Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
Mol Biol Rep ; 51(1): 766, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877370

RESUMEN

BACKGROUND: Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS: Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS: In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS: As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.


Asunto(s)
Canales de Cloruro , Secuenciación del Exoma , Mutación , Miotonía Congénita , Humanos , Miotonía Congénita/genética , Miotonía Congénita/diagnóstico , Secuenciación del Exoma/métodos , Canales de Cloruro/genética , Femenino , Masculino , Egipto , Niño , Adolescente , Mutación/genética , Preescolar , Adulto Joven , Lactante , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Linaje , Electromiografía
2.
Channels (Austin) ; 18(1): 2349823, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38720415

RESUMEN

Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.


Asunto(s)
Pueblo Asiatico , Canales de Cloruro , Miotonía Congénita , Humanos , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Masculino , Femenino , Canales de Cloruro/genética , Niño , Adolescente , Pueblo Asiatico/genética , Adulto , Adulto Joven , Electromiografía , Estudios Retrospectivos , China , Mutación , Pueblos del Este de Asia
3.
Rinsho Shinkeigaku ; 64(5): 344-348, 2024 May 24.
Artículo en Japonés | MEDLINE | ID: mdl-38644209

RESUMEN

A Japanese woman experienced slowness of movement in her early teens and difficulty in opening her hands during pregnancy. On admission to our hospital at 42 years of age, she showed grip myotonia with warm-up phenomenon. However, she had neither muscle weakness, muscle atrophy, cold-induced symptomatic worsening nor episodes of transient weakness of the extremities. Needle electromyography of the first dorsal interosseous and anterior tibial muscles demonstrated myotonic discharges. Whole exome sequencing of the patient revealed a heterozygous single-base substitution in the CLCN1 gene (c.1028T>G, p.F343C). The same substitution was identified in affected members of her family (mother and brother) by Sanger sequencing, but not in healthy family members (father and a different brother). We diagnosed myotonia congenita (Thomsen disease) with a novel CLCN1 mutation in this pedigree. This mutation causes a single amino acid substitution in the I-J extracellular loop region of CLCN1. Amino acid changes in the I-J loop region are rare in an autosomal-dominantly inherited form of myotonia congenita. We think that this pedigree is precious to understand the pathogenesis of myotonia congenita.


Asunto(s)
Canales de Cloruro , Mutación , Miotonía Congénita , Linaje , Humanos , Miotonía Congénita/genética , Canales de Cloruro/genética , Femenino , Adulto , Sustitución de Aminoácidos , Masculino
4.
J Neuromuscul Dis ; 11(3): 647-653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489196

RESUMEN

Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.


Asunto(s)
Mosaicismo , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Estudios de Asociación Genética , Miotonía Congénita/genética , Miotonía Congénita/diagnóstico , Canal Liberador de Calcio Receptor de Rianodina/genética , Masculino , Preescolar
5.
J Neuromuscul Dis ; 11(3): 725-734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427496

RESUMEN

Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.


Asunto(s)
Miotonía , Canal de Sodio Activado por Voltaje NAV1.4 , Linaje , Mutación Puntual , Adulto , Femenino , Humanos , Persona de Mediana Edad , Electromiografía , Italia , Miotonía/genética , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética
6.
J Med Genet ; 61(7): 626-632, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38413182

RESUMEN

BACKGROUND: Congenital myopathies are a clinical, histopathological and genetic heterogeneous group of inherited muscle disorders that are defined on peculiar architectural abnormalities in the muscle fibres. Although there have been at least 33 different genetic causes of the disease, a significant percentage of congenital myopathies remain genetically unresolved. The present study aimed to report a novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy. METHODS: A comprehensive strategy combining laser capture microdissection, proteomics and whole-exome sequencing was performed to identify the candidate genes. In addition, the available clinical data, myopathological changes, the findings of electrophysiological examinations and thigh muscle MRIs were also reviewed. A cellular model was established to assess the pathogenicity of the TUBA4A variant. RESULTS: We identified a recurrent novel heterozygous de novo c.679C>T (p.L227F) variant in the TUBA4A (NM_006000), encoding tubulin alpha-4A, in two unrelated patients with clinicopathologically diagnosed sporadic congenital myopathy. The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiquitin-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of the L227F mutant TUBA4A resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model. CONCLUSION: Our findings expanded the phenotypic and genetic manifestations of TUBA4A as well as tubulinopathies, and added a new type of congenital myopathy to be taken into consideration in the differential diagnosis.


Asunto(s)
Tubulina (Proteína) , Humanos , Masculino , Femenino , Tubulina (Proteína)/genética , Secuenciación del Exoma , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Linaje , Miofibrillas/patología , Miofibrillas/genética , Miotonía Congénita/genética , Miotonía Congénita/patología , Adulto , Músculo Esquelético/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo
7.
Eur J Neurol ; 31(4): e16207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270354

RESUMEN

BACKGROUND AND PURPOSE: Myotonia congenita (MC) is a muscle channelopathy in which pathogenic variants in a key sarcolemmal chloride channel Gene (CLCN1) cause myotonia. This study used muscle magnetic resonance imaging (MRI) to quantify contractile properties and fat replacement of muscles in a Danish cohort of MC patients. METHODS: Individuals with the Thomsen (dominant) and Becker (recessive) variants of MC were studied. Isometric muscle strength, whole-body MRI, and clinical data were collected. The degree of muscle fat replacement of thigh, calf, and forearm muscles was quantitively calculated on Dixon MRI as fat fractions (FFs). Contractility was evaluated as the muscle strength per contractile muscle cross-sectional area (PT/CCSA). Muscle contractility was compared with clinical data. RESULTS: Intramuscular FF was increased and contractility reduced in calf and in forearm muscles compared with controls (FF = 7.0-14.3% vs. 5.3-9.6%, PT/CCSA = 1.1-4.9 Nm/cm2 vs. 1.9-5.8 Nm/cm2 [p < 0.05]). Becker individuals also showed increased intramuscular FF and reduced contractility of thigh muscles (FF = 11.9% vs. 9.2%, PT/CCSA = 1.9 Nm/cm2 vs. 3.2 Nm/cm2 [p < 0.05]). Individual muscle analysis showed that increased FF was limited to seven of 18 examined muscles (p < 0.05). There was a weak correlation between reduced contractility and severity of symptoms. CONCLUSIONS: Individuals with MC have increased fat replacement and reduced contractile properties of muscles. Nonetheless, changes were small and likely did not impact clinically on their myotonic symptoms.


Asunto(s)
Miotonía Congénita , Humanos , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Miotonía Congénita/patología , Mutación , Músculo Esquelético/patología , Fuerza Muscular , Imagen por Resonancia Magnética
9.
Genes (Basel) ; 14(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37510268

RESUMEN

BACKGROUND: Congenital myopathies are a group of clinically, genetically, and histologically heterogeneous diseases caused by mutations in a large group of genes. One of these is CACNA1S, which is recognized as the cause of Dihydropyridine Receptor Congenital Myopathy. METHODS: To better characterize the phenotypic spectrum of CACNA1S myopathy, we conducted a systematic review of cases in the literature through three electronic databases following the PRISMA guidelines. We selected nine articles describing 23 patients with heterozygous, homozygous, or compound heterozygous mutations in CACNA1S and we added one patient with a compound heterozygous mutation in CACNA1S (c.1394-2A>G; c.1724T>C, p.L575P) followed at our Institute. We collected clinical and genetic data, muscle biopsies, and muscle MRIs when available. RESULTS: The phenotype of this myopathy is heterogeneous, ranging from more severe forms with a lethal early onset and mild-moderate forms with a better clinical course. CONCLUSIONS: Our patient presented a phenotype compatible with the mild-moderate form, although she presented peculiar features such as a short stature, myopia, mild sensorineural hearing loss, psychiatric symptoms, and posterior-anterior impairment gradient on thigh muscle MRI.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Femenino , Humanos , Canales de Calcio Tipo L/genética , Enfermedades Musculares/genética , Mutación , Músculo Esquelético/patología , Fenotipo , Miotonía Congénita/genética
10.
J Neuromuscul Dis ; 10(5): 915-924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355912

RESUMEN

BACKGROUND: Myotonia congenita is the most common form of nondystrophic myotonia and is caused by Mendelian inherited mutations in the CLCN1 gene encoding the voltage-gated chloride channel of skeletal muscle. OBJECTIVE: The study aimed to describe the clinical and genetic spectrum of Myotonia congenita in a large pediatric cohort. METHODS: Demographic, genetic, and clinical data of the patients aged under 18 years at time of first clinical attendance from 11 centers in different geographical regions of Türkiye were retrospectively investigated. RESULTS: Fifty-four patients (mean age:15.2 years (±5.5), 76% males, with 85% Becker, 15% Thomsen form) from 40 families were included. Consanguineous marriage rate was 67%. 70.5% of patients had a family member with Myotonia congenita. The mean age of disease onset was 5.7 (±4.9) years. Overall 23 different mutations (2/23 were novel) were detected in 52 patients, and large exon deletions were identified in two siblings. Thomsen and Becker forms were observed concomitantly in one family. Carbamazepine (46.3%), mexiletine (27.8%), phenytoin (9.3%) were preferred for treatment. CONCLUSIONS: The clinical and genetic heterogeneity, as well as the limited response to current treatment options, constitutes an ongoing challenge. In our cohort, recessive Myotonia congenita was more frequent and novel mutations will contribute to the literature.


Asunto(s)
Miotonía Congénita , Masculino , Humanos , Niño , Adolescente , Anciano , Lactante , Preescolar , Femenino , Miotonía Congénita/genética , Estudios Retrospectivos , Canales de Cloruro/genética , Mutación , Músculo Esquelético
11.
J Vet Diagn Invest ; 35(4): 413-416, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37212506

RESUMEN

Hereditary myotonia (HM) is characterized by delayed muscle relaxation after contraction as a result of a mutation in the CLCN1 gene. We describe here a complex CLCN1 variant in a mixed-breed dog with clinical and electromyographic signs of HM. Blood samples from the myotonic dog, as well as from his male littermate and parents, were analyzed via amplification of the 23 exons encoding CLCN1. After sequencing the CLCN1 gene, a complex variant was found in exon 6 c.[705T>G; 708del; 712_732del], resulting in a premature stop codon in exon 7 and a protein that was 717 amino acids shorter than the normal CLC protein. The myotonic dog was identified as homozygous recessive for the complex CLCN1 variant; its parents were heterozygous, and its male littermate was homozygous wild-type. Knowledge of the CLCN1 mutations responsible for the development of hereditary myotonia allows greater clarification of this condition.


Asunto(s)
Enfermedades de los Perros , Miotonía Congénita , Miotonía , Animales , Perros , Masculino , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/genética , Exones , Mutación , Miotonía/genética , Miotonía/veterinaria , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Miotonía Congénita/veterinaria
12.
BMC Neurol ; 23(1): 171, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106355

RESUMEN

BACKGROUND: Neutral lipid storage disease with myopathy (NLSD-M) is an autosomal recessive disease that manifests itself around the 3rd to 4th decade with chronic myopathy predominantly proximal in the shoulder girdle. Clinical myotonia is uncommon. We will report a rare case of association of pathogenic variants on PNPLA2 and CLCN1 genes with a mixed phenotype of NLSD-M and a subclinical form of Thomsen's congenital myotonia. CASE PRESENTATION: We describe a patient with chronic proximal myopathy, subtle clinical myotonia and electrical myotonia on electromyography (EMG). Serum laboratory analysis disclosure hyperCKemia (CK 1280 mg/dL). A blood smear analysis showed Jordan's anomaly, a hallmark of NLSD-M. A genetic panel was collected using next-generation sequencing (NGS) technique, which identified two pathogenic variants on genes supporting two different diagnosis: NLSD-M and Thomsen congenital myotonia, whose association has not been previously described. CONCLUSIONS: Although uncommon, it is important to remember the possibility of association of pathogenic variants to explain a specific neuromuscular disease phenotype. The use of a range of complementary methods, including myopathy genetic panels, may be essential to diagnostic definition in such cases.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Miotonía , Humanos , Aciltransferasas/genética , Canales de Cloruro/genética , Lipasa/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Miotonía/genética , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética
13.
Rev Neurol ; 76(4): 147-150, 2023 02 16.
Artículo en Español | MEDLINE | ID: mdl-36782350

RESUMEN

INTRODUCTION: Myotonia congenita is the most common form of genetic myotonia and is caused by mutations in the CLCN1 gene. It can be inherited in an autosomal dominant or recessive manner. We present a series of cases to update its incidence in our environment, to describe its phenotype in relation to the genotype found, and we also review the mutations found, among which we provide a new, undescribed alteration. CASES REPORT: The medical records of patients with a diagnosis of congenital myotonia studied and followed up in the pediatric neurology section in a tertiary hospital between the years 2015-2020 were reviewed. Demographic variables (age, sex), disease course (age of onset, symptoms and signs, time elapsed until diagnosis, clinical evolution), family history and evaluation of response to treatment were collected. Five cases with a clinical diagnosis of myotonia congenita were identified (three with Becker's disease and two with Thomsen's disease). The incidence in relation to the number of births is estimated at 1:15,000 newborns for cases with the Becker phenotype and 1:21,000 newborns for the Thomsen phenotypes. We found a probably pathogenic mutation not previously described (CLCN1: c.824T> C). CONCLUSIONS: the approximate incidence in our environment was higher than previously known and we describe a new, undescribed mutation: c.824T> C with pathogenicity predictors that behaved like a Becker recessive phenotype but with an earlier debut.


TITLE: Miotonía congénita. Incidencia y presentación de una serie de casos.Introducción. La miotonía congénita es la forma más común de miotonía de causa genética y se produce por mutaciones en el gen CLCN1. Puede heredarse de manera autosómica dominante o recesiva. Presentamos una serie de casos para actualizar su incidencia en nuestro medio, para describir su fenotipo en relación con el genotipo encontrado y, además, revisamos las mutaciones encontradas, entre las que aportamos una nueva alteración no descrita. Casos clínicos. Se revisaron las historias clínicas de pacientes con diagnóstico de miotonía congénita estudiados y seguidos en la consulta de neurología pediátrica en un hospital de tercer nivel entre los años 2015 y 2020. Se recogieron variables demográficas (edad y sexo), curso de la enfermedad (edad de inicio, síntomas y signos, tiempo transcurrido hasta el diagnóstico y evolución clínica), antecedentes familiares y evaluación de la respuesta al tratamiento. Se identificaron cinco casos con diagnóstico clínico de miotonía congénita (tres con enfermedad de Becker y dos con enfermedad de Thomsen). La incidencia en relación con el número de nacimientos la estimamos en 1:15.000 recién nacidos para los casos con fenotipo Becker y en 1:21.000 recién nacidos para los fenotipos Thomsen. Hallamos una mutación probablemente patogénica no descrita previamente (CLCN1: c.824T>C). Conclusiones. La incidencia aproximada en nuestro medio fue superior a la previamente conocida y describimos una nueva mutación no descrita: c.824T>C, con predictores de patogenicidad, que se comportó como un fenotipo recesivo Becker, pero con inicio más temprano.


Asunto(s)
Distrofia Muscular de Duchenne , Miotonía Congénita , Humanos , Miotonía Congénita/diagnóstico , Miotonía Congénita/epidemiología , Miotonía Congénita/genética , Incidencia , Canales de Cloruro/genética , Mutación , Linaje
14.
Exp Neurol ; 361: 114303, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563835

RESUMEN

It has long been accepted that myotonia (muscle stiffness) in patients with muscle channelopathies is due to myotonic discharges (involuntary firing of action potentials). In a previous study, we identified a novel phenomenon in myotonic muscle: development of plateau potentials, transient depolarizations to near -35 mV lasting for seconds to minutes. In the current study we examined whether plateau potentials contribute to myotonia. A recessive genetic model (ClCadr mice) with complete loss of muscle chloride channel (ClC-1) function was used to model severe myotonia congenita with complete loss of ClC-1 function and a pharmacologic model using anthracene-9-carboxylic acid (9 AC) was used to model milder myotonia congenita with incomplete loss of ClC-1 function. Simultaneous measurements of action potentials and myoplasmic Ca2+ from individual muscle fibers were compared to recordings of whole muscle force generation. In ClCadr muscle both myotonia and plateau potentials lasted 10s of seconds to minutes. During plateau potentials lasting 1-2 min, there was a gradual transition from high to low intracellular Ca2+, suggesting a transition in individual fibers from myotonia to flaccid paralysis in severe myotonia congenita. In 9 AC-treated muscles, both myotonia and plateau potentials lasted only a few seconds and Ca2+ remained elevated during the plateau potentials, suggesting plateau potentials contribute to myotonia without causing weakness. We propose, that in myotonic muscle, there is a novel state in which there is contraction in the absence of action potentials. This discovery provides a mechanism to explain reports of patients with myotonia who suffer from electrically silent muscle contraction lasting minutes.


Asunto(s)
Miotonía Congénita , Miotonía , Ratones , Animales , Miotonía/genética , Miotonía Congénita/genética , Miotonía Congénita/tratamiento farmacológico , Contracción Muscular , Potenciales de Acción/fisiología , Fibras Musculares Esqueléticas , Canales de Cloruro/genética , Modelos Animales de Enfermedad
15.
Brain ; 146(4): 1316-1321, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36382348

RESUMEN

Accurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays. We compared nine widely used in silico predictive tools, including more recently developed tools (EVE and REVEL) with detailed cell-based electrophysiology, for 126 CLCN1 variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We found poor accuracy for most tools. The highest accuracy was obtained with MutationTaster (84.58%) and REVEL (82.54%). Both of these scores showed poor specificity, although specificity was better using EVE. Combining methods based on concordance improved performance overall but still lacked specificity. Our calculated statistics for the predictive tools were different to reported values for other genes in the literature, suggesting that the utility of the tools varies between genes. Overall, current predictive tools for this chloride channel are not reliable for clinical use, and tools with better specificity are urgently required. Improving the accuracy of predictive tools is a wider issue and a huge challenge for effective clinical implementation of genetic data.


Asunto(s)
Canalopatías , Miotonía Congénita , Humanos , Canalopatías/genética , Músculo Esquelético , Canales de Cloruro/genética , Miotonía Congénita/genética , Mutación
16.
Neuromuscul Disord ; 32(10): 811-819, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050252

RESUMEN

The non-dystrophic myotonias are inherited skeletal muscle disorders characterized by skeletal muscle stiffness after voluntary contraction, without muscle atrophy. Based on their clinical features, non-dystrophic myotonias are classified into myotonia congenita, paramyotonia congenita, and sodium channel myotonia. Using whole-exome next-generation sequencing, we identified a L703P mutation (c.2108T>C, p.L703P) in SCN4A in a Chinese family diagnosed with non-dystrophic myotonias. The clinical findings of patients in this family included muscle stiffness and hypertrophy. The biophysical properties of wildtype and mutant channels were investigated using whole-cell patch clamp. L703P causes both gain-of-function and loss-of-function changes in Nav1.4 properties, including decreased current density, impaired recovery, enhanced activation and slow inactivation. Our study demonstrates that L703P is a pathogenic variant for myotonia, and provides additional electrophysiological information for understanding the pathogenic mechanism of SCN4A-associated channelopathies.


Asunto(s)
Miotonía Congénita , Miotonía , Trastornos Miotónicos , Humanos , Mutación , Miotonía/genética , Miotonía/diagnóstico , Miotonía Congénita/genética , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética
17.
Eur J Med Genet ; 65(10): 104598, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36030003

RESUMEN

The Bailey-Bloch congenital myopathy, also known as Native American myopathy (NAM), is an autosomal recessive congenital myopathy first reported in the Lumbee tribe people settled in North Carolina (USA), and characterized by congenital weakness and arthrogryposis, cleft palate, ptosis, short stature, kyphoscoliosis, talipes deformities, and susceptibility to malignant hyperthermia (MH) triggered by anesthesia. NAM is linked to STAC3 gene coding for a component of excitation-contraction coupling in skeletal muscles. A homozygous missense variant (c.851G > C; p.Trp284Ser) in STAC3 segregated with NAM in the Lumbee families. Non-Native American patients with STAC3 related congenital myopathy, and with other various variants of STAC3 have been reported. Here, we present seven patients from the Comoros Islands (located in the Mozambique Channel) diagnosed with STAC3 related congenital myopathy and having the recurrent variant identified in the Lumbee people. The series is the second largest series of patients having STAC3 related congenital myopathy with a shared ethnicity after le Lumbee series. Local history and geography may explain the overrepresentation of NAM in the Comorian Archipelago with a founder effect. Further researches would be necessary for the understanding of the onset of the NAM in Comorian population as search of the "classical" STAC3 variant in East African population, and haplotypes comparison between Comorian and Lumbee patients.


Asunto(s)
Hipertermia Maligna , Enfermedades Musculares , Miotonía Congénita , Proteínas Adaptadoras Transductoras de Señales/genética , Acoplamiento Excitación-Contracción , Humanos , Hipertermia Maligna/genética , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Miotonía Congénita/genética
18.
J Vet Intern Med ; 36(4): 1454-1459, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35815860

RESUMEN

CASE DESCRIPTION: A 10-month-old castrated male domestic longhair cat was evaluated for increasing frequency of episodic limb rigidity. CLINICAL FINDINGS: The cat presented for falling over and lying recumbent with its limbs in extension for several seconds when startled or excited. Upon examination, the cat had hypertrophied musculature, episodes of facial spasm, and a short-strided, stiff gait. DIAGNOSTICS: Electromyography (EMG) identified spontaneous discharges that waxed and waned in amplitude and frequency, consistent with myotonic discharges. A high impact 8-base pair (bp) deletion across the end of exon 3 and intron 3 of the chloride voltage-gated channel 1 (CLCN1) gene was identified using whole genome sequencing. TREATMENT AND OUTCOME: Phenytoin treatment was initiated at 3 mg/kg po q24 h and resulted in long-term improvement. CLINICAL RELEVANCE: This novel mutation within the CLCN1 gene is a cause of myotonia congenita in cats and we report for the first time its successful treatment.


Asunto(s)
Enfermedades de los Gatos , Miotonía Congénita , Animales , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Gatos/genética , Gatos , Canales de Cloruro/genética , Electromiografía/veterinaria , Exones , Masculino , Mutación , Miotonía Congénita/diagnóstico , Miotonía Congénita/tratamiento farmacológico , Miotonía Congénita/genética , Miotonía Congénita/veterinaria
19.
Artículo en Alemán | MEDLINE | ID: mdl-35896388

RESUMEN

Myotonia congenita Thomsen is a rare genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1). Although this channelopathy may cause disabling muscle symptoms, patient's daily routine can be almost inconspicuous. Nevertheless, during illness or acute diseases this neuromuscular disease may worsen and get clinically apparent up to severe rhabdomyolysis. Within this case report we describe and discuss the treatment of a patient with Myotonia congenita Thomsen treated at our hospital's intensive care unit. Rhabdomyolysis with acute renal failure and necessity of dialysis during the ICU stay was attributed to the initial reason for emergency hospitalization - an aortic dissection. Nevertheless, in this case the patient's myotonia caused rhabdomyolysis and initially led us on a wrong path. Diagnosis of the real cause of rhabdomyolysis is often difficult, although an early and adequate therapy may prevent complications. This case report demonstrates the importance of a thorough anamnesis with all aspects of the patient's history.


Asunto(s)
Lagartos , Miotonía Congénita , Rabdomiólisis , Animales , Canales de Cloruro/genética , Humanos , Unidades de Cuidados Intensivos , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Rabdomiólisis/diagnóstico , Rabdomiólisis/etiología , Rabdomiólisis/terapia
20.
Neurol Neurochir Pol ; 56(5): 399-403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35792560

RESUMEN

INTRODUCTION: In myotonia congenita (MC), activation with exercise or cooling can induce transient changes in compound motor action potential (CMAP) parameters, thus providing a guide to genetic analysis. MATERIAL AND METHODS: We performed the short exercise test (SET) and the short exercise test with cooling (SETC) in 30 patients with genetically confirmed Becker disease (BMC) to estimate their utility in the diagnosis of BMC. RESULTS: Although we observed a significant decrease in CMAP amplitude immediately after maximal voluntary effort in both tests in the whole BMC group, in men this decline was significantly smaller than in women, especially in SET. Clinical implications/future directions: In men with a clinical suspicion of BMC, a small decrease in CMAP amplitude in SET together with a typical decline in SETC does not exclude the diagnosis of BMC. Our results show a sex-specific difference in chloride channel function in BMC, which needs further investigation.


Asunto(s)
Miotonía Congénita , Femenino , Humanos , Masculino , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Caracteres Sexuales , Electromiografía , Potenciales de Acción/fisiología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...