Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Commun ; 15(1): 6840, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122723

RESUMEN

The world's oceans are under threat from the prevalence of heatwaves caused by climate change. Despite this, there is a lack of understanding regarding their impact on seawater oxygen levels - a crucial element in sustaining biological survival. Here, we find that heatwaves can trigger low-oxygen extreme events, thereby amplifying the signal of deoxygenation. By utilizing in situ observations and state-of-the-art climate model simulations, we provide a global assessment of the relationship between the two types of extreme events in the surface ocean (0-10 m). Our results show compelling evidence of a remarkable surge in the co-occurrence of marine heatwaves and low-oxygen extreme events. Hotspots of these concurrent stressors are identified in the study, indicating that this intensification is more pronounced in high-biomass regions than in those with relatively low biomass. The rise in the compound events is primarily attributable to long-term warming primarily induced by anthropogenic forcing, in tandem with natural internal variability modulating their spatial distribution. Our findings suggest the ocean is losing its breath under the influence of heatwaves, potentially experiencing more severe damage than previously anticipated.


Asunto(s)
Cambio Climático , Océanos y Mares , Agua de Mar , Agua de Mar/química , Oxígeno , Modelos Climáticos , Calor , Calor Extremo/efectos adversos , Biomasa
2.
PLoS One ; 19(8): e0306128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088465

RESUMEN

Current strategies to hold surface warming below a certain level, e. g., 1.5 or 2°C, advocate limiting total anthropogenic cumulative carbon emissions to ∼0.9 or ∼1.25 Eg C (1018 grams carbon), respectively. These allowable emission budgets are based on a near-linear relationship between cumulative emissions and warming identified in various modeling efforts. The IPCC assesses this near-linear relationship with high confidence in its Summary for Policymakers (§D1.1 and Figure SPM.10). Here we test this proportionality in specially designed simulations with a latest-generation Earth system model (ESM) that includes an interactive carbon cycle with updated terrestrial ecosystem processes, and a suite of CMIP simulations (ZecMIP, ScenarioMIP). We find that atmospheric CO2 concentrations can differ by ∼100 ppmv and surface warming by ∼0.31°C (0.46°C over land) for the same cumulated emissions (≈1.2 Eg C, approximate carbon budget for 2°C target). CO2 concentration and warming per 1 Eg of emitted carbon (Transient Climate Response to Cumulative Carbon Emissions; TCRE) depend not just on total emissions, but also on the timing of emissions, which heretofore have been mainly overlooked. A decomposition of TCRE reveals that oceanic heat uptake is compensating for some, but not all, of the pathway dependence induced by the carbon cycle response. The time dependency clearly arises due to lagged carbon sequestration processes in the oceans and specifically on land, viz., ecological succession, land-cover, and demographic changes, etc., which are still poorly represented in most ESMs. This implies a temporally evolving state of the carbon system, but one which surprisingly apportions carbon into land and ocean sinks in a manner that is independent of the emission pathway. Therefore, even though TCRE differs for different pathways with the same total emissions, it is roughly constant when related to the state of the carbon system, i. e., the amount of carbon stored in surface sinks. While this study does not fundamentally invalidate the established TCRE concept, it does uncover additional uncertainties tied to the carbon system state. Thus, efforts to better understand this state dependency with observations and refined models are needed to accurately project the impact of future emissions.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Dióxido de Carbono/análisis , Ecosistema , Carbono/análisis , Calentamiento Global , Atmósfera/química , Modelos Climáticos
3.
Nature ; 632(8024): 320-326, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112620

RESUMEN

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST)1. The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR2, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching3, with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function4 and outstanding universal value5 of one of Earth's greatest natural wonders.


Asunto(s)
Antozoos , Efectos Antropogénicos , Arrecifes de Coral , Calentamiento Global , Calor , Océanos y Mares , Animales , Antozoos/fisiología , Australia , Modelos Climáticos , Extinción Biológica , Calentamiento Global/historia , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Actividades Humanas/historia , Océano Pacífico , Agua de Mar/análisis
4.
Nat Commun ; 15(1): 6238, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043692

RESUMEN

Upwelling along oceanic eastern boundaries has attracted significant attention due to its profound effects on ocean productivity and associated biological and socioeconomic implications. However, uncertainty persists regarding the evolution of coastal upwelling with climate change, particularly its impact on future biological production. Here, using a series of state-of-the-art climate models, we identify a significant seasonal advancement and prolonged duration of upwelling in major upwelling systems. Nevertheless, the upwelling intensity (total volume of upwelled water) exhibits complex changes in the future. In the North Pacific, the upwelling is expected to attenuate, albeit with a minor magnitude. Conversely, in other basins, coastal upwelling diminishes significantly in equatorward regions but displays a slight decline or even an enhancement at higher latitudes. The climate simulations also reveal a robust connection between changes in upwelling intensity and net primary production, highlighting the crucial impact of future coastal upwelling alterations on marine ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Agua de Mar/química , Océanos y Mares , Estaciones del Año , Modelos Climáticos , Océano Pacífico , Movimientos del Agua
5.
PLoS One ; 19(7): e0307641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052597

RESUMEN

Investments in renewable energy sources are increasing in several countries, especially in wind energy, as a response to global climate change caused by the burning of fossil fuels for electricity generation. Thus, it is important to evaluate the Regional Climate Models that simulate wind speed and wind power density in promising areas for this type of energy generation with the least uncertainty in recent past, which is essential for the implementation of wind farms. Therefore, this research aims to calculate the wind power density from Regional Climate Models in areas at Northeast of Brazil from 1986 to 2005. Initially, the ECMWF-ERA5 reanalysis data was validated against observed data obtained from Xavier. The results were satisfactory, showing a strong correlation in areas of Ceará and Rio Grande do Norte (except during the SON season), and some differences in relation to the wind intensity registered by observed data, particularly during the JJA season. Then, the Regional Climate Models RegCM4.7, RCA4 and Remo2009 were validated against the ECMWF-ERA5 reanalysis data, with all models successfully representing the wind speed pattern, especially from December to May. Four specific areas in Northeast of Brazil were selected for further study. In these areas, the RCMs simulations were evaluated to identify the RCM with the best statistical indices and consequently the lowest associated uncertainty for each area. The selected RCMs were: RegCM4.7_HadGEM2 (northern coastal of Ceará and northern coastal of Rio Grande do Norte) and RCA4_Miroc (Borborema and Central Bahia). Finally, the wind power density was calculated from the selected RCM for each area. The northern regions of Rio Grande do Norte and Ceará exhibited the highest wind power density.


Asunto(s)
Viento , Brasil , Modelos Climáticos , Energía Renovable , Cambio Climático , Estaciones del Año
6.
Glob Chang Biol ; 30(7): e17406, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982862

RESUMEN

Temperature extremes exert a significant influence on terrestrial ecosystems, but the precise levels at which these extremes trigger adverse shifts in vegetation productivity have remained elusive. In this study, we have derived two critical thresholds, using standard deviations (SDs) of growing-season temperature and satellite-based vegetation productivity as key indicators. Our findings reveal that, on average, vegetation productivity experiences rapid suppression when confronted with temperature anomalies exceeding 1.45 SD above the mean temperature during 2001-2018. Furthermore, at temperatures exceeding 2.98 SD above the mean, we observe the maximum level of suppression, particularly in response to the most extreme high-temperature events. When Earth System Models are driven by a future medium emission scenario, they project that mean temperatures will routinely surpass both of these critical thresholds by approximately the years 2050 and 2070, respectively. However, it is important to note that the timing of these threshold crossings exhibits spatial variation and will appear much earlier in tropical regions. Our finding highlights that restricting global warming to just 1.5°C can increase safe areas for vegetation growth by 13% compared to allowing warming to reach 2°C above preindustrial levels. This mitigation strategy helps avoid exposure to detrimental extreme temperatures that breach these thresholds. Our study underscores the pivotal role of climate mitigation policies in fostering the sustainable development of terrestrial ecosystems in a warming world.


Asunto(s)
Calentamiento Global , Ecosistema , Desarrollo de la Planta , Temperatura , Estaciones del Año , Calor , Modelos Climáticos , Plantas , Cambio Climático
7.
Glob Chang Biol ; 30(7): e17418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036882

RESUMEN

Climate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany. On large experimental plots, temperature and seasonal patterns of precipitation are manipulated by superimposing regional climate model projections onto background climate variability. Climate manipulation is factorially crossed with agricultural land-use scenarios, including intensively used meadows and extensively used (i.e., low-intensity) meadows and pastures. Inter-annual variation of background climate during our study years was high, including three of the driest years on record for our region. The effects of this temporal variability far exceeded the effects of the experimentally imposed climate change on plant species diversity and productivity, especially in the intensively used grasslands sown with only a few grass cultivars. These changes in productivity and diversity in response to alterations in climate were due to immigrant species replacing the target forage cultivars. This shift from forage cultivars to immigrant species may impose additional economic costs in terms of a decreasing forage value and the need for more frequent management measures. In contrast, the extensively used grasslands showed weaker responses to both experimentally manipulated future climate and inter-annual climate variability, suggesting that these diverse grasslands are more resistant to climate change than intensively used, species-poor grasslands. We therefore conclude that a lower management intensity of agricultural grasslands, associated with a higher plant diversity, can stabilize primary productivity under climate change.


Asunto(s)
Agricultura , Cambio Climático , Pradera , Alemania , Agricultura/métodos , Poaceae/crecimiento & desarrollo , Poaceae/fisiología , Estaciones del Año , Biodiversidad , Temperatura , Modelos Climáticos
8.
Nature ; 632(8023): 95-100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987602

RESUMEN

Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km-approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36-39° N) and Blake Outer Ridge (29-34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5-7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.


Asunto(s)
Cubierta de Hielo , Agua de Mar , Movimientos del Agua , Océano Atlántico , Modelos Climáticos , Foraminíferos/aislamiento & purificación , Sedimentos Geológicos/parasitología , Golfo de México , Historia Antigua , Calor , Agua de Mar/análisis , Agua de Mar/química , Viento
9.
Sci Total Environ ; 949: 175038, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059663

RESUMEN

Rice is one of the world's major food crops. Changes in major climatic factors such as temperature, rainfall, solar radiation and carbon dioxide (CO2) concentration have an important impact on rice growth and yield. However, many of the current studies that predict the impact of future climate change on rice yield are affected by uncertainties such as climate models, climate scenarios, model parameters and structure, and showing great differences. This study was based on the assessment results of the impact of climate change on rice in the future of 111 published literature, and comprehensively analyzed the impact and uncertainty of climate change on rice yield. This study utilized local polynomial (Loess) regression analysis to investigate the impact of changes in mean temperature, minimum temperature, maximum temperature, solar radiation, and precipitation on relative rice yield variations within a complete dataset. A linear mixed-effects model was used to quantitatively analyze the relationships between the restricted datasets. The qualitative analysis based on the entire dataset revealed that rice yields decreased with increasing average temperature. The precipitation changed between 0 and 25 %, it was conducive to the stable production of rice, and when the precipitation changed >25 %, it would cause rice yield reduction. The change of solar radiation was less than -1.15 %, the rice yield increases with the increase of solar radiation, and when the change of solar radiation exceeds -1.15 %, the rice yield decreases. Elevated CO2 concentrations and management practices could mitigate the negative effects of climate change. The results of a quantitative analysis utilizing the mixed effects model revealed that average temperature, precipitation, CO2 concentration, and adaptation methods all had a substantial impact on rice production, and elevated CO2 concentrations and management practices could exert positive influences on rice production. For every 1 °C and 1 % increase in average temperature and precipitation, rice yield decreased by 3.85 % and 0.56 %, respectively. For every 100 ppm increase in CO2 concentration, rice yield increased by 7.1 %. The variation of rice yield under different climate models, study sites and climate scenarios had significant variability. Elevated CO2 concentrations and management practices could compensate for the negative effects of climate change, benefiting rice production. This study comprehensively collected and analyzed a wide range of literature and research, which provides an in-depth understanding of the impacts of climate change on rice production and informs future research and policy development.


Asunto(s)
Cambio Climático , Productos Agrícolas , Oryza , Oryza/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Dióxido de Carbono/análisis , Modelos Climáticos , Temperatura , Agricultura/métodos
10.
Glob Chang Biol ; 30(6): e17364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864329

RESUMEN

Thermal regimes of aquatic ecosystems are predicted to change as climate warming progresses over the next century, with high-latitude and high-elevation regions predicted to be particularly impacted. Here, we have modelled alpine stream water temperatures from air temperature data and used future predicted air temperature trajectories (representative concentration pathway [rcp] 4.5 and 8.5) to predict future water temperatures. Modelled stream water temperatures have been used to calculate cumulative degree days (CDDs) under current and future climate conditions. These calculations show that degree days will accumulate more rapidly under the future climate scenarios, and with a stronger effect for higher CDD values (e.g., rcp 4.5: 18-28 days earlier [CDD = 500]; 42-55 days earlier [CDD = 2000]). Changes to the time to achieve specific CDDs may have profound and unexpected consequences for alpine ecosystems. Our calculations show that while the effect of increased CDDs may be relatively small for organisms that emerge in spring-summer, the effects for organisms emerging in late summer-autumn may be substantial. For these organisms, the air temperatures experienced upon emergence could reach 9°C (rcp 4.5) or 12°C (rcp 8.5) higher than under current climate conditions, likely impacting on the metabolism of adults, the availability of resources, including food and suitable oviposition habitat, and reproductive success. Given that the movement of aquatic fauna to the terrestrial environment represents an important flux of energy and nutrients, differential changes in the time periods to achieve CDDs for aquatic and terrestrial fauna may de-couple existing predator-prey interactions.


Asunto(s)
Cambio Climático , Ríos , Temperatura , Animales , Organismos Acuáticos/fisiología , Estaciones del Año , Ecosistema , Modelos Climáticos
11.
Proc Natl Acad Sci U S A ; 121(24): e2315700121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830099

RESUMEN

Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.


Asunto(s)
Cambio Climático , Extinción Biológica , Pinus , Pinus/fisiología , Árboles , Biodiversidad , Predicción/métodos , Temperatura , Modelos Climáticos
12.
Sci Adv ; 10(20): eadl6717, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748800

RESUMEN

Documenting the seasonal temperature cycle constitutes an essential step toward mitigating risks associated with extreme weather events in a future warmer world. The mid-Piacenzian Warm Period (mPWP), 3.3 to 3.0 million years ago, featured global temperatures approximately 3°C above preindustrial levels. It represents an ideal period for directed paleoclimate reconstructions equivalent to model projections for 2100 under moderate Shared Socioeconomic Pathway SSP2-4.5. Here, seasonal clumped isotope analyses of fossil mollusk shells from the North Sea are presented to test Pliocene Model Intercomparison Project 2 outcomes. Joint data and model evidence reveals enhanced summer warming (+4.3° ± 1.0°C) compared to winter (+2.5° ± 1.5°C) during the mPWP, equivalent to SSP2-4.5 outcomes for future climate. We show that Arctic amplification of global warming weakens mid-latitude summer circulation while intensifying seasonal contrast in temperature and precipitation, leading to an increased risk of summer heat waves and other extreme weather events in Europe's future.


Asunto(s)
Calentamiento Global , Estaciones del Año , Europa (Continente) , Temperatura , Animales , Cambio Climático , Fósiles , Modelos Climáticos
13.
Sci Total Environ ; 937: 173432, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797402

RESUMEN

The Dryland East Asia (DEA) is one of the largest inland arid regions, and vegetation is very sensitive to climate change. The complex environment in DEA with defects of modeling construction make it difficult to simulate and predict changes in vegetation structure and productivity. Here, we use the emergent constraint (EC) method to constrain the future interannual leaf area index (LAI) and gross primary productivity (GPP) trends in DEA, under four scenarios of the latest Sixth Coupled Model Intercomparison Project (CMIP6) model ensemble. LAI and GPP increase in all scenarios in the near term (2015-2050), with continued growth in SSP370 and SSP585 and stasis in SSP126 and SSP245 in the far term (2051-2100). However, after building effective EC relationships, the constrained increasing trends of LAI (GPP) are reduced by 43.5 %-53.9 % (30.5 %-50.0 %) compared with the uncertainties of the original ensemble, which are reduced by 10.0 %-45.7 % (4.6 %-34.3 %). We also extend the EC in moving windows and grid cells, further strengthening the robustness of the constraints, especially by illustrating spatial sources of these emergent relationships. Overestimations of LAI and GPP trends suggest that current CMIP6 models may be insufficient to capture the complex relationships between climate change and vegetation dynamics in DEA; however, these models can be adjusted based on established emergent relationships.


Asunto(s)
Cambio Climático , Fotosíntesis , Asia Oriental , Modelos Climáticos , Monitoreo del Ambiente/métodos , Clima Desértico
14.
Science ; 384(6696): 639-646, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723095

RESUMEN

Despite identifying El Niño events as a factor in dengue dynamics, predicting the oscillation of global dengue epidemics remains challenging. Here, we investigate climate indicators and worldwide dengue incidence from 1990 to 2019 using climate-driven mechanistic models. We identify a distinct indicator, the Indian Ocean basin-wide (IOBW) index, as representing the regional average of sea surface temperature anomalies in the tropical Indian Ocean. IOBW is closely associated with dengue epidemics for both the Northern and Southern hemispheres. The ability of IOBW to predict dengue incidence likely arises as a result of its effect on local temperature anomalies through teleconnections. These findings indicate that the IOBW index can potentially enhance the lead time for dengue forecasts, leading to better-planned and more impactful outbreak responses.


Asunto(s)
Dengue , Epidemias , Humanos , Modelos Climáticos , Dengue/epidemiología , El Niño Oscilación del Sur , Incidencia , Océano Índico , Calor
16.
Ann N Y Acad Sci ; 1534(1): 69-93, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532631

RESUMEN

The Hadley circulation (HC) is a global-scale atmospheric feature with air descending in the subtropics and ascending in the tropics, which plays a fundamental role in Earth's climate because it transports energy polewards and moisture equatorwards. Theoretically, as a consequence of anthropogenic climate change, the HC is expected to expand polewards, while indications on the HC strength are equivocal, as weakening and strengthening are expected in response to different mechanisms. In fact, there is a general agreement among reanalyses and climate simulations that the HC has significantly widened in the last four decades and it will continue widening in the future, but there is no consensus on past and future changes of the HC strength. Substantial uncertainties are produced by the effects of natural variability, structural deficiencies in climate models and reanalyses, and the influence of other forcing factors, such as anthropogenic aerosols, black carbon, and stratospheric and tropospheric ozone. The global HC can be decomposed into three regional HCs, associated with ascending motion above Equatorial Africa, the Maritime Continent, and Equatorial America, which have evolved differently during the last decades. Climate projections suggest a generalized expansion in the Southern Hemisphere, but a complex regional expansion/contraction pattern in the Northern Hemisphere.


Asunto(s)
Ozono , Humanos , Ozono/química , Cambio Climático , Modelos Climáticos
19.
Bull Entomol Res ; 114(1): 8-21, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38235528

RESUMEN

Mosquito-borne disease is a significant public health issue and within Australia Ross River virus (RRV) is the most reported. This study combines a mechanistic model of mosquito development for two mosquito vectors; Aedes vigilax and Aedes camptorhynchus, with climate projections from three climate models for two Representative Concentration Pathways (RCPs), to examine the possible effects of climate change and sea-level rise on a temperate tidal saltmarsh habitat in Perth, Western Australia. The projections were run under no accretion and accretion scenarios using a known mosquito habitat as a case study. This improves our understanding of the possible implications of sea-level rise, accretion and climate change for mosquito control programmes for similar habitats across temperate tidal areas found in Southwest Western Australia. The output of the model indicate that the proportion of the year mosquitoes are active increases. Population abundances of the two Aedes species increase markedly. The main drivers of changes in mosquito population abundances are increases in the frequency of inundation of the tidal wetland and size of the area inundated, increased minimum water temperature, and decreased daily temperature fluctuations as water depth increases due to sea level changes, particularly under the model with no accretion. The effects on mosquito populations are more marked for RCP 8.5 when compared to RCP 4.5 but were consistent among the three climate change models. The results indicate that Ae. vigilax is likely to be the most abundant species in 2030 and 2050, but that by 2070 Aedes camptorhynchus may become the more abundant species. This increase would put considerable pressure on existing mosquito control programmes and increase the risk of mosquito-borne disease and nuisance biting to the local community, and planning to mitigate these potential impacts should commence now.


Asunto(s)
Aedes , Culicidae , Animales , Australia Occidental , Modelos Climáticos , Cambio Climático , Agua
20.
Integr Environ Assess Manag ; 20(2): 367-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084033

RESUMEN

The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367-383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Modelos Climáticos , Ecosistema , Teorema de Bayes , Cambio Climático , Ecotoxicología , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...