Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Folia Med (Plovdiv) ; 66(4): 528-535, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39257274

RESUMEN

INTRODUCTION: Mandibular prognathism (MP) patients present with aesthetic concerns and functional issues, including difficulties in mastication and pronunciation. Studies revealed that mandibular prognathism had definitive Mendelian inheritance patterns. This study aimed to ascertain distinct genetic markers associated with mandibular prognathism in individuals of Indian descent, focusing on exploring the prevalent genetic variations associated with certain genes. This study sought to identify the association of the following gene markers with mandibular prognathism: 1) Matrilin-1 (MATN1) (rs1065755), 2) Bone morphogenic protein 3 (BMP-3) (Tyr67Asn), 3) Homeobox protein hox-A2 (HOXA2) (Val327Ile), 4) Rho-GTPase activating protein (ARHGAP 21) (Gly1121Ser), 5) Myosin 1H (MYO1H) (rs10850110).


Asunto(s)
Proteínas de Homeodominio , Prognatismo , Humanos , Masculino , India , Femenino , Prognatismo/genética , Proteínas de Homeodominio/genética , Miosina Tipo I/genética , Adulto , Proteínas Activadoras de GTPasa/genética , Adulto Joven , Adolescente , Proteínas de la Matriz Extracelular/genética , Marcadores Genéticos , Estudios de Casos y Controles
2.
Sci Adv ; 10(37): eado5788, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270022

RESUMEN

Class I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Myosin-I triggered symmetry breaking and comet tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations, suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Miosina Tipo I , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Miosina Tipo I/metabolismo , Animales , Citoesqueleto de Actina/metabolismo , Unión Proteica
4.
Int Immunopharmacol ; 142(Pt A): 113094, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39276460

RESUMEN

PURPOSE: Myosin 1f (Myo1f), an unconventional long-tailed class Ⅰ myosin, plays significant roles in immune cell motility and innate antifungal immunity. This study was aimed to assess the expression and role of Myo1f in Aspergillus fumigatus (AF) keratitis. METHODS: Myo1f expression in the corneas of mice afflicted with AF keratitis and in AF keratitis-related cells was assessed using protein mass spectrometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Myo1f expression following pre-treatment with inhibitors of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 4 (TLR-4), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was also examined. In AF keratitis mouse models, Myo1f small interfering RNA (siRNA) was administered via subconjunctival injection to observe disease progression, inflammatory cell recruitment, and protein production using slit lamp examination, immunofluorescence, hematoxylin-eosin (HE) staining, and western blotting. RESULTS: Myo1f expression was upregulated in both AF keratitis mouse models and AF keratitis-related cells. Dectin-1, TLR-4, and LOX-1 were found to be essential for the production of Myo1f in response to the infection with AF. In mice with AF keratitis, knockdown of Myo1f reduced disease severity, decreased the recruitment of neutrophils alongside macrophages to inflammatory areas, suppressed the myeloid differentiation factor 88 (MyD88)/ nuclear factor-kappaB (NF-κB) signaling pathway, and decreased the production of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, along with IL-6. Additionally, Myo1f was associated with apoptosis and pyroptosis in mice with AF keratitis. CONCLUSIONS: These findings demonstrated that Myo1f contributed to the recruitment of neutrophils and macrophages, the production of pro-inflammatory cytokines, and was associated with apoptosis and pyroptosis during AF keratitis.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Citocinas , Queratitis , Macrófagos , Miosina Tipo I , Neutrófilos , Animales , Humanos , Ratones , Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Córnea/inmunología , Córnea/patología , Córnea/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Queratitis/inmunología , Queratitis/microbiología , Queratitis/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Infiltración Neutrófila , Neutrófilos/inmunología , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética
5.
Adv Sci (Weinh) ; 11(39): e2405987, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159301

RESUMEN

Non-healing diabetic wounds and ulcer complications, with persistent cell dysfunction and obstructed cellular processes, are leading causes of disability and death in patients with diabetes. Currently, there is a lack of guideline-recommended hypoglycemic drugs in clinical practice, likely due to limited research and unclear mechanisms. In this study, it is demonstrated that liraglutide significantly accelerates wound closure in diabetic mouse models (db/db mice and streptozotocin-induced mice) by improving re-epithelialization, collagen deposition, and extracellular matrix remodeling, and enhancing the proliferation, migration, and adhesion functions of keratinocytes. However, these effects of improved healing by liraglutide are abrogated in dedicator of cytokinesis 5 (Dock5) keratinocyte-specific knockout mice. Mechanistically, liraglutide induces cellular function through stabilization of unconventional myosin 1c (Myo1c). Liraglutide directly binds to Myo1c at arginine 93, enhancing the Myo1c/Dock5 interaction by targeting Dock5 promoter and thus promoting the proliferation, migration, and adhesion of keratinocytes. Therefore, this study provides insights into liraglutide biology and suggests it may be an effective treatment for diabetic patients with wound-healing pathologies.


Asunto(s)
Diabetes Mellitus Experimental , Liraglutida , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Hipoglucemiantes/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Ratones Noqueados , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
6.
Nat Commun ; 15(1): 6547, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095343

RESUMEN

Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFß signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.


Asunto(s)
Tipificación del Cuerpo , Transducción de Señal , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Tipificación del Cuerpo/genética , Proteína Nodal/metabolismo , Proteína Nodal/genética , Regulación del Desarrollo de la Expresión Génica , Endosomas/metabolismo , Miosinas/metabolismo , Miosinas/genética , Mutación , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Embrión no Mamífero/metabolismo
7.
Oncogene ; 43(36): 2696-2707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112516

RESUMEN

Prostate cancer bone metastasis is a predominant cause of death for prostate cancer (PCa) patients. However, the underlying mechanisms are poorly understood. Here, we report that high levels of RNF41 are associated with metastatic human prostate cancer. RNF41 silencing inhibits prostate cancer cell growth, cell migration and invasion in vitro and in vivo. Mechanistically, we identify that RNF41 induces K27- and K63-linked noncanonical polyubiquitination of MYO1C to enhance its stability and induce actin remodeling, which promotes PCa bone metastasis. RNF41 was significantly upregulated in metastatic prostate cancer tissues and positively associated with MYO1C expression. Furthermore, we show in intraarterial injected-bone metastasis xenograft model that targeting MYO1C stability by inhibition of RNF41 markedly suppressed PCa bone metastasis. Collectively, our findings identify RNF41 is an important regulator of prostate cancer cell growth and metastasis and targeting RNF41/MYO1C could be a valuable strategy to ameliorate prostate cancer progression and metastasis.


Asunto(s)
Neoplasias Óseas , Miosina Tipo I , Neoplasias de la Próstata , Ubiquitina-Proteína Ligasas , Animales , Humanos , Masculino , Ratones , Actinas/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
J Biol Chem ; 300(8): 107539, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971309

RESUMEN

Force generation and motility by actomyosin in nonmuscle cells are spatially regulated by ∼40 tropomyosin (Tpm) isoforms. The means by which Tpms are targeted to specific cellular regions and the mechanisms that result in differential activity of myosin paralogs are unknown. We show that Tpm3.1 and Tpm1.7 inhibit Myosin-IC (Myo1C), with Tpm1.7 more effectively reducing the number of gliding filaments than Tpm3.1. Strikingly, cosedimentation and fluorescence microscopy assays revealed that Tpm3.1 is displaced from actin by Myo1C and not by myosin-II. In contrast, Tpm1.7 is only weakly displaced by Myo1C. Unlike other characterized myosins, Myo1C motility is inhibited by Tpm when the Tpm-actin filament is activated by myosin-II. These results point to a mechanism for the exclusion of myosin-I paralogs from cellular Tpm-decorated actin filaments that are activated by other myosins. Additionally, our results suggest a potential mechanism for myosin-induced Tpm sorting in cells.


Asunto(s)
Citoesqueleto de Actina , Miosina Tipo I , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Isoformas de Proteínas/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Animales , Actinas/metabolismo , Miosina Tipo II/metabolismo , Ratones
9.
Pediatr Nephrol ; 39(10): 2939-2945, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38904753

RESUMEN

BACKGROUND: Steroid-resistant nephrotic syndrome is the second leading cause of chronic kidney disease among patients < 25 years of age. Through exome sequencing, identification of > 65 monogenic causes has revealed insights into disease mechanisms of nephrotic syndrome (NS). METHODS: To elucidate novel monogenic causes of NS, we combined homozygosity mapping with exome sequencing in a worldwide cohort of 1649 pediatric patients with NS. RESULTS: We identified homozygous missense variants in MYO1C in two unrelated children with NS (c.292C > T, p.R98W; c.2273 A > T, p.K758M). We evaluated publicly available kidney single-cell RNA sequencing datasets and found MYO1C to be predominantly expressed in podocytes. We then performed structural modeling for the identified variants in PyMol using aligned shared regions from two available partial structures of MYO1C (4byf and 4r8g). In both structures, calmodulin, a common regulator of myosin activity, is shown to bind to the IQ motif. At both residue sites (K758; R98), there are ion-ion interactions stabilizing intradomain and ligand interactions: R98 binds to nearby D220 within the myosin motor domain and K758 binds to E14 on a calmodulin molecule. Variants of these charged residues to non-charged amino acids could ablate these ionic interactions, weakening protein structure and function establishing the impact of these variants. CONCLUSION: We here identified recessive variants in MYO1C as a potential novel cause of NS in children.


Asunto(s)
Secuenciación del Exoma , Mutación Missense , Miosina Tipo I , Síndrome Nefrótico , Humanos , Miosina Tipo I/genética , Miosina Tipo I/química , Síndrome Nefrótico/genética , Masculino , Femenino , Niño , Homocigoto , Proteinuria/genética , Genes Recesivos , Preescolar , Adolescente , Podocitos/metabolismo , Modelos Moleculares
10.
Brain Behav Immun ; 119: 750-766, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710336

RESUMEN

Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.


Asunto(s)
Dolor Crónico , Disbiosis , Ganglios Espinales , Microbioma Gastrointestinal , Ratones Noqueados , Miosina Tipo I , Animales , Femenino , Masculino , Ratones , Dolor Crónico/metabolismo , Dolor Crónico/microbiología , Disbiosis/metabolismo , Ganglios Espinales/metabolismo , Microbioma Gastrointestinal/fisiología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Miosina Tipo I/metabolismo
11.
Blood Adv ; 8(17): 4714-4726, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38669344

RESUMEN

ABSTRACT: Blood endothelial cells control the hemostatic and inflammatory response by secreting von Willebrand factor (VWF) and P-selectin from storage organelles called Weibel-Palade bodies (WPBs). Actin-associated motor proteins regulate this secretory pathway at multiple points. Before fusion, myosin Va forms a complex that anchors WPBs to peripheral actin structures, allowing for the maturation of content. After fusion, an actomyosin ring/coat is recruited and compresses the WPB to forcibly expel the largest VWF multimers. Here, we provide, to our knowledge, the first evidence for the involvement of class I myosins during regulated VWF secretion. We show that the unconventional myosin-1C (Myo1c) is recruited after fusion via its pleckstrin homology domain in an actin-independent process. This provides a link between the actin ring and phosphatidylinositol 4,5-bisphosphate (PIP2) at the membrane of the fused organelle and is necessary to ensure maximal VWF secretion. This is an active process requiring Myo1c ATPase activity because inhibition of class I myosins using the inhibitor pentachloropseudilin or expression of an ATPase-deficient Myo1c rigor mutant perturbs the expulsion of VWF and alters the kinetics of the exocytic actin ring. These data offer a novel insight into the control of an essential physiological process and provide a new way in which it can be regulated.


Asunto(s)
Actomiosina , Membrana Celular , Miosina Tipo I , Factor de von Willebrand , Humanos , Factor de von Willebrand/metabolismo , Membrana Celular/metabolismo , Actomiosina/metabolismo , Miosina Tipo I/metabolismo , Células Endoteliales/metabolismo , Cuerpos de Weibel-Palade/metabolismo
12.
Front Med ; 18(3): 558-564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684630

RESUMEN

The establishment of left-right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of MYO1D (NM_015194: c.1531G>A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known MYO1D variant (NM_015194: c.2293C>T; p.P765S) were assessed. The assessment showed that both enhance the interaction with ß-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that MYO1D variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and MYO1D variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.


Asunto(s)
Cardiopatías Congénitas , Espermatozoides , Humanos , Masculino , Cardiopatías Congénitas/genética , Espermatozoides/anomalías , Linaje , Femenino , Adulto , Miosina Tipo I/genética , Mutación
13.
Genes Cells ; 29(5): 380-396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454557

RESUMEN

Left-right (LR) asymmetry is crucial for animal development, particularly in Drosophila where LR-asymmetric morphogenesis of organs hinges on cellular-level chirality, termed cell chirality. In this species, two class I myosins, Myosin1D (Myo1D), and Myosin1C (Myo1C), respectively determine dextral (wild type) and sinistral (mirror image) cell chirality. Previous studies demonstrated Myo1D's ability to propel F-actin in leftward circles during in vitro gliding assays, suggesting its mechanochemical role in defining dextral chirality. Conversely, Myo1C propels F-actin without exhibiting LR-directional preference in this assay, suggesting at other properties governing sinistral chirality. Given the interaction of Myo1D and Myo1C with the membrane, we hypothesized that differences in their membrane behaviors might be critical in dictating their dextral or sinistral activities. In this study, employing single-molecule imaging analyses, we investigated the dynamic behaviors of Myo1D and Myo1C on the plasma membrane. Our findings revealed that Myo1C exhibits a significantly greater proportion of slow-diffusing population compared to Myo1D. Importantly, this characteristic was contingent upon both head and tail domains of Myo1C. The distinct diffusion patterns of Myo1D and Myo1C did not exert mutual influence on each other. This divergence in membrane diffusion between Myo1D and Myo1C may be crucial for dictating cell and organ chirality.


Asunto(s)
Membrana Celular , Proteínas de Drosophila , Macrófagos , Miosina Tipo I , Animales , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Macrófagos/metabolismo , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Imagen Individual de Molécula , Drosophila/metabolismo
14.
J Agric Food Chem ; 72(3): 1539-1549, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38226494

RESUMEN

The lethal mutation C423D in Fusarium graminearum myosin I (FgMyoI) occurs close to the binding pocket of the allosteric inhibitor phenamacril and causes severe inhibition on mycelial growth of F. graminearum strain PH-1. Here, based on extensive Gaussian accelerated molecular dynamics simulations and wet experiments, we elucidate the underlying molecular mechanism of the abnormal functioning of the FgMyoIC423D mutant at the atomistic level. Our results suggest that the damaging mutation C423D exhibits a synergistic allosteric inhibition mechanism similar to but more robust than that of phenamacril, including effects on the active site and actin binding. Unlike phenamacril-induced closure of Switch2, the mutation results in unfolding of the N-terminal relay helix with a partially opened Switch2 and blocks the structural rearrangement of the relay/SH1 helices, impairing the proper initiation of the recovery stroke. Due to the significant influence of C423D mutation on the function of FgMyoI, designing covalent inhibitors targeting this site holds tremendous potential.


Asunto(s)
Cianoacrilatos , Fungicidas Industriales , Fusarium , Miosina Tipo I/genética , Fungicidas Industriales/farmacología , Mutación , Simulación de Dinámica Molecular
15.
FEBS Open Bio ; 14(1): 138-147, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953466

RESUMEN

Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.


Asunto(s)
Vesículas Extracelulares , Glioma , Humanos , Células Endoteliales/metabolismo , Glioma/genética , Glioma/metabolismo , Transporte Biológico , Vesículas Extracelulares/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
16.
Sci Rep ; 13(1): 19908, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963943

RESUMEN

Myosin IC, a single-headed member of the myosin I family, specifically interacts with anionic phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) in the cell membrane via the pleckstrin homology domain located in the myosin IC tail. Myosin IC is widely expressed and physically links the cell membrane to the actin cytoskeleton; it plays various roles in membrane-associated physiological processes, including establishing cellular chirality, lipid transportation, and mechanosensing. In this study, we evaluated the motility of full-length myosin IC of Drosophila melanogaster via the three-dimensional tracking of quantum dots bound to actin filaments that glided over a membrane-bound myosin IC-coated surface. The results revealed that myosin IC drove a left-handed rotational motion in the gliding actin filament around its longitudinal axis, indicating that myosin IC generated a torque perpendicular to the gliding direction of the actin filament. The quantification of the rotational motion of actin filaments on fluid membranes containing different PI(4,5)P2 concentrations revealed that the rotational pitch was longer at lower PI(4,5)P2 concentrations. These results suggest that the torque generated by membrane-bound myosin IC molecules can be modulated based on the phospholipid composition of the cell membrane.


Asunto(s)
Citoesqueleto de Actina , Drosophila melanogaster , Animales , Rotación , Drosophila melanogaster/metabolismo , Citoesqueleto de Actina/metabolismo , Miosina Tipo I/metabolismo , Membrana Celular/metabolismo , Actinas/metabolismo
17.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37549220

RESUMEN

Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than that of slow anchoring myosin-1s found on endosomal membranes. We, therefore, propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells.


Asunto(s)
Actinas , Miosina Tipo I , Proteínas de Saccharomyces cerevisiae , Clatrina , Miosina Tipo I/genética , Miosinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Adv Exp Med Biol ; 1415: 499-505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440078

RESUMEN

Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, where proper protein localization and compartmentalization are critical for phototransduction and visual function. In human retinal diseases, improper protein transport to the outer segment (OS) or mislocalization of proteins to the inner segment (IS) could lead to impaired visual responses and photoreceptor cell degeneration, causing a loss of visual function. We showed involvement of an unconventional motor protein, MYO1C, in the proper localization of rhodopsin to the OS, where loss of MYO1C in a mammalian model caused mislocalization of rhodopsin to IS and cell bodies, leading to progressively severe retinal phenotypes. In this study, using modeling and docking analysis, we aimed to identify the protein-protein interaction sites between MYO1C and Rhodopsin to establish a hypothesis that a physical interaction between these proteins is necessary for the proper trafficking of rhodopsin and visual function.


Asunto(s)
Retina , Rodopsina , Animales , Humanos , Rodopsina/genética , Rodopsina/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Transporte de Proteínas/fisiología , Mamíferos/metabolismo , Miosina Tipo I/metabolismo
19.
EMBO J ; 42(17): e114415, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37427462

RESUMEN

Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition.


Asunto(s)
Actomiosina , Cuerpos Polares , Humanos , Animales , Ratones , Cuerpos Polares/metabolismo , Actomiosina/metabolismo , Blastocisto , Cromosomas , Meiosis , Oocitos/metabolismo , Huso Acromático/genética , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
20.
Sci Rep ; 13(1): 11831, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481637

RESUMEN

Head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer death globally, yet there are few useful biomarkers for early identification and prognostic prediction. Previous studies have confirmed that CCND1 amplification is closely associated with head and neck oncogenesis, and the present study explored the ceRNA network associated with CCND1. Gene expression profiling of the Head and Neck Squamous Cell Carcinoma (HNSC) project of The Cancer Genome Atlas (TCGA) program identified the TPRG1-AS1-hsa-miR-363-3P-MYO1B gene regulatory axis associated with CCND1. Further analysis of the database showed that MYOB was regulated by methylation in head and neck tumors, and functional enrichment analysis showed that MYO1B was involved in "actin filament organization" and "cadherin binding ". Immune infiltration analysis suggested that MYO1B may influence tumorigenesis and prognosis by regulating the immune microenvironment of HNSC. MYO1B enhanced tumor spread through the EMT approach, according to epithelial mesenchymal transition (EMT) characterisation. We analyzed both herbal and GSCALite databases and found that CCND1 and MYO1B have the potential as predictive biomarkers for the treatment of HNSC patients. RT-qPCR validated bioinformatic predictions of gene expression in vitro cell lines. In conclusion, we found a CCND1-related ceRNA network and identified the novel TPRG1-AS1-hsa-miR-363-3p-MYO1B pathway as a possible HNSC diagnostic biomarker and therapeutic target.


Asunto(s)
Vías Clínicas , Neoplasias de Cabeza y Cuello , Humanos , Carcinogénesis , Transformación Celular Neoplásica , Ciclina D1/genética , Neoplasias de Cabeza y Cuello/genética , Miosina Tipo I/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral , ARN Largo no Codificante/genética , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...