Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.071
Filtrar
1.
Sci Rep ; 14(1): 10241, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702365

RESUMEN

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Asunto(s)
Citoesqueleto de Actina , Movimiento Celular , Cofilina 1 , Monocitos , Monocitos/metabolismo , Humanos , Cofilina 1/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Células THP-1
2.
J Clin Invest ; 134(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690729

RESUMEN

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Asunto(s)
Bencilaminas , Músculo Esquelético , Uracilo/análogos & derivados , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miopatías Distales/genética , Miopatías Distales/tratamiento farmacológico , Miopatías Distales/metabolismo , Miopatías Distales/patología , Animales , Mutación , Miosinas/metabolismo , Miosinas/genética
3.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629612

RESUMEN

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Asunto(s)
Miosinas , Células Vegetales , Miosinas/metabolismo , Células Vegetales/metabolismo , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crecimiento & desarrollo , Desarrollo de la Planta/fisiología
4.
Life Sci Space Res (Amst) ; 41: 80-85, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670656

RESUMEN

The disuse of skeletal limb muscles occurs in a variety of conditions, yet our comprehension of the molecular mechanisms involved in adaptation to disuse remains incomplete. We studied the mechanical characteristics of actin-myosin interaction using an in vitro motility assay and isoform composition of myosin heavy and light chains by dint of SDS-PAGE in soleus muscle of both control and hindlimb-unloaded rats. 14 days of hindlimb unloading led to the increased maximum sliding velocity of actin, reconstituted, and native thin filaments over rat soleus muscle myosin by 24 %, 19 %, and 20 %, respectively. The calcium sensitivity of the "pCa-velocity" relationship decreased. There was a 26 % increase in fast myosin heavy chain IIa (MHC IIa), a 22 % increase in fast myosin light chain 2 (MLC 2f), and a 13 % increase in fast MLC 1f content. The content of MLC 1s/v, typical for slow skeletal muscles and cardiac ventricles did not change. At the same time, MLC 1s, typical only for slow skeletal muscles, disappeared. The maximum velocity of soleus muscle native thin filaments was 24 % higher compared to control ones sliding over the same rabbit myosin. Therefore, both myosin and native thin filament kinetics could influence the mechanical characteristics of the soleus muscle. Additionally, the MLC 1s and MLC 1s/v ratio may contribute to the mechanical characteristics of slow skeletal muscle, along with MHC, MLC 2, and MLC 1 slow/fast isoforms ratio.


Asunto(s)
Suspensión Trasera , Músculo Esquelético , Ratas Wistar , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Ratas , Masculino , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Conejos , Miosinas/metabolismo , Calcio/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas
5.
Sci Rep ; 14(1): 8326, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594301

RESUMEN

The MYO7A gene is known to be responsible for both syndromic hearing loss (Usher syndrome type1B:USH1B) and non-syndromic hearing loss including autosomal dominant and autosomal recessive inheritance (DFNA11, DFNB2). However, the prevalence and detailed clinical features of MYO7A-associated hearing loss across a large population remain unclear. In this study, we conducted next-generation sequencing analysis for a large cohort of 10,042 Japanese hearing loss patients. As a result, 137 patients were identified with MYO7A-associated hearing loss so that the prevalence among Japanese hearing loss patients was 1.36%. We identified 70 disease-causing candidate variants in this study, with 36 of them being novel variants. All variants identified in autosomal dominant cases were missense or in-frame deletion variants. Among the autosomal recessive cases, all patients had at least one missense variant. On the other hand, in patients with Usher syndrome, almost half of the patients carried biallelic null variants (nonsense, splicing, and frameshift variants). Most of the autosomal dominant cases showed late-onset progressive hearing loss. On the other hand, cases with autosomal recessive inheritance or Usher syndrome showed congenital or early-onset hearing loss. The visual symptoms in the Usher syndrome cases developed between age 5-15, and the condition was diagnosed at about 6-15 years of age.


Asunto(s)
Pérdida Auditiva Sensorineural , Síndromes de Usher , Humanos , Preescolar , Niño , Adolescente , Síndromes de Usher/epidemiología , Síndromes de Usher/genética , Prevalencia , Miosinas/genética , Miosina VIIa/genética , Mutación , Linaje
6.
Zhonghua Nei Ke Za Zhi ; 63(4): 401-405, 2024 Apr 01.
Artículo en Chino | MEDLINE | ID: mdl-38561286

RESUMEN

This study aimed to explore the value of magnetic resonance imaging (MRI) T2 mapping in the assessment of dermatomyositis (DM) and polymyositis (PM). Thirty-three confirmed cases (myosin group) and eight healthy volunteers (healthy control group) at the Department of Rheumatology and Immunology, the First Affiliated Hospital of Kunming Medical University, from October 2016 to December 2017, were collected and analyzed. Multiple parameters of the myosin group were quantified, including creatine kinase (CK), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), complement C3, and complement C4. Disease status was evaluated using a panel of tools: myositis disease activity assessment tool-muscle (MDAAT-muscle), myositis disease activity assessment tool-whole (MDAAT-all), health assessment questionnaire (HAQ), medical outcomes study health survey short form-36 item (SF-36), hand muscle strength test (MMT-8) score, and MRI T2 mapping of muscle (22 muscles in the pelvis and thighs) T2 values. The results showed that in the myositis group, the measurements for CK, ESR, CRP, complement C3, and complement C4 were 457.2 (165.6, 1 229.2) IU/L, 20 (10, 42) mm/1h, 3.25 (2.38, 10.07) mg/L, 0.90 (0.83, 1.06) g/L, and 0.18 (0.14, 0.23) g/L, respectively. The scores for MMT-8, MDAAT-muscle, MDAAT-all, HAQ, and SF-36 were 57.12±16.23, 5.34 (4.00, 6.00), 34.63±12.62, 1.55 (0.66, 2.59), and 44.66±7.98, respectively. T2 values were significantly higher in all 22 muscles of the pelvis and thighs of patients with DM or PM compared with the healthy controls [(54.99±11.60)ms vs. (36.62±1.66)ms, P<0.001], with the most severe lesions in the satrorius, iliopsoas, piriformis, gluteus minimus, and gluteus medius muscles. The total muscle T2 value in the myositis group was positively correlated with CK, MDAAT-muscle, MDAAT-all, and HAQ (r=0.461, 0.506, 0.347, and 0.510, respectively, all P<0.05). There was a negative correlation between complement C4, SF-36, and MMT-8 scores (r=-0.424, -0.549, and -0.686, respectively, all P<0.05). Collectively, the findings from this study suggest that MRI T2 mapping can objectively reflect the disease status of DM and PM.


Asunto(s)
Dermatomiositis , Miositis , Polimiositis , Humanos , Dermatomiositis/diagnóstico por imagen , Complemento C3 , Polimiositis/diagnóstico por imagen , Polimiositis/patología , Miositis/patología , Proteína C-Reactiva/metabolismo , Imagen por Resonancia Magnética/métodos , Creatina Quinasa , Complemento C4 , Miosinas
7.
Nat Commun ; 15(1): 3444, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658549

RESUMEN

Mechanical work serves as the foundation for dynamic cellular processes, ranging from cell division to migration. A fundamental driver of cellular mechanical work is the actin cytoskeleton, composed of filamentous actin (F-actin) and myosin motors, where force generation relies on adenosine triphosphate (ATP) hydrolysis. F-actin architectures, whether bundled by crosslinkers or branched via nucleators, have emerged as pivotal regulators of myosin II force generation. However, it remains unclear how distinct F-actin architectures impact the conversion of chemical energy to mechanical work. Here, we employ in vitro reconstitution of distinct F-actin architectures with purified components to investigate their influence on myosin ATP hydrolysis (consumption). We find that F-actin bundles composed of mixed polarity F-actin hinder network contraction compared to non-crosslinked network and dramatically decelerate ATP consumption rates. Conversely, linear-nucleated networks allow network contraction despite reducing ATP consumption rates. Surprisingly, branched-nucleated networks facilitate high ATP consumption without significant network contraction, suggesting that the branched network dissipates energy without performing work. This study establishes a link between F-actin architecture and myosin energy consumption, elucidating the energetic principles underlying F-actin structure formation and the performance of mechanical work.


Asunto(s)
Actinas , Adenosina Trifosfato , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Citoesqueleto de Actina/metabolismo , Hidrólisis , Miosinas/metabolismo , Fenómenos Biomecánicos , Conejos , Miosina Tipo II/metabolismo
8.
Commun Biol ; 7(1): 371, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575811

RESUMEN

Cardiac function requires appropriate proteins in each chamber. Atria requires slow myosin to act as reservoirs, while ventricles demand fast myosin for swift pumping. Myosins are thus under chamber-biased cis-regulation, with myosin gene expression imbalances leading to congenital heart dysfunction. To identify regulatory inputs leading to cardiac chamber-biased expression, we computationally and molecularly dissected the quail Slow Myosin Heavy Chain III (SMyHC III) promoter that drives preferential expression to the atria. We show that SMyHC III gene states are orchestrated by a complex Nuclear Receptor Element (cNRE) of 32 base pairs. Using transgenesis in zebrafish and mice, we demonstrate that preferential atrial expression is achieved by a combinatorial regulatory input composed of atrial activation motifs and ventricular repression motifs. Using comparative genomics, we show that the cNRE might have emerged from an endogenous viral element through infection of an ancestral host germline, revealing an evolutionary pathway to cardiac chamber-specific expression.


Asunto(s)
Atrios Cardíacos , Pez Cebra , Ratones , Animales , Pez Cebra/genética , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos , Miosinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
9.
Cell Mol Life Sci ; 81(1): 134, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478101

RESUMEN

The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Apolipoproteínas L , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Miosinas
10.
Sci Adv ; 10(11): eadk1890, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478604

RESUMEN

Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.


Asunto(s)
Contracción Muscular , Sarcómeros , Animales , Humanos , Ratones , Proteínas del Citoesqueleto/genética , Corazón , Ratones Noqueados , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Miosinas
11.
Elife ; 122024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446501

RESUMEN

Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin ß4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.


Asunto(s)
Factores Despolimerizantes de la Actina , Actinas , Humanos , Factores Despolimerizantes de la Actina/genética , Citoesqueleto de Actina , Miosinas , Mutación
12.
Commun Biol ; 7(1): 318, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480800

RESUMEN

Diamond particles have recently emerged as novel agents in cellular studies because of their superb biocompatibility. Their unique characteristics, including small size and the presence of fluorescent color centers, stimulate many important applications. However, the mechanism of interaction between cells and diamond particles-uptake, transport, and final localization within cells-is not yet fully understood. Herein, we show a novel, to the best of our knowledge, cell behavior wherein cells actively target and uptake diamond particles rather than latex beads from their surroundings, followed by their active transport within cells. Furthermore, we demonstrate that myosin-X is involved in cell-particle interaction, while myosin-II does not participate in particle uptake and transport. These results can have important implications for drug delivery and improve sensing methods that use diamond particles.


Asunto(s)
Colorantes , Diamante , Transporte Biológico , Transporte Biológico Activo , Miosinas
13.
Nat Commun ; 15(1): 2628, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521794

RESUMEN

Muscle contraction is produced via the interaction of myofilaments and is regulated so that muscle performance matches demand. Myosin-binding protein C (MyBP-C) is a long and flexible protein that is tightly bound to the thick filament at its C-terminal end (MyBP-CC8C10), but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7) to myosin heads and/or the thin filament. MyBP-C is thought to control muscle contraction via the regulation of myosin motors, as mutations lead to debilitating disease. We use a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. We show that cleavage leads to alterations in crossbridge kinetics and passive structural signatures of myofilaments that are indicative of a shift of myosin heads towards the ON state, highlighting the importance of MyBP-CC1C7 to myofilament force production and regulation.


Asunto(s)
Proteínas Portadoras , Sarcómeros , Sarcómeros/metabolismo , Proteínas Portadoras/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Miosinas/metabolismo
14.
Commun Biol ; 7(1): 361, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521889

RESUMEN

Myosin II is the muscle molecular motor that works in two bipolar arrays in each thick filament of the striated (skeletal and cardiac) muscle, converting the chemical energy into steady force and shortening by cyclic ATP-driven interactions with the nearby actin filaments. Different isoforms of the myosin motor in the skeletal muscles account for the different functional requirements of the slow muscles (primarily responsible for the posture) and fast muscles (responsible for voluntary movements). To clarify the molecular basis of the differences, here the isoform-dependent mechanokinetic parameters underpinning the force of slow and fast muscles are defined with a unidimensional synthetic nanomachine powered by pure myosin isoforms from either slow or fast rabbit skeletal muscle. Data fitting with a stochastic model provides a self-consistent estimate of all the mechanokinetic properties of the motor ensemble including the motor force, the fraction of actin-attached motors and the rate of transition through the attachment-detachment cycle. The achievements in this paper set the stage for any future study on the emergent mechanokinetic properties of an ensemble of myosin molecules either engineered or purified from mutant animal models or human biopsies.


Asunto(s)
Contracción Muscular , Sarcómeros , Animales , Humanos , Conejos , Contracción Muscular/fisiología , Miosinas , Músculo Esquelético/fisiología , Isoformas de Proteínas/química
15.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542339

RESUMEN

Myosin, a superfamily of motor proteins, obtain the energy they require for movement from ATP hydrolysis to perform various functions by binding to actin filaments. Extensive studies have clarified the diverse functions performed by the different isoforms of myosin. However, the unavailability of resolved structures has made it difficult to understand the way in which their mechanochemical cycle and structural diversity give rise to distinct functional properties. With this study, we seek to further our understanding of the structural organization of the myosin 7A motor domain by modeling the tertiary structure of myosin 7A based on its primary sequence. Multiple sequence alignment and a comparison of the models of different myosin isoforms and myosin 7A not only enabled us to identify highly conserved nucleotide binding sites but also to predict actin binding sites. In addition, the actomyosin-7A complex was predicted from the protein-protein interaction model, from which the core interface sites of actin and the myosin 7A motor domain were defined. Finally, sequence alignment and the comparison of models were used to suggest the possibility of a pliant region existing between the converter domain and lever arm of myosin 7A. The results of this study provide insights into the structure of myosin 7A that could serve as a framework for higher resolution studies in future.


Asunto(s)
Actinas , Miosinas , Actinas/metabolismo , Alineación de Secuencia , Estructura Terciaria de Proteína , Miosinas/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Adenosina Trifosfato/metabolismo
16.
Ultrason Sonochem ; 104: 106841, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442572

RESUMEN

In this study, the effects of high-intensity ultrasound (HIU) treatment combined with hydrogen peroxide (H2O2) addition on the thermal stability of myofibrillar protein (MP)-stabilized emulsions in low-salt conditions were investigated. Results showed that compared to using either HIU or H2O2 treatment alone, HIU treatment combined with H2O2 was most effective in enhancing the physical stability of emulsions. Moreover, the emulsion stabilized by MPs co-treated with HIU and H2O2 exhibited the most uniform distribution, highest absolute zeta potential, and optimal rheological properties upon heating. This combination effect during heating was caused by the inhibition of disulfide bond cross-linking of myosin heads by H2O2 and the dissociation of filamentous myosin structures using the HIU treatment. In addition, the results of oxidative stability analysis indicated that the addition of H2O2 increased the content of oxidation products; however, the overall influence on the oxidative stability of emulsions was not significant. In conclusion, the combination of HIU and H2O2 treatment is a promising approach to suppress heat-induced MP aggregation and improve the thermal stability of corresponding emulsions.


Asunto(s)
Calor , Peróxido de Hidrógeno , Emulsiones/química , Concentración Osmolar , Miosinas
17.
J Int Med Res ; 52(3): 3000605241233521, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436252

RESUMEN

OBJECTIVE: Extraocular muscles have complex development processes. The present study aimed to analyze the presence of myosin, dystrophin, and collagen IV in the strabismus-affected extraocular muscle. METHODS: This research was an observational case-control study. Myosin, dystrophin, and collagen IV were detected by histological and immunohistochemical analyses of extraocular muscle samples from concomitant strabismus patients and controls. A semi-quantitative grading method and statistical analysis were used. RESULTS: In the strabismus-affected extraocular muscle, morphological analysis demonstrated different-sized muscle fibers. Immature muscle fibers and an increased amount of connective tissue were also noted. Strong positive correlations were identified between myosin and collagen IV and between dystrophin and collagen IV. CONCLUSIONS: The presence of newly formed muscle fibers, increased connective tissue, and variable diameters of skeletal striated muscle fibers indicate the decreased quality of extraocular muscles in strabismus cases. Reduced levels of myosin and dystrophin and a near absence of collagen IV in strabismus-affected skeletal striated muscle fibers characterized the muscular dystrophy of strabismus. Adjuvant therapy aimed at normalizing the metabolism of these muscles may be appropriate alongside concomitant strabismus treatment.


Asunto(s)
Músculos Oculomotores , Estrabismo , Humanos , Estudios de Casos y Controles , Colágeno/metabolismo , Distrofina/metabolismo , Miosinas/metabolismo
18.
JCI Insight ; 9(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483507

RESUMEN

The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.


Asunto(s)
Bencilaminas , Miocardio , Sarcómeros , Solubilidad , Uracilo/análogos & derivados , Animales , Sarcómeros/metabolismo , Miocardio/metabolismo , Ratones , Miosinas/metabolismo , Pliegue de Proteína , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Cardiomiopatía Hipertrófica/metabolismo , Contracción Miocárdica , Humanos , Masculino
19.
Nat Commun ; 15(1): 2307, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485920

RESUMEN

Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.


Asunto(s)
Nanotubos , Proteínas , División Celular , Proteínas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , ADN/metabolismo
20.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429998

RESUMEN

We have made tremendous progress in identifying the machines that shape the architecture of actin filaments. However, we know less about the mechanisms mediating myosin assembly at the supramolecular level. In this issue, Quintanilla et al. (https://doi.org/10.1083/jcb.202305023) provide important new insights into this process.


Asunto(s)
Actinas , Miosinas , Citoesqueleto de Actina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA