fibroblasts, both expressing the most frequently encountered mutation in patients. Restoring either muscle force in a CNM mouse model or DNM2 function in patient-derived cells is an essential breakthrough towards future gene-based therapy for dominant centronuclear myopathy.


Asunto(s)
Dinamina II/genética , Terapia Genética , Miopatías Estructurales Congénitas , ARN Interferente Pequeño/uso terapéutico , Alelos , Animales , Células Cultivadas , Humanos , Ratones , Mutación , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/fisiopatología
4.
Hum Mol Genet ; 26(19): 3736-3748, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934386

RESUMEN

Myotubularins (MTMs) are active or dead phosphoinositides phosphatases defining a large protein family conserved through evolution and implicated in different neuromuscular diseases. Loss-of-function mutations in MTM1 cause the severe congenital myopathy called myotubular myopathy (or X-linked centronuclear myopathy) while mutations in the MTM1-related protein MTMR2 cause a recessive Charcot-Marie-Tooth peripheral neuropathy. Here we aimed to determine the functional specificity and redundancy of MTM1 and MTMR2, and to assess their abilities to compensate for a potential therapeutic strategy. Using molecular investigations and heterologous expression of human MTMs in yeast cells and in Mtm1 knockout mice, we characterized several naturally occurring MTMR2 isoforms with different activities. We identified the N-terminal domain as responsible for functional differences between MTM1 and MTMR2. An N-terminal extension observed in MTMR2 is absent in MTM1, and only the short MTMR2 isoform lacking this N-terminal extension behaved similarly to MTM1 in yeast and mice. Moreover, adeno-associated virus-mediated exogenous expression of several MTMR2 isoforms ameliorates the myopathic phenotype owing to MTM1 loss, with increased muscle force, reduced myofiber atrophy, and reduction of the intracellular disorganization hallmarks associated with myotubular myopathy. Noteworthy, the short MTMR2 isoform provided a better rescue when compared with the long MTMR2 isoform. In conclusion, these results point to the molecular basis for MTMs functional specificity. They also provide the proof-of-concept that expression of the neuropathy-associated MTMR2 gene improves the MTM1-associated myopathy, thus identifying MTMR2 as a novel therapeutic target for myotubular myopathy.


Asunto(s)
Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/metabolismo , Fenotipo , Dominios Proteicos , Isoformas de Proteínas , Proteínas Tirosina Fosfatasas no Receptoras/genética
5.
J Neurol ; 264(8): 1791-1803, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28712002

RESUMEN

Mutations in GFPT1 (glutamine-fructose-6-phosphate transaminase 1), a gene encoding an enzyme involved in glycosylation of ubiquitous proteins, cause a limb-girdle congenital myasthenic syndrome (LG-CMS) with tubular aggregates (TAs) characterized predominantly by affection of the proximal skeletal muscles and presence of highly organized and remodeled sarcoplasmic tubules in patients' muscle biopsies. We report here the first long-term clinical follow-up of 11 French individuals suffering from LG-CMS with TAs due to GFPT1 mutations, of which nine are new. Our retrospective clinical evaluation stresses an evolution toward a myopathic weakness that occurs concomitantly to ineffectiveness of usual CMS treatments. Analysis of neuromuscular biopsies from three unrelated individuals demonstrates that the maintenance of neuromuscular junctions (NMJs) is dramatically impaired with loss of post-synaptic junctional folds and evidence of denervation-reinnervation processes affecting the three main NMJ components. Moreover, molecular analyses of the human muscle biopsies confirm glycosylation defects of proteins with reduced O-glycosylation and show reduced sialylation of transmembrane proteins in extra-junctional area. Altogether, these results pave the way for understanding the etiology of this rare neuromuscular disorder that may be considered as a "tubular aggregates myopathy with synaptopathy".


Asunto(s)
Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/patología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Unión Neuromuscular/patología , Adolescente , Adulto , Anciano , Femenino , Estudios de Seguimiento , Glicosilación , Humanos , Persona de Mediana Edad , Músculo Esquelético/enzimología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/enzimología , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/enzimología , Unión Neuromuscular/enzimología , Estudios Prospectivos , Estudios Retrospectivos , Adulto Joven
6.
Nature ; 529(7586): 408-12, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26760201

RESUMEN

Phosphoinositides are a minor class of short-lived membrane phospholipids that serve crucial functions in cell physiology ranging from cell signalling and motility to their role as signposts of compartmental membrane identity. Phosphoinositide 4-phosphates such as phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are concentrated at the plasma membrane, on secretory organelles, and on lysosomes, whereas phosphoinositide 3-phosphates, most notably phosphatidylinositol 3-phosphate (PI(3)P), are a hallmark of the endosomal system. Directional membrane traffic between endosomal and secretory compartments, although inherently complex, therefore requires regulated phosphoinositide conversion. The molecular mechanism underlying this conversion of phosphoinositide identity during cargo exit from endosomes by exocytosis is unknown. Here we report that surface delivery of endosomal cargo requires hydrolysis of PI(3)P by the phosphatidylinositol 3-phosphatase MTM1, an enzyme whose loss of function leads to X-linked centronuclear myopathy (also called myotubular myopathy) in humans. Removal of endosomal PI(3)P by MTM1 is accompanied by phosphatidylinositol 4-kinase-2α (PI4K2α)-dependent generation of PI(4)P and recruitment of the exocyst tethering complex to enable membrane fusion. Our data establish a mechanism for phosphoinositide conversion from PI(3)P to PI(4)P at endosomes en route to the plasma membrane and suggest that defective phosphoinositide conversion at endosomes underlies X-linked centronuclear myopathy caused by mutation of MTM1 in humans.


Asunto(s)
Endosomas/metabolismo , Exocitosis , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Células HeLa , Humanos , Hidrólisis , Fusión de Membrana , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
7.
Biochim Biophys Acta ; 1851(6): 867-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25510381

RESUMEN

More than twenty different genetic diseases have been described that are caused by mutations in phosphoinositide metabolizing enzymes, mostly in phosphoinositide phosphatases. Although generally ubiquitously expressed, mutations in these enzymes, which are mainly loss-of-function, result in tissue-restricted clinical manifestations through mechanisms that are not completely understood. Here we analyze selected disorders of phosphoinositide metabolism grouped according to the principle tissue affected: the nervous system, muscle, kidney, the osteoskeletal system, the eye, and the immune system. We will highlight what has been learnt so far from the study of these disorders about not only the cellular and molecular pathways that are involved or are governed by phosphoinositides, but also the many gaps that remain to be filled to gain a full understanding of the pathophysiological mechanisms underlying the clinical manifestations of this steadily growing class of diseases, most of which still remain orphan in terms of treatment. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Deformidades Congénitas de las Extremidades/genética , Mutación , Miopatías Estructurales Congénitas/genética , Fosfatidilinositoles/metabolismo , Animales , Enfermedades del Desarrollo Óseo/enzimología , Enfermedades del Desarrollo Óseo/patología , Modelos Animales de Enfermedad , Expresión Génica , Neuropatía Hereditaria Motora y Sensorial/enzimología , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Deformidades Congénitas de las Extremidades/enzimología , Deformidades Congénitas de las Extremidades/patología , Ratones , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
8.
Hum Mol Genet ; 22(8): 1525-38, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23307925

RESUMEN

No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.


Asunto(s)
Terapia de Reemplazo Enzimático , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/terapia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Animales , Modelos Animales de Enfermedad , Fatiga/metabolismo , Fatiga/fisiopatología , Femenino , Humanos , Ratones , Debilidad Muscular/genética , Debilidad Muscular/terapia , Músculo Esquelético/fisiopatología , Músculos/enzimología , Músculos/metabolismo , Músculos/patología , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/biosíntesis , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia
9.
Subcell Biochem ; 58: 281-336, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403079

RESUMEN

Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/enzimología , Miopatías Estructurales Congénitas/enzimología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Sistemas de Mensajero Secundario , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Regulación de la Expresión Génica , Humanos , Hidrólisis , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras/genética , Especificidad por Sustrato
10.
J Vet Diagn Invest ; 23(1): 124-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21217042

RESUMEN

Centronuclear myopathy (CNM) is an autosomal recessive hereditary disease affecting Labrador Retriever dogs. The disease is characterized by muscle lesions, typically encompassing reduction in the number and atrophy of type II fibers, and is caused by a short interspersed repeat element insertion in exon 2 of the protein tyrosine phosphatase-like member A. The actual allele frequency is unknown; a study was undertaken to ascertain it using a convenience-sample population composed of 217 Labrador Retrievers. In addition to 3 subjects already diagnosed with CNM, used as positive controls for polymerase chain reaction, only 2 unrelated dogs were heterozygous wild-type/mutation (wild-type/mut). Thus, the frequency of the CNM allele observed in the present study was 1.8% and 0.47% when including and excluding the 3 mut/mut homozygous cases, respectively. Based on the Hardy-Weinberg exact test (P  =  1.00), the genotype frequency without the CNM-affected dogs was in agreement with the Hardy-Weinberg equilibrium. Assuming the Hardy-Weinberg equilibrium law, the expected frequency of the homozygous mutated genotype was calculated to be approximately 0.00005, which corresponds to 1 case of CNM out of 20,000 dogs. In conclusion, the present study indicates that the CNM allele is present but rare in a convenience sample of Labrador Retrievers in Italy.


Asunto(s)
Enfermedades de los Perros/genética , Miopatías Estructurales Congénitas/veterinaria , Proteínas Tirosina Fosfatasas/genética , Alelos , Animales , Distribución de Chi-Cuadrado , ADN/química , ADN/genética , Enfermedades de los Perros/enzimología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/patología , Perros , Femenino , Italia/epidemiología , Masculino , Fibras Musculares de Contracción Rápida/patología , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/epidemiología , Miopatías Estructurales Congénitas/genética , Reacción en Cadena de la Polimerasa/veterinaria , Estudios Retrospectivos
11.
Int J Biochem Cell Biol ; 42(5): 555-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20025992

RESUMEN

Lipolysis in adipocytes, the hydrolysis of triacylglycerol (TAG) to release fatty acids (FAs) and glycerol for use by other organs, is a unique function of white adipose tissue. Lipolysis in adipocytes occurs at the surface of cytosolic lipid droplets, which have recently gained much attention as dynamic organelles integral to lipid metabolism. Desnutrin/ATGL is now established as a bona fide TAG hydrolase and mutations in human desnutrin/ATGL/PNPLA2, as well as in its activator, comparative gene identification 58, are associated with Neutral Lipid Storage Disease. Furthermore, recent identification of AdPLA as the major adipose phospholipase A(2), has led to the discovery of a dominant autocrine/paracrine regulation of lipolysis through PGE(2). Here, we review emerging concepts in the key players in lipolysis and the regulation of this process. We also examine recent findings in mouse models and humans with alterations/mutations in genes involved in lipolysis and discuss activation of lipolysis in adipocytes as a potential therapeutic target.


Asunto(s)
Adipocitos Blancos/metabolismo , Lipólisis/fisiología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/enzimología , Animales , Humanos , Lipidosis/enzimología , Lipidosis/genética , Lipólisis/efectos de los fármacos , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/prevención & control , Orgánulos/efectos de los fármacos , Orgánulos/enzimología , Orgánulos/metabolismo
12.
Curr Opin Struct Biol ; 15(6): 614-20, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16289848

RESUMEN

The human neuromuscular diseases X-linked myotubular myopathy and Charcot-Marie-Tooth disease type 4B are caused by mutations in myotubularin family proteins. The myotubularins are a unique subfamily of protein tyrosine phosphatases that utilize inositol phospholipids, rather than phosphoproteins, as substrates. Recent structural studies, including the first crystal structure of a myotubularin family protein, have defined the structural features that are characteristic of the family and revealed the molecular basis of their unique substrate specificity. Interestingly, the myotubularin family contains a subgroup of proteins that are catalytically inactive. Recent biochemical studies have established that the inactive myotubularins function as adaptors for the active members and play an important regulatory role within the family.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/enzimología , Modelos Moleculares , Miopatías Estructurales Congénitas/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Mutación , Miopatías Estructurales Congénitas/genética , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras
13.
Genes Dev ; 19(17): 2066-77, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16140986

RESUMEN

Myocyte enhancer factor 2 (MEF2) plays essential roles in transcriptional control of muscle development. However, signaling pathways acting downstream of MEF2 are largely unknown. Here, we performed a microarray analysis using Mef2c-null mouse embryos and identified a novel MEF2-regulated gene encoding a muscle-specific protein kinase, Srpk3, belonging to the serine arginine protein kinase (SRPK) family, which phosphorylates serine/arginine repeat-containing proteins. The Srpk3 gene is specifically expressed in the heart and skeletal muscle from embryogenesis to adulthood and is controlled by a muscle-specific enhancer directly regulated by MEF2. Srpk3-null mice display a new entity of type 2 fiber-specific myopathy with a marked increase in centrally placed nuclei; while transgenic mice overexpressing Srpk3 in skeletal muscle show severe myofiber degeneration and early lethality. We conclude that normal muscle growth and homeostasis require MEF2-dependent signaling by Srpk3.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Factores de Transcripción MEF2 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Músculo Esquelético/embriología , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Factores Reguladores Miogénicos , Miopatías Estructurales Congénitas/etiología , Miopatías Estructurales Congénitas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética
14.
Cell Mol Life Sci ; 60(10): 2084-99, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14618257

RESUMEN

Phosphoinositides play a central role in the control of major eukaryotic cell signaling mechanisms. Accordingly, the list of phosphoinositide-metabolizing enzymes implicated in human diseases has considerably increased these last years. Here we will focus on myotubularin, the protein mutated in the X-linked myotubular myopathy (XLMTM) and the founding member of a family of 13 related proteins. Recent data demonstrate that myotubularin and several other members of the family are potent lipid phosphatases showing a marked specificity for phosphatidylinositol 3-phosphate [PtdIns(3)P]. This finding has raised considerable interest as PtdIns(3)P is implicated in vesicular trafficking and sorting through its binding to specific protein domains. The structure of myotubularin, the molecular mechanisms of its function and its implication in the etiology of XLMTM will be discussed, as well as the potential function and role of the other members of the family.


Asunto(s)
Miopatías Estructurales Congénitas/enzimología , Fosfatidilinositoles/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Vesículas Citoplasmáticas/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/fisiopatología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras
15.
J Cell Sci ; 115(Pt 15): 3105-17, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12118066

RESUMEN

Myotubularin, the phosphatase mutated in X-linked myotubular myopathy, was shown to dephosphorylate phosphatidylinositol 3-monophosphate (PtdIns3P) and was also reported to interact with nuclear transcriptional regulators from the trithorax family. We have characterized a panel of specific antibodies and investigated the subcellular localization of myotubularin. Myotubularin is not detected in the nucleus, and localizes mostly as a dense cytoplasmic network. Overexpression of myotubularin does not detectably affect vesicle trafficking in the mammalian cells investigated, in contrast to previous observations in yeast models. Both mutation of a key aspartate residue of myotubularin and dominant activation of Rac1 GTPase lead to the recruitment of myotubularin to specific plasma membrane domains. Localization to Rac1-induced ruffles is dependent on the presence of a domain highly conserved in the myotubularin family (that we named RID). We thus propose that myotubularin may dephosphorylate a subpool of PtdIns3P (or another related substrate) at the plasma membrane.


Asunto(s)
Extensiones de la Superficie Celular/enzimología , Citoplasma/enzimología , Células Eucariotas/enzimología , Miopatías Estructurales Congénitas/enzimología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Fosfatasas/deficiencia , Proteína de Unión al GTP rac1/metabolismo , Animales , Anticuerpos , Compartimento Celular/genética , Extensiones de la Superficie Celular/ultraestructura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Células Eucariotas/ultraestructura , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Ratones , Microscopía Confocal , Mutación/genética , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/fisiopatología , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA