Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Med Chem ; 65(1): 303-322, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34962403

RESUMEN

A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.


Asunto(s)
Cerebelo , Moduladores del Transporte de Membrana , Canales de Potasio Calcio-Activados , Células de Purkinje , Pirimidinas , Ataxias Espinocerebelosas , Animales , Femenino , Masculino , Ratones , Cerebelo/efectos de los fármacos , Modelos Animales de Enfermedad , Activación del Canal Iónico , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Canales de Potasio Calcio-Activados/agonistas , Canales de Potasio Calcio-Activados/metabolismo , Células de Purkinje/efectos de los fármacos , Pirimidinas/química , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Relación Estructura-Actividad
2.
Am J Physiol Cell Physiol ; 321(6): C932-C946, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644122

RESUMEN

Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.


Asunto(s)
Antiportadores/efectos de los fármacos , Canales de Cloruro/efectos de los fármacos , Cloruros/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Moduladores del Transporte de Membrana/farmacología , Animales , Antiportadores/genética , Antiportadores/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Transporte Iónico , Cinética , Moduladores del Transporte de Membrana/química , Mutación , Transportadores de Sulfato/efectos de los fármacos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
3.
Cell Physiol Biochem ; 55(S3): 108-130, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34043299

RESUMEN

Transient receptor potential vanilloid (TRPV) channels are part of the TRP channel superfamily and named after the first identified member TRPV1, that is sensitive to the vanillylamide capsaicin. Their overall structure is similar to the structure of voltage gated potassium channels (Kv) built up as homotetramers from subunits with six transmembrane helices (S1-S6). Six TRPV channel subtypes (TRPV1-6) are known, that can be subdivided into the thermoTRPV (TRPV1-4) and the Ca2+-selective TRPV channels (TRPV5, TRPV6). Contrary to Kv channels, TRPV channels are not primary voltage gated. All six channels have distinct properties and react to several endogenous ligands as well as different gating stimuli such as heat, pH, mechanical stress, or osmotic changes. Their physiological functions are highly diverse and subtype as well as tissue specific. In many tissues they serve as sensors for different pain stimuli (heat, pressure, pH) and contribute to the homeostasis of electrolytes, the maintenance of barrier functions and the development of macrophages. Due to their fundamental role in manifold physiological and pathophysiological processes, TRPV channels are promising targets for drug development. However, drugs targeting specific TRPV channels, that are suitable for drug therapy, are rare. Moreover, selective and potent compounds for further research at TRPV channels are often lacking. In this review different aspects of the structure, the different gating stimuli, the expression pattern, the physiological and pathophysiological roles as well as the modulating mechanisms of synthetic, natural and endogenous ligands are summarized.


Asunto(s)
Analgésicos/farmacología , Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Moduladores del Transporte de Membrana/farmacología , Canales Catiónicos TRPV/metabolismo , Analgésicos/química , Analgésicos/clasificación , Antineoplásicos/química , Antineoplásicos/clasificación , Sitios de Unión , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/clasificación , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/clasificación , Modelos Moleculares , Especificidad de Órganos , Unión Proteica , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/clasificación
4.
Cell Physiol Biochem ; 55(S3): 145-156, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34043301

RESUMEN

The population of regulatory T cells (Tregs) is critical for immunological self-tolerance and homeostasis. Proper ion regulation contributes to Treg lineage identity, regulation, and effector function. Identified ion channels include Ca2+ release-activated Ca2+, transient receptor potential, P2X, volume-regulated anion and K+ channels Kv1.3 and KCa3.1. Ion channel modulation represents a promising therapeutic approach for the treatment of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. This review summarizes studies with gene-targeted mice and pharmacological modulators affecting Treg number and function. Furthermore, participation of ion channels is illustrated and the power of future research possibilities is discussed.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Calcio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Esclerosis Múltiple/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Calcio/inmunología , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/inmunología , Señalización del Calcio , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/inmunología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/inmunología , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Moduladores del Transporte de Membrana/química , Ratones , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/inmunología , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/inmunología
5.
Molecules ; 26(6)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801115

RESUMEN

Several years ago, the crystallographic structures of the transient receptor potential vanilloid 1 (TRPV1) in the presence of agonists and antagonists were reported, providing structural information about its chemical activation and inactivation. TRPV1's activation increases the transport of calcium and sodium ions, leading to the excitation of sensory neurons and the perception of pain. On the other hand, its antagonistic inactivation has been explored to design analgesic drugs. The interactions between the antagonists 5,5-diarylpentadienamides (DPDAs) and TRPV1 were studied here to explain why they inactivate TRPV1. The present work identified the structural features of TRPV1-DPDA complexes, starting with a consideration of the orientations of the ligands inside the TRPV1 binding site by using molecular docking. After this, a chemometrics analysis was performed (i) to compare the orientations of the antagonists (by using LigRMSD), (ii) to describe the recurrent interactions between the protein residues and ligand groups in the complexes (by using interaction fingerprints), and (iii) to describe the relationship between topological features of the ligands and their differential antagonistic activities (by using a quantitative structure-activity relationship (QSAR) with 2D autocorrelation descriptors). The interactions between the DPDA groups and the residues Y511, S512, T550, R557, and E570 (with a recognized role in the binding of classic ligands), and the occupancy of isoquinoline or 3-hydroxy-3,4-dihydroquinolin-2(1H)-one groups of the DPDAs in the vanilloid pocket of TRPV1 were clearly described. Based on the results, the structural features that explain why DPDAs inactivate TRPV1 were clearly exposed. These features can be considered for the design of novel TRPV1 antagonists.


Asunto(s)
Moduladores del Transporte de Membrana/química , Simulación del Acoplamiento Molecular , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/química , Humanos
6.
Cell Physiol Biochem ; 55(S3): 14-45, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33656309

RESUMEN

Although ion channels are crucial in many physiological processes and constitute an important class of drug targets, much is still unclear about their function and possible malfunctions that lead to diseases. In recent years, computational methods have evolved into important and invaluable approaches for studying ion channels and their functions. This is mainly due to their demanding mechanism of action where a static picture of an ion channel structure is often insufficient to fully understand the underlying mechanism. Therefore, the use of computational methods is as important as chemical-biological based experimental methods for a better understanding of ion channels. This review provides an overview on a variety of computational methods and software specific to the field of ion-channels. Artificial intelligence (or more precisely machine learning) approaches are applied for the sequence-based prediction of ion channel family, or topology of the transmembrane region. In case sufficient data on ion channel modulators is available, these methods can also be applied for quantitative structureactivity relationship (QSAR) analysis. Molecular dynamics (MD) simulations combined with computational molecular design methods such as docking can be used for analysing the function of ion channels including ion conductance, different conformational states, binding sites and ligand interactions, and the influence of mutations on their function. In the absence of a three-dimensional protein structure, homology modelling can be applied to create a model of your ion channel structure of interest. Besides highlighting a wide range of successful applications, we will also provide a basic introduction to the most important computational methods and discuss best practices to get a rough idea of possible applications and risks.


Asunto(s)
Inteligencia Artificial , Canales Iónicos/química , Moduladores del Transporte de Membrana/química , Simulación de Dinámica Molecular , Programas Informáticos , Animales , Sitios de Unión , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Ligandos , Moduladores del Transporte de Membrana/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad Cuantitativa , Homología Estructural de Proteína
7.
Cell Physiol Biochem ; 55(S3): 87-107, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667333

RESUMEN

Potassium channels of the tandem of two-pore-domain (K2P) family were among the last potassium channels cloned. However, recent progress in understanding their physiological relevance and molecular pharmacology revealed their therapeutic potential and thus these channels evolved as major drug targets against a large variety of diseases. However, after the initial cloning of the fifteen family members there was a lack of potent and/or selective modulators. By now a large variety of K2P channel modulators (activators and blockers) have been described, especially for TASK-1, TASK-3, TREK-1, TREK2, TRAAK and TRESK channels. Recently obtained crystal structures of K2P channels, alanine scanning approaches to map drug binding sites, in silico experiments with molecular dynamics simulations (MDs) combined with electrophysiological studies to reveal the mechanism of channel inhibition/activation, yielded a good understanding of the molecular pharmacology of these channels. Besides summarizing drugs that were identified to modulate K2P channels, the main focus of this article is on describing the differential binding sites and mechanisms of channel modulation that are utilized by the different K2P channel blockers and activators.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/tratamiento farmacológico , Moduladores del Transporte de Membrana/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Sitios de Unión , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/metabolismo , Trastorno del Sistema de Conducción Cardíaco/patología , Expresión Génica , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico , Ligandos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/clasificación , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Simulación de Dinámica Molecular , Especificidad de Órganos , Canales de Potasio de Dominio Poro en Tándem/clasificación , Canales de Potasio de Dominio Poro en Tándem/genética , Unión Proteica , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína
8.
Commun Biol ; 4(1): 293, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674682

RESUMEN

Monoterpenes are major constituents of plant-derived essential oils and have long been widely used for therapeutic and cosmetic applications. The monoterpenes menthol and camphor are agonists or antagonists for several TRP channels such as TRPM8, TRPV1, TRPV3 and TRPA1. However, which regions within TRPV1 and TRPV3 confer sensitivity to monoterpenes or other synthesized chemicals such as 2-APB are unclear. In this study we identified conserved arginine and glycine residues in the linker between S4 and S5 that are related to the action of these chemicals and validated these findings in molecular dynamics simulations. The involvement of these amino acids differed between TRPV3 and TRPV1 for chemical-induced and heat-evoked activation. These findings provide the basis for characterization of physiological function and biophysical properties of ion channels.


Asunto(s)
Moduladores del Transporte de Membrana/farmacología , Monoterpenos/farmacología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Arginina , Alcanfor/química , Alcanfor/farmacología , Glicina , Células HEK293 , Humanos , Potenciales de la Membrana , Moduladores del Transporte de Membrana/química , Mentol/química , Mentol/farmacología , Ratones , Simulación de Dinámica Molecular , Estructura Molecular , Monoterpenos/química , Ratas , Relación Estructura-Actividad , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
9.
Commun Biol ; 4(1): 174, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564124

RESUMEN

Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.


Asunto(s)
Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Sitios de Unión , Células CHO , Cricetulus , Cinética , Potenciales de la Membrana , Moduladores del Transporte de Membrana/química , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Taquifilaxis
10.
Structure ; 29(3): 261-274.e6, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32966762

RESUMEN

The structure of the TriABC inner membrane component of the triclosan/SDS-specific efflux pump from Pseudomonas aeruginosa was determined by cryoelectron microscopy to 4.5 Å resolution. The complete structure of the inner membrane transporter TriC of the resistance-nodulation-division (RND) superfamily was solved, including a partial structure of the fused periplasmic membrane fusion subunits, TriA and TriB. The substrate-free conformation of TriABC represents an intermediate step in efflux complex assembly before the engagement of the outer membrane channel. Structural analysis identified a tunnel network whose constriction impedes substrate efflux, indicating inhibition of TriABC in the unengaged state. Blind docking studies revealed binding to TriC at the same loci by substrates and bulkier non-substrates. Together with functional analyses, we propose that selective substrate translocation involves conformational gating at the tunnel narrowing that, together with conformational ordering of TriA and TriB, creates an engaged state capable of mediating substrate efflux.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Unión Proteica , Pseudomonas aeruginosa , Triclosán/química , Triclosán/farmacología
11.
Elife ; 92020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33236980

RESUMEN

Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin (CaM). Molecular details of both CaM and drug binding have remained elusive so far. Here, we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and CaM. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand-binding site can be transmitted to the central ion-conducting pore of TRPC4. CaM binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel CaM-induced regulatory mechanism of canonical TRP channels.


Asunto(s)
Calmodulina/metabolismo , Moduladores del Transporte de Membrana/farmacología , Piridazinas/farmacología , Canales Catiónicos TRPC/efectos de los fármacos , Proteínas de Pez Cebra/efectos de los fármacos , Animales , Sitios de Unión , Calmodulina/química , Calmodulina/genética , Células HEK293 , Humanos , Ligandos , Potenciales de la Membrana , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Piridazinas/química , Piridazinas/metabolismo , Células Sf9 , Relación Estructura-Actividad , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Xenopus , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Eur J Pharm Biopharm ; 157: 165-174, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33122117

RESUMEN

In the current scenario, frontline antibiotics are losing effectiveness against multidrug-resistant (MDR) bacteria because of the single mode of action. The accumulation of mutations and spread of antibiotic resistance markers among the bacteria results into the severe threat to community health. Now, there is an urgent requirement for the development of an alternate and as well as multiple-targeted action of drugs to stop the spread of resistance in bacteria. Here, we showed an alternative nanoparticle based photodynamic therapy (PDT) targeting the bacterial efflux pumps and its cell wall. The dextran capped gold nanoparticles (GNPDEX) were localized to the bacterial surface by nanoparticle attached Concanavalin-A (ConA), where GNPDEX attached methylene blue (MB) photosensitizer as an MB@GNPDEX-ConA formulation induced the killing of MDR Klebsiella pneumoniae clinical isolates in no time. The intervention of efflux pump inhibitor (EPI) further improved the MB@GNPDEX-ConA treatment modality and displayed the maximum bactericidal cytoplasmic phototoxicity. The CCCP EPI (carbonyl cyanide m-chlorophenylhydrazone) with the PDT increased the bacterial killing by>3 log10 as compared with or without EPI intervention. Further, the fractionated (two light treatment after long dark phase) PDT treatment modality decreased the bacterial biofilm growth up to ~90%. The microscopic as well as ROS fluorescent probes showed the singlet oxygen mediated cytotoxicity. The mode of interactions and genomic DNA photo-toxicity confirmed that EPI enhanced the killing mediated by singlet oxygen generation. The multi-targeted (Cell wall, DNA and efflux pump) modality of MB@GNPDEX-ConA in presence of EPI is an effective and alternative therapeutic approach against most potent Klebsiella MDR infections.


Asunto(s)
Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Farmacorresistencia Bacteriana Múltiple , Oro/química , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Nanopartículas del Metal , Azul de Metileno/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Carbonil Cianuro m-Clorofenil Hidrazona/química , Concanavalina A/química , Composición de Medicamentos , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/metabolismo , Moduladores del Transporte de Membrana/química , Azul de Metileno/química , Viabilidad Microbiana/efectos de los fármacos , Nanomedicina , Fármacos Fotosensibilizantes/química
13.
Toxins (Basel) ; 12(10)2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053750

RESUMEN

Peptide toxins isolated from venomous creatures, long prized as research tools due to their innate potency for ion channels, are emerging as drugs as well. However, it remains challenging to understand why peptide toxins bind with high potency to ion channels, to identify residues that are key for activity, and to improve their affinities via mutagenesis. We use WaterMap, a molecular dynamics simulation-based method, to gain computational insight into these three questions by calculating the locations and thermodynamic properties of water molecules in the peptide toxin binding sites of five ion channels. These include an acid-sensing ion channel, voltage-gated potassium channel, sodium channel in activated and deactivated states, transient-receptor potential channel, and a nicotinic receptor whose structures were recently determined by crystallography and cryo-electron microscopy (cryo-EM). All channels had water sites in the peptide toxin binding site, and an average of 75% of these sites were stable (low-energy), and 25% were unstable (medium or high energy). For the sodium channel, more unstable water sites were present in the deactivated state structure than the activated. Additionally, for each channel, unstable water sites coincided with the positions of peptide toxin residues that previous mutagenesis experiments had shown were important for activity. Finally, for the sodium channel in the deactivated state, unstable water sites were present in the peptide toxin binding pocket but did not overlap with the peptide toxin, suggesting that future experimental efforts could focus on targeting these sites to optimize potency.


Asunto(s)
Descubrimiento de Drogas , Canales Iónicos/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Simulación de Dinámica Molecular , Péptidos/farmacología , Toxinas Biológicas/farmacología , Agua/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía , Humanos , Canales Iónicos/química , Canales Iónicos/metabolismo , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Termodinámica , Toxinas Biológicas/metabolismo
14.
Curr Protein Pept Sci ; 21(5): 527-541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31951167

RESUMEN

Antimicrobial peptides (AMPs) have been found in all organism taxa and may play an essential role as a host defense system. AMPs are organized in various conformations, such as linear peptides, disulfide bond-linked peptides, backbone-linked peptides and circular peptides. AMPs apparently act primarily on the plasma membrane, although an increasing number of works have shown that they may also target various intracellular sites. Spider venoms are rich sources of biomolecules that show several activities, including modulation or blockage of ion channels, anti-insect, anti-cancer, antihypertensive and antimicrobial activities, among others. In spider venoms from the Lycosidae family there are many linear AMPs with a wide range of activities against several microorganisms. Due to these singular activities, some Lycosidae AMPs have been modified to improve or decrease desirable or undesirable effects, respectively. Such modifications, especially with the aim of increasing their antibiotic activity, have led to the filing of many patent applications. This review explores the abundance of Lycosidae venom AMPs and some of their derivatives, and their use as new drug models.


Asunto(s)
Antiinfecciosos/química , Antihipertensivos/química , Péptidos Catiónicos Antimicrobianos/química , Antineoplásicos/química , Moduladores del Transporte de Membrana/química , Arañas/química , Secuencia de Aminoácidos , Animales , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antihipertensivos/aislamiento & purificación , Antihipertensivos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Membrana Celular/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Expresión Génica , Hemólisis/efectos de los fármacos , Humanos , Moduladores del Transporte de Membrana/aislamiento & purificación , Moduladores del Transporte de Membrana/farmacología , Peso Molecular , Patentes como Asunto , Conejos , Venenos de Araña/química , Arañas/fisiología
15.
Prog Biophys Mol Biol ; 150: 153-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525385

RESUMEN

Dewetting transition - a concept borrowed from fluid mechanics - is a physiological process that takes place inside the hydrophobic pores of ion channels. This transient phenomenon causes a metastable state that forbids water molecules to cross microscopic receptor cavities. This leads to a decreased conductance, a closure of the pore and, subsequently, severe impairment of cellular performance. We suggest that artificially-provoked dewetting transition in ion channel hydrophobic pores might stand for a molecular candidate to erase detrimental organisms, such as viruses, bacteria, and cancer cells. We describe a novel type of high-affinity monoclonal antibody, that: a) targets specific trans-membrane receptor structures of harmful or redundant cells; b) is equipped with lipophilic and/or hydrophobic fragments that prevent physiological water flow inside ion channels. Therefore, we achieve an artificial dewetting transition inside receptor cavities, that causes discontinuity within transmembrane ionic flows, channel blockage, and subsequent damage of morbid cells. As an example, we describe dewetting monoclonal antibodies that target the M2 channel of the Influenza A virus: they might prevent water from entering pores thus leading to virion impairment.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Canales Iónicos/inmunología , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/inmunología , Animales , Bacterias/metabolismo , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoterapia/métodos , Activación del Canal Iónico/inmunología , Modelos Moleculares , Transición de Fase , Unión Proteica , Conformación Proteica , Temperatura , Virus/metabolismo , Agua
16.
Expert Rev Proteomics ; 17(1): 67-83, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834817

RESUMEN

Introduction: A few scorpions are dangerous to humans. Their medical relevance was the initial driving force for venom research. By classical biochemistry and molecular cloning, several venom peptides and their coding transcripts were characterized, mainly those related to toxins. The discovery of other components with novel activities and potential applications has revitalized the interest in the field in the last decade and a half. Nontoxic scorpion species have also attracted major interest.Areas covered: Advances in the identification of scorpion venom components via high-throughput venomics (genomics, transcriptomics and proteomics) up to 2019 are summarized. A classification system for venom-related transcripts and proteins, together with an intuitive systematic nomenclature for RNAseq-generated transcripts are proposed. Venom components classified as Na+, K+, Ca2+, Cl- and TRP channel toxins, enzymes, protease inhibitors, host defense peptides and other peptidic molecules are briefly reviewed, giving a comprehensive picture of the venom.Expert opinion: Modern high-throughput technologies applied to scorpion venom studies have resulted in a dramatic increase in both, the number and diversity of available sequences, leading to a deeper understanding of the composition of scorpion venoms. Still, many newly-discovered venom constituents remain to be characterized, to complete the puzzle of scorpion venoms.


Asunto(s)
Venenos de Escorpión/química , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/toxicidad , Humanos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/clasificación , Moduladores del Transporte de Membrana/toxicidad , Venenos de Escorpión/clasificación , Venenos de Escorpión/toxicidad
17.
Drug Discov Today ; 25(2): 344-366, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31756511

RESUMEN

hERG is best known as a primary anti-target, the inhibition of which is responsible for serious side effects. A renewed interest in hERG as a desired target, especially in oncology, was sparked because of its role in cellular proliferation and apoptosis. In this study, we survey the most recent advances regarding hERG by focusing on SAR in the attempt to elucidate, at a molecular level, off-target and on-target actions of potential hERG binders, which are highly promiscuous and largely varying in structure. Understanding the rationale behind hERG interactions and the molecular determinants of hERG activity is a real challenge and comprehension of this is of the utmost importance to prioritize compounds in early stages of drug discovery and to minimize cardiotoxicity attrition in preclinical and clinical studies.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Moduladores del Transporte de Membrana , Animales , Diseño de Fármacos , Canales de Potasio Éter-A-Go-Go/agonistas , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/fisiología , Humanos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Relación Estructura-Actividad
18.
FASEB J ; 33(8): 9154-9166, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31063701

RESUMEN

Voltage-gated Kv7/KCNQ/M potassium channels play an essential role in the control of membrane potential and neuronal excitability. Activation of the neuronal Kv7/KCNQ/M-current represents an attractive therapeutic strategy for treatment of hyperexcitability-related neuropsychiatric disorders such as epilepsy, pain, and depression, which is an unmet medical need. In this study, we synthesized and characterized a novel compound, N-(4-(2-bromo-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2,6-dimethylphenyl)-3,3-dimethylbutanamide (SCR2682) 2,6-dimethyl-4-(piperidin-yl) phenyl)-amide derivative, that exhibits selective and potent activation of neuronal Kv7/KCNQ/M-channels. Whole-cell patch-clamp recordings of human embryonic kidney 293 cells expressing Kv7.2/Kv7.3 channels show that SCR2682 selectively activates the channel current in a dose-dependent manner with an EC50 of 9.8 ± 0.4 nM, which is ∼100-fold more potent than a U.S. Food and Drug Administration-approved antiepileptic drug (retigabine) for treatment of partial epilepsy. SCR2682 shifts voltage-dependent activation of the Kv7.2/7.3 current toward more negative membrane potential, to about -37 mV (V1/2). SCR2682 also activates the native M-current in rat hippocampal or cortical neurons, causing marked hyperpolarization and potent inhibition of neuronal firings. Mechanistically, mutating the tryptophan residue 236 located at the fifth transmembrane segment of Kv7.2 abolishes the chemical activation of the channel by SCR2682. Furthermore, intraperitoneal or intragastric administration of SCR2682 results in a dose-dependent inhibition of seizures by maximal electroshock. Taken together, our findings demonstrate that a novel small molecule, SCR2682, selectively and potently activates neuronal Kv7 channels and reverses epileptic seizures in rodents. Thus, SCR2682 may warrant further evaluation for clinical development of antiepileptic therapy.-Zhang, F., Liu, Y., Tang, F., Liang, B., Chen, H., Zhang, H., Wang, K. Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy.


Asunto(s)
Anticonvulsivantes/farmacología , Canal de Potasio KCNQ2/agonistas , Canal de Potasio KCNQ3/agonistas , Moduladores del Transporte de Membrana/farmacología , Piridinas/farmacología , Sustitución de Aminoácidos , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Células Cultivadas , Canal de Potasio ERG1/antagonistas & inhibidores , Epilepsia/tratamiento farmacológico , Células HEK293 , Humanos , Canales de Potasio KCNQ/agonistas , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/síntesis química , Moduladores del Transporte de Membrana/química , Ratones , Mutagénesis Sitio-Dirigida , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Piridinas/síntesis química , Piridinas/química , Ratas , Convulsiones/tratamiento farmacológico
19.
Biomed Chromatogr ; 33(10): e4604, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31128076

RESUMEN

HR011303 is a novel and highly selective urate transporter 1 (URAT1) inhibitor. In this study, a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantification of HR011303 in beagle dog plasma. Plasma samples were pretreated with protein-precipitation extraction by acetonitrile and added with a trifluoromethyl substituted analog of HR011303 as internal standard. The chromatographic separation was performed on a Shiseido C18 column (100 × 4.6 mm, i.d., 5 µm) by mobile phases consisting of 5 mm ammonium-formic acid (100:0.1) and acetonitrile-formic acid (100:0.1) solutions in gradient elution. The MS detection was conducted in electrospray positive ionization with multiple reactions monitoring at m/z 338 → 240 for HR011303 and m/z 328 → 230 for the internal standard using 25 eV argon gas collision induced dissociation. The established LC-MS/MS method showed good selectivity, sensitivity, precision and accuracy. The plasma pharmacokinetics of HR011303 in beagle dogs following both oral and intravenous administration were then successfully evaluated using this LC-MS/MS method.


Asunto(s)
Cromatografía Liquida/métodos , Moduladores del Transporte de Membrana/sangre , Moduladores del Transporte de Membrana/farmacocinética , Transportadores de Anión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Espectrometría de Masas en Tándem/métodos , Animales , Perros , Estabilidad de Medicamentos , Femenino , Modelos Lineales , Masculino , Moduladores del Transporte de Membrana/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Int J Mol Sci ; 20(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141957

RESUMEN

The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.


Asunto(s)
Moduladores del Transporte de Membrana/química , Canales Catiónicos TRPM/agonistas , Animales , Sitios de Unión , Humanos , Moduladores del Transporte de Membrana/farmacología , Unión Proteica , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA