Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.836
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(11): 22, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39283617

RESUMEN

Purpose: Progressive choroid and retinal pigment epithelial (RPE) degeneration causing vision loss is a unique characteristic of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), a fatty acid oxidation disorder caused by a common c.1528G>C pathogenic variant in HADHA, the α subunit of the mitochondrial trifunctional protein (TFP). We established and characterized an induced pluripotent stem cell (iPSC)-derived RPE cell model from cultured skin fibroblasts of patients with LCHADD and tested whether addition of wildtype (WT) HAHDA could rescue the phenotypes identified in LCHADD-RPE. Methods: We constructed an rAAV expression vector containing 3' 3xFLAG-tagged human HADHA cDNA under the transcriptional control of the cytomegalovirus (CMV) enhancer-chicken beta actin (CAG) promoter (CAG-HADHA-3XFLAG). LCHADD-RPE were cultured, matured, and transduced with either AAV-GFP (control) or AAV-HADHA-3XFLAG. Results: LCHADD-RPE express TFP subunits and accumulate 3-hydroxy-acylcarnitines, cannot oxidize palmitate, and release fewer ketones than WT-RPE. When LCHADD-RPE are exposed to docosahexaenoic acid (DHA), they have increased oxidative stress, lipid peroxidation, decreased viability, and are rescued by antioxidant agents potentially explaining the pathologic mechanism of RPE loss in LCHADD. Transduced LCHADD-RPE expressing a WT copy of TFPα incorporated TFPα-FLAG into the TFP complex in the mitochondria and accumulated significantly less 3-hydroxy-acylcarnitines, released more ketones in response to palmitate, and were more resistant to oxidative stress following DHA exposure than control. Conclusions: iPSC-derived LCHADD-RPE are susceptible to lipid peroxidation mediated cell death and are rescued by exogenous HADHA delivered with rAAV. These results are promising for AAV-HADHA gene addition therapy as a possible treatment for chorioretinopathy in patients with LCHADD.


Asunto(s)
Dependovirus , Vectores Genéticos , Células Madre Pluripotentes Inducidas , Peroxidación de Lípido , 3-Hidroxiacil-CoA Deshidrogenasa de Cadena Larga , Epitelio Pigmentado de la Retina , Transfección , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Células Madre Pluripotentes Inducidas/metabolismo , Dependovirus/genética , Células Cultivadas , 3-Hidroxiacil-CoA Deshidrogenasa de Cadena Larga/genética , 3-Hidroxiacil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/terapia , Proteína Trifuncional Mitocondrial/genética , Proteína Trifuncional Mitocondrial/deficiencia , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Terapia Genética/métodos , Cardiomiopatías , Enfermedades del Sistema Nervioso , Rabdomiólisis
2.
JCI Insight ; 9(17)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39088276

RESUMEN

Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid ß-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and ß subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.


Asunto(s)
Cardiolipinas , Metabolismo Energético , Fibroblastos , Errores Innatos del Metabolismo Lipídico , Subunidad alfa de la Proteína Trifuncional Mitocondrial , Cardiolipinas/metabolismo , Animales , Humanos , Ratones , Subunidad alfa de la Proteína Trifuncional Mitocondrial/metabolismo , Subunidad alfa de la Proteína Trifuncional Mitocondrial/genética , Metabolismo Energético/genética , Fibroblastos/metabolismo , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/patología , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Subunidad beta de la Proteína Trifuncional Mitocondrial/genética , Mitocondrias/metabolismo , Mutación , Proteína Trifuncional Mitocondrial/deficiencia , Proteína Trifuncional Mitocondrial/metabolismo , Proteína Trifuncional Mitocondrial/genética , Rabdomiólisis/metabolismo , Rabdomiólisis/genética , Rabdomiólisis/patología , Miopatías Mitocondriales/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Consumo de Oxígeno , Masculino , Modelos Animales de Enfermedad , Lisofosfolípidos , Cardiomiopatías , Enfermedades del Sistema Nervioso
3.
Mitochondrion ; 78: 101945, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39134108

RESUMEN

Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.


Asunto(s)
Enfermedades Musculares , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Miopatías Mitocondriales/metabolismo
4.
Neuromuscul Disord ; 43: 14-19, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173541

RESUMEN

Myopathy is a common manifestation in mitochondrial disorders, but the pathomechanisms are still insufficiently studied in children. Here, we report a severe, progressive mitochondrial myopathy in a four-year-old child, who died at eight years. He developed progressive loss of muscle strength with nocturnal hypoventilation and dilated cardiomyopathy. Skeletal muscle showed ragged red fibers and severe combined respiratory chain deficiency. Mitochondrial DNA sequencing revealed a novel m.5670A>G mutation in mitochondrial tRNAAsn (MTTN) with 88 % heteroplasmy in muscle. The proband also had systemic NAD+ deficiency but rescuing this with the NAD+ precursor niacin did not stop disease progression. Targeted metabolomics revealed an overall shift of metabolism towards controls after niacin supplementation, with normalized tryptophan metabolites and lipid-metabolic markers, but most amino acids did not respond to niacin therapy. To conclude, we report a new MTTN mutation, secondary NAD+ deficiency in childhood-onset mitochondrial myopathy with metabolic but meager clinical response to niacin supplementation.


Asunto(s)
Miopatías Mitocondriales , NAD , Niacina , Humanos , Masculino , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/tratamiento farmacológico , NAD/metabolismo , Preescolar , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Mutación , Suplementos Dietéticos , ADN Mitocondrial/genética , Niño
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732138

RESUMEN

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Asunto(s)
Proteína Trifuncional Mitocondrial/deficiencia , Proteína-2 Multifuncional Peroxisomal , Humanos , Proteína-2 Multifuncional Peroxisomal/deficiencia , Proteína-2 Multifuncional Peroxisomal/genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Recién Nacido , Lactante , Masculino , Femenino , Secuenciación del Exoma , Mutación del Sistema de Lectura , 17-Hidroxiesteroide Deshidrogenasas/deficiencia , 17-Hidroxiesteroide Deshidrogenasas/genética , Configuración de Recursos Limitados , Miopatías Mitocondriales , Cardiomiopatías , Enfermedades del Sistema Nervioso , Rabdomiólisis
7.
Eur J Paediatr Neurol ; 50: 31-40, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583367

RESUMEN

Mitochondrial diseases have a heterogeneous phenotype and can result from mutations in the mitochondrial or nuclear genomes, constituting a diagnostically and therapeutically challenging group of disorders. We report our center's experience with mitochondrial encephalopathies and myopathies with a cohort of 50 genetically and phenotypically diverse patients followed in the Neurology clinic over the last ten years. Seventeen patients had mitochondrial DNA mutations, presented over a wide range of ages with seizures, feeding difficulties, extraocular movements abnormalities, and had high rates of stroke-like episodes and regression. Twenty-seven patients had nuclear DNA mutations, presented early in life with feeding difficulty, failure-to-thrive, and seizures, and had high proportions of developmental delay, wheelchair dependence, spine abnormalities and dystonia. In six patients, a mutation could not be identified, but they were included for having mitochondrial disease confirmed by histopathology, enzyme analysis and clinical features. These patients had similar characteristics to patients with nuclear DNA mutations, suggesting missed underlying mutations in the nuclear genome. Management was variable among patients, but outcomes were universally poor with severe disability in all cases. Therapeutic entryways through elucidation of disease pathways and remaining unknown genes are acutely needed.


Asunto(s)
ADN Mitocondrial , Encefalomiopatías Mitocondriales , Mutación , Humanos , Masculino , Femenino , Niño , Preescolar , Encefalomiopatías Mitocondriales/genética , Lactante , Adolescente , ADN Mitocondrial/genética , Adulto , Adulto Joven , Centros de Atención Terciaria , Miopatías Mitocondriales/genética
8.
J Inherit Metab Dis ; 47(4): 746-756, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38623632

RESUMEN

Long chain 3-hydroxyacyl-CoA dehydrogenase (LCHADD) is the only fatty acid oxidation disorder to develop a progressive chorioretinopathy resulting in vision loss; newborn screening (NBS) for this disorder began in the United States around 2004. We compared visual outcomes among 40 participants with LCHADD or trifunctional protein deficiency diagnosed symptomatically to those who were diagnosed via NBS or a family history. Participants completed ophthalmologic testing including measures of visual acuity, electroretinograms (ERG), fundal imaging, contrast sensitivity, and visual fields. Records were reviewed to document medical and treatment history. Twelve participants presented symptomatically with hypoglycemia, failure to thrive, liver dysfunction, cardiac arrest, or rhabdomyolysis. Twenty eight were diagnosed by NBS or due to a family history of LCHADD. Participants diagnosed symptomatically were older but had similar percent males and genotypes as those diagnosed by NBS. Treatment consisted of fasting avoidance, dietary long-chain fat restriction, MCT, C7, and/or carnitine supplementation. Visual acuity, rod- and cone-driven amplitudes on ERG, contrast sensitivity scores, and visual fields were all significantly worse among participants diagnosed symptomatically compared to NBS. In mixed-effects models, both age and presentation (symptomatic vs. NBS) were significant independent factors associated with visual outcomes. This suggests that visual outcomes were improved by NBS, but there was still lower visual function with advancing age in both groups. Early diagnosis and treatment by NBS is associated with improved visual outcomes and retinal function compared to participants who presented symptomatically. Despite the impact of early intervention, chorioretinopathy was greater with advancing age, highlighting the need for novel treatments.


Asunto(s)
Diagnóstico Precoz , Errores Innatos del Metabolismo Lipídico , Proteína Trifuncional Mitocondrial , Tamizaje Neonatal , Enfermedades de la Retina , Agudeza Visual , Humanos , Masculino , Femenino , Recién Nacido , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/terapia , Niño , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/genética , Proteína Trifuncional Mitocondrial/deficiencia , Adulto , Lactante , Preescolar , Adolescente , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Adulto Joven , Carnitina/análogos & derivados , Carnitina/uso terapéutico , Electrorretinografía , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/genética , 3-Hidroxiacil-CoA Deshidrogenasas/deficiencia , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Resultado del Tratamiento , Rabdomiólisis/diagnóstico , Rabdomiólisis/genética , Enfermedades del Sistema Nervioso
10.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(2): 172-179, 2024 Feb 24.
Artículo en Chino | MEDLINE | ID: mdl-38326069

RESUMEN

Objective: To explore the clinical manifestations and genotype of an infant with hyperuricemia, pulmonary hypertension, renal failure in infancy, and alkalosis syndrome (HUPRAS). Methods: Clinical data of the patient were collected. Peripheral blood samples from the patient and his parents were acquainted for whole exome sequencing. The filtrated variants were verified by Sanger sequencing. The pathogenicity of the variants was predicted by bioinformatic tools. Results: The patient is a male infant of 6 months old, carrying two missense variants in the SARS2 allele: a paternal inherited c.1205G>A (p. Arg402His) and a maternal inherited c.680G>A (p. Arg227Gln). The two variants were in extremely low population frequencies. The pathogenetic prediction tools categorized them as deleterious. Arg402 and Arg227 were highly conserved in evolution. The variants led to changes in the hydrogen bonds and hydrophobicity of seryl-tRNA synthetase encoded by SARS2. Conclusions: c.1205G>A (p. Arg402His) and c.680G>A (p. Arg227Gln) are the possible causative variants of the HUPRA syndrome.


Asunto(s)
COVID-19 , Hipertensión Pulmonar , Síndrome de Kearns-Sayre , Miopatías Mitocondriales , Humanos , Lactante , Masculino , Mutación , Hipertensión Pulmonar/genética , Mutación Missense , Genotipo
11.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38372965

RESUMEN

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Asunto(s)
Cardiomiopatías , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Errores Innatos del Metabolismo Lipídico , Lipidómica , Enfermedades Mitocondriales , Miopatías Mitocondriales , Proteína Trifuncional Mitocondrial/deficiencia , Enfermedades Musculares , Enfermedades del Sistema Nervioso , Rabdomiólisis , Humanos , Enfermedades Mitocondriales/diagnóstico , Carnitina , Cisteamina , Lípidos
12.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377647

RESUMEN

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Cardiomiopatías , Carnitina O-Palmitoiltransferasa/deficiencia , Errores Innatos del Metabolismo Lipídico , Errores Innatos del Metabolismo , Proteína Trifuncional Mitocondrial/deficiencia , Tamizaje Neonatal , Rabdomiólisis , Humanos , Recién Nacido , Estudios Retrospectivos , Masculino , Femenino , Tamizaje Neonatal/métodos , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/complicaciones , Bélgica/epidemiología , Lactante , Síndromes Congénitos de Insuficiencia de la Médula Ósea/complicaciones , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Ácidos Grasos/metabolismo , Preescolar , Enfermedades Musculares/diagnóstico , Niño , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/complicaciones , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/diagnóstico
13.
Neurotherapeutics ; 21(1): e00304, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241155

RESUMEN

This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.


Asunto(s)
Enfermedades Mitocondriales , Miopatías Mitocondriales , Humanos , Niño , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/terapia , Mitocondrias , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia
14.
Ophthalmic Genet ; 45(2): 140-146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288966

RESUMEN

OBJECTIVE: To develop an updated staging system for long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency (LCHADD) chorioretinopathy based on contemporary multimodal imaging and electrophysiology. METHODS: We evaluated forty cases of patients with genetically confirmed LCHADD or trifunctional protein deficiency (TFPD) enrolled in a prospective natural history study. Wide-field fundus photographs, fundus autofluorescence (FAF), optical coherence tomography (OCT), and full-field electroretinogram (ffERG) were reviewed and graded for severity. RESULTS: Two independent experts first graded fundus photos and electrophysiology to classify the stage of chorioretinopathy based upon an existing published system. With newer imaging modalities and improved electrophysiology, many patients did not fit cleanly into a single traditional staging group. Therefore, we developed a novel staging system that better delineated the progression of LCHADD retinopathy. We maintained the four previous delineated stages but created substages A and B in stages 2 to 3 to achieve better differentiation. DISCUSSION: Previous staging systems of LCHADD chorioretinopathy relied on only on the assessment of standard 30 to 45-degree fundus photographs, visual acuity, fluorescein angiography (FA), and ffERG. Advances in recordings of ffERG and multimodal imaging with wider fields of view, allow better assessment of retinal changes. Following these advanced assessments, seven patients did not fit neatly into the original classification system and were therefore recategorized under the new proposed system. CONCLUSION: The new proposed staging system improves the classification of LCHADD chorioretinopathy, with the potential to lead to a deeper understanding of the disease's progression and serve as a more reliable reference point for future therapeutic research.


Asunto(s)
Cardiomiopatías , Enfermedades de la Coroides , Errores Innatos del Metabolismo Lipídico , Miopatías Mitocondriales , Proteína Trifuncional Mitocondrial/deficiencia , Enfermedades del Sistema Nervioso , Enfermedades de la Retina , Rabdomiólisis , Humanos , Estudios Prospectivos , Enfermedades de la Retina/diagnóstico , Retina/metabolismo , Tomografía de Coherencia Óptica , Angiografía con Fluoresceína/métodos
15.
Ann Clin Transl Neurol ; 11(4): 883-898, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263760

RESUMEN

OBJECTIVE: This study aims to elucidate the long-term benefit of newborn screening (NBS) for individuals with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiency, inherited metabolic diseases included in NBS programs worldwide. METHODS: German national multicenter study of individuals with confirmed LCHAD/MTP deficiency identified by NBS between 1999 and 2020 or selective metabolic screening. Analyses focused on NBS results, confirmatory diagnostics, and long-term clinical outcomes. RESULTS: Sixty-seven individuals with LCHAD/MTP deficiency were included in the study, thereof 54 identified by NBS. All screened individuals with LCHAD deficiency survived, but four with MTP deficiency (14.8%) died during the study period. Despite NBS and early treatment neonatal decompensations (28%), symptomatic disease course (94%), later metabolic decompensations (80%), cardiomyopathy (28%), myopathy (82%), hepatopathy (32%), retinopathy (17%), and/or neuropathy (22%) occurred. Hospitalization rates were high (up to a mean of 2.4 times/year). Disease courses in screened individuals with LCHAD and MTP deficiency were similar except for neuropathy, occurring earlier in individuals with MTP deficiency (median 3.9 vs. 11.4 years; p = 0.0447). Achievement of dietary goals decreased with age, from 75% in the first year of life to 12% at age 10, and consensus group recommendations on dietary management were often not achieved. INTERPRETATION: While NBS and early treatment result in improved (neonatal) survival, they cannot reliably prevent long-term morbidity in screened individuals with LCHAD/MTP deficiency, highlighting the urgent need of better therapeutic strategies and the development of disease course-altering treatment.


Asunto(s)
Cardiomiopatías , Errores Innatos del Metabolismo Lipídico , Miopatías Mitocondriales , Proteína Trifuncional Mitocondrial , Enfermedades del Sistema Nervioso , Rabdomiólisis , Humanos , Recién Nacido , Ácidos Grasos/metabolismo , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/terapia , Errores Innatos del Metabolismo Lipídico/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Proteína Trifuncional Mitocondrial/metabolismo , Proteína Trifuncional Mitocondrial/deficiencia , Lactante , Preescolar , Niño
16.
Ophthalmic Genet ; 45(2): 193-200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37671548

RESUMEN

AIM: We describe the ophthalmic manifestations of Neuropathy, ataxia, retinitis pigmentosa (NARP) syndrome in three related patients. METHODS: We examined a mother and her two children, who were carriers of the mt 8993T>G mutation. The mother, patient I, is the first known carrier within the family pedigree. Patients II and III are her children from a non-carrier father. NARP syndrome and the heteroplasmy levels were established prior to the first referral of the patients to the Ophthalmology department.We performed a visual acuity testing, followed by a biomicroscopic and fundus examination, as well as additional multimodal imaging testing: optical coherence tomography (OCT) and fundus autofluorescence (FAF), and functional testing: electroretinogram and visual field. RESULTS: All patients had the clinical manifestations of NARP syndrome, which were variably expressed symptomatically, on the fundus exams, electroretinogram, and visual fields. CONCLUSIONS: Once genetically established, NARP syndrome, as other mitochondrial disorders, has a very variable progression with different degrees of severity. A multimodal approach involving both neurological and ophthalmological diagnosis of NARP syndrome is necessary in order to establish the course of the disease and the measures to be taken.


Asunto(s)
Hipopituitarismo , Miopatías Mitocondriales , Madres , Retinitis Pigmentosa , Niño , Femenino , Humanos , Hermanos , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Ataxia/diagnóstico , Ataxia/genética , Mutación , Tomografía de Coherencia Óptica
17.
Biochem J ; 480(21): 1767-1789, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37965929

RESUMEN

Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.


Asunto(s)
Miopatías Mitocondriales , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Mitocondrias/metabolismo , Recambio Mitocondrial , Biología
18.
J Am Soc Nephrol ; 34(11): 1875-1888, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678265

RESUMEN

SIGNIFICANCE STATEMENT: Several recent studies identified mitochondrial mutations in patients with Gitelman or Fanconi syndrome. Mitochondrial cytopathies are generally not considered in the diagnostic workup of patients with electrolyte disorders. In this systematic review, we investigated the presence of electrolyte disorders in patients with mitochondrial cytopathies to determine the relevance of mitochondrial mutation screening in this population. Our analysis demonstrates that electrolyte disorders are commonly reported in mitochondrial cytopathies, often as presenting symptoms. Consequently, more clinical attention should be raised for mitochondrial disease as cause for disturbances in electrolyte homeostasis. Further prospective cohort studies are required to determine the exact prevalence of electrolyte disorders in mitochondrial cytopathies. BACKGROUND: Electrolyte reabsorption in the kidney has a high energy demand. Proximal and distal tubular epithelial cells have a high mitochondrial density for energy release. Recently, electrolyte disorders have been reported as the primary presentation of some mitochondrial cytopathies. However, the prevalence and the pathophysiology of electrolyte disturbances in mitochondrial disease are unknown. Therefore, we systematically investigated electrolyte disorders in patients with mitochondrial cytopathies. METHODS: We searched PubMed, Embase, and Google Scholar for articles on genetically confirmed mitochondrial disease in patients for whom at least one electrolyte is reported. Patients with a known second genetic anomaly were excluded. We evaluated 214 case series and reports (362 patients) as well as nine observational studies. Joanna Briggs Institute criteria were used to evaluate the quality of included studies. RESULTS: Of 362 reported patients, 289 had an electrolyte disorder, with it being the presenting or main symptom in 38 patients. The average number of different electrolyte abnormalities per patient ranged from 2.4 to 1.0, depending on genotype. Patients with mitochondrial DNA structural variants seemed most affected. Reported pathophysiologic mechanisms included renal tubulopathies and hormonal, gastrointestinal, and iatrogenic causes. CONCLUSIONS: Mitochondrial diseases should be considered in the evaluation of unexplained electrolyte disorders. Furthermore, clinicians should be aware of electrolyte abnormalities in patients with mitochondrial disease.


Asunto(s)
Síndrome de Kearns-Sayre , Enfermedades Mitocondriales , Miopatías Mitocondriales , Desequilibrio Hidroelectrolítico , Humanos , Miopatías Mitocondriales/genética , Síndrome de Kearns-Sayre/genética , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/genética , Mitocondrias , ADN Mitocondrial/genética
19.
BMC Cardiovasc Disord ; 23(1): 464, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715114

RESUMEN

BACKGROUND: Mitochondrial myopathies (MMs) are a group of multi-system diseases caused by abnormalities in mitochondrial DNA (mtDNA) or mutations of nuclear DNA (nDNA). The diagnosis of mitochondrial myopathy (MM) is reliant on the combination of history and physical examination, muscle biopsy, histochemical studies, and next-generation sequencing. Patients with MMs have diverse clinical manifestations. In the contemporary literature, there is a paucity of reports on cardiac structure and function in this rare disease. We report a Chinese man with MM accompanied with both acute right heart failure and left ventricular hypertrophy. CASE PRESENTATION: A 49-year-old man presented with clinical features suggestive of MM, i.e., ophthalmoparesis, weakness of the pharyngeal and extremity muscles, and respiratory muscles which gradually progressed to respiratory insufficiency. He had a family history of mitochondrial myopathy. He had increased levels of serum creatine kinase and lactate. Muscle biopsy of left lateral thigh revealed 8% ragged red fibers (RRF) and 42% COX-negative fibers. Gene sequencing revealed a novel heterozygote TK2 variant (NM_001172644: c.584T>C, p.Leu195Pro) and another heterozygous variant (NM_004614.4:c.156+958G>A; rs1965661603) in the intron of TK2 gene. Based on these findings, we diagnosed the patient as a case of MM. Echocardiography revealed right heart enlargement, pulmonary hypertension, left ventricular hypertrophy, and thickening of the main pulmonary artery and its branches. The patient received non-invasive ventilation and coenzyme Q10 (CoQ10). The cardiac structure and function were restored at 1-month follow-up. CONCLUSIONS: This is the first report of reversible cardiac function impairment and left ventricular hypertrophy in a case of adult-onset MM, nocturnal hypoxia is a potential mechanism for left ventricular hypertrophy in patients with MM.


Asunto(s)
Hipertrofia Ventricular Izquierda , Miopatías Mitocondriales , Adulto , Masculino , Humanos , Persona de Mediana Edad , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/genética , Pueblos del Este de Asia , Corazón , Miopatías Mitocondriales/complicaciones , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/genética , Cardiomegalia
20.
J Prim Care Community Health ; 14: 21501319231193875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646180

RESUMEN

Primary mitochondrial myopathies (PMM) are rare disorders with diverse and progressive symptom presentations that cause a substantial, detrimental impact on the quality of life of patients and their caregivers. The burden of symptoms is compounded by their visibility and their unpredictable, progressive nature, leading to a sense of social stigmatization, limited autonomy, social isolation, and grief. There is also a lack of awareness and expertise in the medical community, which presents huge obstacles to diagnosis and provision of coordinated multidisciplinary care for these patients, along with a lack of disease-modifying treatments. The present commentary serves to raise awareness of the challenges faced by patients with PMM and their caregivers in their own words, including diagnostic delays, the burden of disease, and the need for further trials to develop disease-modifying treatments and improved understanding of the disease course. We also provide commentary on considerations for clinical practice, including the need for holistic care and multidisciplinary care teams, details of common 'red flag' symptoms, proposed diagnostic approaches, and suggested descriptions of multisystemic symptoms for physician-patient dialogue. In addition, we highlight the role patient advocacy and support groups play in supporting patients and providing access to reliable, up-to-date information and educational resources on these rare diseases.


Asunto(s)
Miopatías Mitocondriales , Calidad de Vida , Humanos , Miopatías Mitocondriales/terapia , Cuidadores , Costo de Enfermedad , Diagnóstico Tardío
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...