Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.342
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1418177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006362

RESUMEN

Background: Exercise-induced cytokines involved in controlling body composition include myostatin (MST) and follistatin (FST), both of which are influenced by physical activity. This study investigated changes in body composition and physical activity during a weight loss program, as well as the impact on serum MST and FST levels at various weight loss rates. Methods: A total of 126 patients with obesity who completed a 6-month weight loss program were divided into three groups based on weight loss rate (%): low (< 3%), middle (3-10%), and high (≥10%). The International Physical Activity Questionnaire was used for assessing physical activity, whereas dual X-ray absorptiometry was used to determine body composition. Serum MST and FST levels were measured using the enzyme-linked immunosorbent assay. Results: The middle and high groups showed a significant decrease in percent body fat and a significant increase in percent lean body mass and physical activity. Serum MST levels increased significantly in all three groups, although FST levels reduced significantly only in the middle group. After adjusting for sex and body composition, changes in peak oxygen intake (ß = -0.359) and serum FST levels (ß = -0.461) were identified as independent factors for the change in MST levels in the low group. Sex (ß = -0.420) and changes in MST levels (ß = -0.525) were identified as independent factors for the change in serum FST levels in the low group, whereas in the high group, sitting time (ß = -0.600) during the weight loss program was identified as an independent factor for change in serum FST levels. Conclusion: Serum MST levels in patients with obesity increased significantly following the weight loss program, independent of weight loss rate. In contrast, serum FST levels reduced significantly only in the 3-10% weight loss group. These findings indicate that MST and FST secretion dynamics may fluctuate in response to physical activity, while also reflecting feedback regulation of body composition and metabolism during weight reduction.


Asunto(s)
Composición Corporal , Ejercicio Físico , Folistatina , Miostatina , Obesidad , Pérdida de Peso , Humanos , Masculino , Miostatina/sangre , Miostatina/metabolismo , Femenino , Folistatina/sangre , Pérdida de Peso/fisiología , Obesidad/sangre , Obesidad/metabolismo , Persona de Mediana Edad , Adulto , Ejercicio Físico/fisiología , Programas de Reducción de Peso , Absorciometría de Fotón
2.
PLoS One ; 19(7): e0299975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959242

RESUMEN

Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.


Asunto(s)
Diferenciación Celular , Decorina , Factores de Crecimiento de Fibroblastos , Osteonectina , Animales , Bovinos , Osteonectina/metabolismo , Osteonectina/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Decorina/metabolismo , Células Cultivadas , Masculino , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Envejecimiento/metabolismo , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citología
3.
BMC Genomics ; 25(1): 637, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926663

RESUMEN

Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.


Asunto(s)
Factor 5 de Crecimiento de Fibroblastos , Edición Génica , Desarrollo de Músculos , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Desarrollo de Músculos/genética , Ovinos , Factor 5 de Crecimiento de Fibroblastos/genética , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Diferenciación Celular , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología
4.
Clin Nutr ; 43(7): 1800-1808, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861892

RESUMEN

BACKGROUND & AIMS: Our study aims to determine whether myostatin (MSTN) is associated with muscle mass and strength in individuals with cancer or obesity, as well as with cancer cachexia (CC) or sarcopenic obesity (SO). METHODS: The ACTICA study included individuals with CC (n = 70) or without CC (NC, n = 73). The MYDIASECRET study included individuals with obesity evaluated before (T0) and 3 months (T3) after bariatric surgery (n = 62). Body composition was assessed using bioelectrical impedance analysis (BIA). Skeletal muscle mass (SMM) and appendicular SMM (ASMM) were calculated from Janssen's and Sergi's equations, respectively, and expressed as indexes (SMMI and ASMMI). Handgrip strength (HGS) was assessed using a Jamar hand-held dynamometer. MSTN plasma levels were measured using ELISA. Spearman's coefficient was used to correlate MSTN with muscle mass and strength. Receiver operating characteristic (ROC) curve analysis was performed to identify an optimal MSTN cutoff level for the prediction of CC or SO. RESULTS: In the ACTICA study, muscle mass and strength were lower in CC individuals than in NC individuals (SMMI: 8.0 kg/m2vs 9.0 kg/m2, p = 0.004; ASMMI: 6.2 kg/m2vs 7.2 kg/m2, p < 0.001; HGS: 28 kg vs 38 kg, p < 0.001). MSTN was also lower in CC individuals than in NC individuals (1434 pg/mL vs 2149 pg/mL, p < 0.001). Muscle mass and strength were positively correlated with MSTN (SMMI: R = 0.500, p < 0.001; ASMMI: R = 0.479, p < 0.001; HGS: R = 0.495, p < 0.001). ROC curve analysis showed a MSTN cutoff level of 1548 pg/mL (AUC 0.684, sensitivity 57%, specificity 75%, p < 0.001) for the prediction of CC. In the MYDIASECRET study, muscle mass and strength were reduced at T3 (SMMI: -8%, p < 0.001; ASMMI: -12%, p < 0.001; HGS: -6%, p = 0.005). MSTN was also reduced at T3 (1773 pg/mL vs 2582 pg/mL, p < 0.001). Muscle mass and strength were positively correlated with MSTN at T0 and T3 (SMMI-T0: R = 0.388, p = 0.002; SMMI-T3: R = 0.435, p < 0.001; HGS-T0: R = 0.337, p = 0.007; HGS-T3: R = 0.313, p = 0.013). ROC curve analysis showed a MSTN cutoff level of 4225 pg/mL (AUC 0.835, sensitivity 98%, specificity 100%, p = 0.014) for the prediction of SO at T3. CONCLUSIONS: MSTN is positively correlated with muscle mass and strength in individuals with cancer or obesity, suggesting its potential use as a biomarker of muscle mass and strength. The ROC curve analysis suggests the potential use of MSTN as a screening tool for CC and SO.


Asunto(s)
Biomarcadores , Caquexia , Fuerza de la Mano , Músculo Esquelético , Miostatina , Neoplasias , Obesidad , Sarcopenia , Humanos , Miostatina/sangre , Masculino , Femenino , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/fisiopatología , Músculo Esquelético/fisiopatología , Persona de Mediana Edad , Obesidad/sangre , Obesidad/fisiopatología , Obesidad/complicaciones , Caquexia/sangre , Caquexia/etiología , Caquexia/fisiopatología , Biomarcadores/sangre , Sarcopenia/sangre , Sarcopenia/etiología , Sarcopenia/fisiopatología , Fuerza de la Mano/fisiología , Composición Corporal , Anciano , Fuerza Muscular/fisiología , Adulto , Impedancia Eléctrica
5.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892621

RESUMEN

BACKGROUND: Recently, many studies have been devoted to discovering nutrients for exercise-like effects. Resistance exercise and the intake of essential amino acids (EAAs) are known to be factors that can affect muscle mass and strength improvement. The purpose of this study was to investigate changes in muscle quality, myokines, and inflammation in response to resistance exercise and EAA supplementation. METHODS: Thirty-four males volunteered to participate in this study. They were assigned to four groups: (1) placebo (CO), (2) resistance exercise (RE), (3) EAA supplementation, and (4) RE + EAA supplementation. Body composition, muscle quality, myokines, and inflammation were measured at baseline and four weeks after treatment. RESULTS: Lean body fat had decreased in both RE and RE + EAA groups. Lean body mass had increased in only the RE + EAA group. In all groups except for CO, irisin, myostatin A, and TNF-α levels had decreased. The grip strength of the right hand and trunk flexion peak torque increased in the RE group. The grip strength of the left hand, trunk flexion peak torque, and knee flexion peak torque of the left leg were increased in RE + EAA. CONCLUSIONS: RE, EAA, and RE + EAA could effectively improve the muscle quality, myokine, and inflammation factors of young adult males. This finding highlights the importance of resistance exercise and amino acid intake.


Asunto(s)
Aminoácidos Esenciales , Composición Corporal , Suplementos Dietéticos , Inflamación , Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Masculino , Adulto Joven , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Aminoácidos Esenciales/administración & dosificación , Factor de Necrosis Tumoral alfa/sangre , Adulto , Fuerza Muscular/efectos de los fármacos , Fuerza de la Mano/fisiología , Miostatina/metabolismo , Fibronectinas , Mioquinas
6.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891908

RESUMEN

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Asunto(s)
Citocinas , Quinasas Quinasa Quinasa PAM , Atrofia Muscular , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Ratones , Citocinas/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/tratamiento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Fosforilación/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Zearalenona/farmacología , Zearalenona/análogos & derivados
7.
Gen Comp Endocrinol ; 355: 114550, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768928

RESUMEN

Skeletal muscles serve both in movement and as endocrine organs. Myokines secreted by skeletal muscles activate biological functions within muscles and throughout the body via autocrine, paracrine, and/or endocrine pathways. Skeletal muscle atrophy can influence myokine expression and secretion, while myokines can impact the structure and function of skeletal muscles. Regulating the expression and secretion of myokines through the pharmacological approach is a strategy for alleviating skeletal muscle atrophy. Natural products possess complex structures and chemical properties. Previous studies have demonstrated that various natural products exert beneficial effects on skeletal muscle atrophy. This article reviewed the regulatory effects of natural products on myokines and summarized the research progress on skeletal muscle atrophy associated with myokine regulation. The focus is on how small-molecule natural products affect the regulation of interleukin 6 (IL-6), irisin, myostatin, IGF-1, and FGF-21 expression. We contend that the development of small-molecule natural products targeting the regulation of myokines holds promise in combating skeletal muscle atrophy.


Asunto(s)
Productos Biológicos , Músculo Esquelético , Atrofia Muscular , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Miostatina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-6/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Mioquinas
8.
J Physiol ; 602(12): 2839-2854, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748517

RESUMEN

Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético , Miostatina , Sepsis , Animales , Miostatina/genética , Miostatina/metabolismo , Sepsis/genética , Sepsis/metabolismo , Músculo Esquelético/metabolismo , Masculino , Ratones , Autofagia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fuerza Muscular , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética
9.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791317

RESUMEN

The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.


Asunto(s)
Senescencia Celular , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Bovinos , Senescencia Celular/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Cultivadas
10.
Mar Biotechnol (NY) ; 26(3): 599-608, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683458

RESUMEN

Myostatin (MSTN, also known as growth differentiation factor-8 (GDF-8)), a member of the transforming growth factor ß (TGF-ß) superfamily, functions as a negative regulator of skeletal muscle development and growth. However, it is also expressed in a wide range of tissues in fish and thus may have more diverse roles in this group than in mammals. In this study, we assessed the genome-wide transcriptional expression pattern associated with the CRISPR/Cas9-mutated MSTN gene in the olive flounder (Paralichthys olivaceus) in association with changes in cell proliferation and transportation processes. There were no differences in the hepatosomatic index, and the growth of male and female fish increased in the F1 progeny of the MSTN mutants. Furthermore, the histopathological analysis showed that myostatin editing resulted in a 41.24% increase in back muscle growth and 46.92% increase in belly muscle growth in male flounder compared with normal flounder, and a 16.01% increase in back muscle growth and 14.26% increase in belly muscle growth in female flounder compared with normal flounder. This study demonstrates that editing of the myostatin gene enhances muscle growth in olive flounder, with a notably more pronounced effect observed in males. Consequently, myostatin-edited male flounder could represent a valuable asset for the flounder aquaculture industry.


Asunto(s)
Lenguado , Músculo Esquelético , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Masculino , Femenino , Lenguado/genética , Lenguado/crecimiento & desarrollo , Lenguado/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Desarrollo de Músculos/genética , Edición Génica , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Sistemas CRISPR-Cas , Mutación
11.
Gen Comp Endocrinol ; 353: 114513, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604437

RESUMEN

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Asunto(s)
Caquexia , Atrofia Muscular , Miostatina , Neoplasias , Sarcopenia , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Caquexia/metabolismo , Caquexia/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Sarcopenia/metabolismo , Sarcopenia/patología , Transducción de Señal/fisiología , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Factor de Crecimiento Transformador beta/metabolismo , Miostatina/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
12.
Sci China Life Sci ; 67(7): 1441-1454, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561484

RESUMEN

The basic mechanism of heterosis has not been systematically and completely characterized. In previous studies, we obtained three economically important fishes that exhibit rapid growth, WR (WCC ♀ × RCC ♂), WR-II (WR ♀ × WCC ♂), and WR-III (WR-II ♀ × 4nAU ♂), through distant hybridization. However, the mechanism underlying this rapid growth remains unclear. In this study, we found that WR, WR-II, and WR-III showed muscle hypertrophy and higher muscle protein and fat contents compared with their parent species (RCC and WCC). Candidate genes responsible for this rapid growth were then obtained through an analysis of 12 muscle transcriptomes. Notably, the mRNA level of mstnb (myostatin b), which is a negative regulator of myogenesis, was significantly reduced in WR, WR-II, and WR-III compared with the parent species. To verify the function of mstnb, a mstnb-deficient mutant RCC line was generated using the CRISPR-Cas9 technique. The average body weight of mstnb-deficient RCC at 12 months of age was significantly increased by 29.57% compared with that in wild-type siblings. Moreover, the area and number of muscle fibers were significantly increased in mstnb-deficient RCC, indicating hypertrophy and hyperplasia. Furthermore, the muscle protein and fat contents were significantly increased in mstnb-deficient RCC. The molecular regulatory mechanism of mstnb was then revealed by transcription profiling, which showed that genes related to myogenesis (myod, myog, and myf5), protein synthesis (PI3K-AKT-mTOR), and lipogenesis (pparγ and fabp3) were highly activated in hybrid fishes and mstnb-deficient RCC. This study revealed that low expression or deficiency of mstnb regulates somatic growth by promoting myogenesis, protein synthesis, and lipogenesis in hybrid fishes and mstnb-deficient RCC, which provides evidence for the molecular mechanism of heterosis via distant hybridization.


Asunto(s)
Hibridación Genética , Desarrollo de Músculos , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Desarrollo de Músculos/genética , Vigor Híbrido/genética , Masculino , Peces/genética , Peces/crecimiento & desarrollo , Peces/metabolismo , Femenino , Transcriptoma , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
13.
Arch Pharm Res ; 47(4): 301-324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592582

RESUMEN

Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.


Asunto(s)
Sarcopenia , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/terapia , Humanos , Animales , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miostatina/antagonistas & inhibidores , Miostatina/metabolismo , Desarrollo de Medicamentos/métodos
14.
J Frailty Aging ; 13(2): 82-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616363

RESUMEN

BACKGROUND: Population aging might increase the prevalence of undernutrition in older people, which increases the risk of frailty. Numerous studies have indicated that myokines are released by skeletal myocytes in response to muscular contractions and might be associated with frailty. This study aimed to evaluate whether myokines are biomarkers of frailty in older inpatients with undernutrition. METHODS: The frailty biomarkers were extracted from the Gene Expression Omnibus and Genecards datasets. Relevant myokines and health-related variables were assessed in 55 inpatients aged ≥ 65 years from the Peking Union Medical College Hospital prospective longitudinal frailty study. Serum was prepared for enzyme-linked immunosorbent assay using the appropriate kits. Correlations between biomarkers and frailty status were calculated by Spearman's correlation analysis. Multiple linear regression was performed to investigate the association between factors and frailty scores. RESULTS: The prevalence of frailty was 13.21%. The bioinformatics analysis indicated that leptin, adenosine 5'-monophosphate-activated protein kinase (AMPK), irisin, decorin, and myostatin were potential biomarkers of frailty. The frailty group had significantly higher concentrations of leptin, AMPK, and MSTN than the robust group (p < 0.05). AMPK was significantly positively correlated with frailty (p < 0.05). The pre-frailty and frailty groups had significantly lower concentrations of irisin than the robust group (p < 0.05), whereas the DCN concentration did not differ among the groups. Multiple linear regression suggested that the 15 factors influencing the coefficients of association, the top 50% were the ADL score, MNA-SF score, serum albumin concentration, urination function, hearing function, leptin concentration, GDS-15 score, and MSTN concentration. CONCLUSIONS: Proinflammatory myokines, particularly leptin, myostatin, and AMPK, negatively affect muscle mass and strength in older adults. ADL and nutritional status play major roles in the development of frailty. Our results confirm that identification of frailty relies upon clinical variables, myokine concentrations, and functional parameters, which might enable the identification and monitoring of frailty.


Asunto(s)
Fragilidad , Desnutrición , Humanos , Anciano , Proteínas Quinasas Activadas por AMP , Fibronectinas , Fragilidad/diagnóstico , Fragilidad/epidemiología , Pacientes Internos , Leptina , Mioquinas , Miostatina , Estudios Prospectivos , Desnutrición/diagnóstico , Desnutrición/epidemiología , Biomarcadores
15.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673892

RESUMEN

Skeletal muscle plays a critical role in metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Muscle atrophy, characterized by a decrease in muscle mass and function, occurs due to an imbalance between the rates of muscle protein synthesis and degradation. This study aimed to investigate the molecular mechanisms that lead to muscle atrophy in obese and T2DM mouse models. Additionally, the effect of nerve growth factor (NGF) on the protein synthesis and degradation pathways was examined. Male mice were divided into three groups: a control group that was fed a standard chow diet, and two experimental groups that were fed a Western diet. After 8 weeks, the diabetic group was injected with streptozotocin to induce T2DM. Each group was then further divided into NGF-treated or non-treated control group. In the gastrocnemius muscles of the Western diet group, increased expressions of myostatin, autophagy markers, and ubiquitin ligases were observed. Skeletal muscle tissue morphology indicated signs of muscle atrophy in both obese and diabetic mice. The NGF-treated group showed a prominent decrease in the protein levels of myostatin and autophagy markers. Furthermore, the NGF-treated group showed an increased Cyclin D1 level. Western diet-induced obesity and T2DM may be linked to muscle atrophy through upregulation of myostatin and subsequent increase in the ubiquitin and autophagy systems. Moreover, NGF treatment may improve muscle protein synthesis and cell cycling.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Músculo Esquelético , Atrofia Muscular , Factor de Crecimiento Nervioso , Obesidad , Animales , Masculino , Ratones , Autofagia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Dieta Occidental , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/patología , Miostatina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Obesidad/metabolismo , Obesidad/complicaciones , Obesidad/patología
16.
Nutrients ; 16(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542721

RESUMEN

The prevalence of sarcopenia in inflammatory bowel disease patients has received increasing attention. The aim of this study is to assess the usefulness of determining levels of myostatin (MSTN) and activin A (Act A) as potential markers of disease activity and occurrence of sarcopenia in Crohn's disease and ulcerative colitis patients. The case-control study included 82 patients with Inflammatory Bowel Disease. The control group consisted of 25 healthy volunteers. The serum levels of myostatin and activin A were determined by the quantitative sandwich enzyme-linked immunosorbent assay. Sarcopenia was diagnosed based on the EWGSOP2 criteria. The study found lower levels of myostatin and activin A in the IBD patients. There were significantly lower levels of myostatin (80.6 pg/mL vs. 186.2 pg/mL; p = 0.0364) as well as activin A (32.1 pg/mL vs. 35.2 pg/mL; p = 0.0132) in the IBD patients with sarcopenia compared to those without sarcopenia. Positive correlations were found between MSTN levels and Muscle Mass Index (rho = 0.31; p < 0.005) and hand grip strength (rho = 0.34, p < 0.05) in the IBD patients. The determination of serum levels of MSTN and Act A may be useful in the early diagnosis of sarcopenia in IBD patients.


Asunto(s)
Activinas , Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/etiología , Miostatina , Estudios de Casos y Controles , Fuerza de la Mano , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/epidemiología , Colitis Ulcerosa/complicaciones , Biomarcadores
17.
Clin Chim Acta ; 557: 117883, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38521162

RESUMEN

INTRODUCTION: Growth differentiation factor 8 (GDF-8, myostatin) has been proposed for the management of adult heart failure (HF). Its potential role in pediatric HF patients is unknown. We sought to investigate its diagnostic performance in adult versus pediatric HF. METHODS: GDF-8 was measured prospectively in pediatric and adult HF patients and in matching controls. HF was defined as the combination of typical symptoms and impaired left ventricular systolic function. Diagnostic performance for the detection of HF was evaluated by receiver operating characteristic (ROC) analysis. RESULTS: We enrolled 137 patients with HF (85 pediatric) and 67 healthy controls (47 pediatric). Neither pediatric nor adult HF patients had significantly different GDF-8 levels compared to the reference groups (3.53 vs 3.46 ng/mL, p = 0.334, and 6.87 vs 8.15 ng/mL, p = 0.063, respectively), but pediatric HF patients had significantly lower GDF-8 levels compared to adult patients (p < 0.001). ROC analysis showed no significant improvement adding GDF-8 to NT-proBNP, age and sex (area under the curve (AUC): 0.870 vs 0.868, p = 0.614) in children and neither in addition to age nor sex in adult HF patients (AUC: 0.74 vs 0.62, p = 0.110). CONCLUSION: GDF-8 did not accurately differentiate between HF patients and normal comparators in neither adults nor in children.


Asunto(s)
Insuficiencia Cardíaca , Miostatina , Adulto , Niño , Humanos , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Función Ventricular Izquierda
18.
Nutrition ; 120: 112348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309190

RESUMEN

OBJECTIVES: Sarcopenia is characterized by the loss of muscle mass. Skeletal muscle can produce and secrete different molecules called myokines. Irisin and myostatin are antagonistic myokines, and to our knowledge, no studies of both myokines have been conducted in patients with disease-related malnutrition (DRM). This study aimed to investigate the role of circulating irisin and myostatin in sarcopenia in patients with DRM. METHODS: The study included 108 outpatients with DRM according to the Global Leadership Initiative on Malnutrition criteria. Participants had a mean age of 67.4 ± 3.4 y. Anthropometric data, muscle mass by ultrasound at the rectus femoris quadriceps (RFQ) level, impedancemetry (skeletal muscle mass [SMM], appendicular SMM [aSMM], and aSMM index [aSMMI]), dynamometry, biochemical parameters, dietary intake, circulating irisin and myostatin levels were determined in all patients. Confirmed sarcopenia was diagnosed as criteria of probable sarcopenia (low muscle strength) plus abnormal aSMMI. RESULTS: Of the 108 patients, 44 presented sarcopenia (41%); 64 did not present with the disorder (59%). The following parameters were worse in patients with sarcopenia: Patients without sarcopenia were stronger than those with the disorder (7.9 ±1.3 kg; P = 0.01). Circulating irisin levels were higher in patients without sarcopenia than those with sarcopenia (651.3 ± 221.3 pg/mL; P =0.01). Myostatin levels were similar in both groups. Finally, logistic regression analysis reported a low risk for sarcopenia (odds ratio, 0.39; 95% confidence interval, 0.19-0.92; P = 0.03) in high irisin median levels as a dichotomic parameter after adjusting for body mass index, sex, energy intake, and age. CONCLUSION: The present study reported that low levels of serum irisin were closely associated with sarcopenia in patients with DRM.


Asunto(s)
Desnutrición , Sarcopenia , Anciano , Humanos , Persona de Mediana Edad , Fibronectinas , Desnutrición/complicaciones , Desnutrición/diagnóstico , Músculo Esquelético/patología , Miostatina , Sarcopenia/complicaciones , Sarcopenia/diagnóstico
19.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G264-G273, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38258487

RESUMEN

Exercise as a lifestyle modification is a frontline therapy for nonalcoholic fatty liver disease (NAFLD), but how components of exercise attenuate steatosis is unclear. To uncouple the effect of increased muscle mass from weight loss in obesity, myostatin knockout mice were bred on a lean and obese db/db background. Myostatin deletion increases gastrocnemius (Gastrocn.) mass and reduces hepatic steatosis and hepatic sterol regulatory element binding protein 1 (Srebp1) expression in obese mice, with no impact on adiposity or body weight. Interestingly, hypermuscularity reduces hepatic NADPH oxidase 1 (Nox1) expression but not NADPH oxidase 4 (Nox4) in db/db mice. To evaluate a deterministic function of Nox1 on steatosis, Nox1 knockout mice were bred on a lean and db/db background. NOX1 deletion significantly attenuates hepatic oxidant stress, steatosis, and Srebp1 programming in obese mice to parallel hypermuscularity, with no improvement in adiposity, glucose control, or hypertriglyceridemia to suggest off-target effects. Directly assessing the role of NOX1 on SREBP1, insulin (Ins)-mediated SREBP1 expression was significantly increased in either NOX1, NADPH oxidase organizer 1 (NOXO1), and NADPH oxidase activator 1 (NOXA1) or NOX5-transfected HepG2 cells versus ?-galactosidase control virus, indicating superoxide is the key mechanistic agent for the actions of NOX1 on SREBP1. Metabolic Nox1 regulators were evaluated using physiological, genetic, and diet-induced animal models that modulated upstream glucose and insulin signaling, identifying hyperinsulinemia as the key metabolic derangement explaining Nox1-induced steatosis in obesity. GEO data revealed that hepatic NOX1 predicts steatosis in obese humans with biopsy-proven NAFLD. Taken together, these data suggest that hypermuscularity attenuates Srebp1 expression in db/db mice through a NOX1-dependent mechanism.NEW & NOTEWORTHY This study documents a novel mechanism by which changes in body composition, notably increased muscle mass, protect against fatty liver disease. This mechanism involves NADPH oxidase 1 (NOX1), an enzyme that increases superoxide and increases insulin signaling, leading to increased fat accumulation in the liver. NOX1 may represent a new early target for preventing fatty liver to stave off later liver diseases such as cirrhosis or liver cancer.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Insulina/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ratones Obesos , Músculo Esquelético/metabolismo , Miostatina , NADPH Oxidasa 1/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/metabolismo , Superóxidos/metabolismo
20.
J Genet ; 1032024.
Artículo en Inglés | MEDLINE | ID: mdl-38185835

RESUMEN

Myostatin is a known negative regulator of muscle tissue growth. Thus, an inhibitor of myostatin may be therapeutically useful as an anabolic agent for the muscle tissue. A promising gene-silencing approach for gene therapy is DNA interference (DNAi), a sequence that is complementary to the promoter region of a target gene. To confer resistance to nuclease digestion, several modifications such as methylphosphonate or phosphorothioate have been proposed, wherein a nonbridging oxygen atom in the oligonucleotide phosphate backbone is replaced by sulphur. The aim of the present study was to assess the effectiveness of the DNAi molecule with phosphorothioate (PS) and without phosphorothioate (WPS) modification for inhibition of myostatin gene expression in mice. Eighteen four-week-old male BALB/c mice were randomly divided into three groups: DNAi-PS (n = 6), DNAi-WPS (n = 6) and control (n = 6). Intraperitoneal injections of DNAi (10 mg/kg) were given once a week, and mice body weights were measured weekly and sacrificed after three weeks. The expression of myostatin was assessed using real-time quantitative polymerace chain reaction. For histological evaluation, the skeletal muscle tissue was dissected from the biceps. The results were analysed by a t-test. Results demonstrated that administration of DNAi intraperitoneally with modification could suppress myostatin expression by up to 70%. Leg weight and histological analysis proved that chemically modified DNAi significantly suppressed the myostatin gene in mice. Overall, the results on DNA-induced gene silencing by antisense DNA oligonucleotides in animals can provide insight into the treatment of inherited diseases.


Asunto(s)
ADN , Miostatina , Animales , Masculino , Ratones , Expresión Génica , Terapia Genética , Músculo Esquelético , Miostatina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...