Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570068

RESUMEN

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Asunto(s)
Ácidos Araquidónicos , Encefalomielitis Autoinmune Experimental , Endocannabinoides , Glicéridos , Ratones Endogámicos C57BL , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Glicéridos/metabolismo , Ratones , Endocannabinoides/metabolismo , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Sinapsis/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo
2.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441502

RESUMEN

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Asunto(s)
Monoacilglicerol Lipasas , Enfermedades Neurodegenerativas , Ratas , Ratones , Animales , Monoacilglicerol Lipasas/metabolismo , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Inflamación , Desarrollo de Medicamentos , Inhibidores Enzimáticos/farmacología
3.
Eur J Med Chem ; 268: 116285, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428273

RESUMEN

Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Monoacilglicerol Lipasas/metabolismo , Depresión/tratamiento farmacológico , Monoglicéridos , Relación Estructura-Actividad , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Endocannabinoides
4.
Int Immunopharmacol ; 131: 111904, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518595

RESUMEN

Intervertebral disc degeneration (IVDD) stands as the primary cause of low back pain (LBP). A significant contributor to IVDD is nucleus pulposus cell (NPC) senescence. However, the precise mechanisms underlying NPC senescence remain unclear. Monoacylglycerol lipase (MAGL) serves as the primary enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), breaking down monoglycerides into glycerol and fatty acids. It plays a crucial role in various pathological processes, including pain, inflammation, and oxidative stress. In this study, we utilized a lipopolysaccharide (LPS)-induced NPC senescence model and a rat acupuncture-induced IVDD model to investigate the role of MAGL in IVDD both in vitro and in vivo. Initially, our results showed that MAGL expression was increased 2.41-fold and 1.52-fold within NP tissues from IVDD patients and rats induced with acupuncture, respectively. This increase in MAGL expression was accompanied by elevated expression of p16INK4α. Following this, it was noted that the suppression of MAGL resulted in a notable decrease in the quantity of SA-ß-gal-positive cells and hindered the manifestation of p16INK4α and the inflammatory factor IL-1ß in NPCs. MAGL inhibition promotes type II collagen (Col-2) expression and inhibits matrix metalloproteinase 13 (MMP13), thereby restoring the balance of extracellular matrix (ECM) metabolism both in vitro and in vivo. A significant role for STING has also been demonstrated in the regulation of NPC senescence by MAGL. The expression of the STING protein was reduced by 57% upon the inhibition of MAGL. STING activation can replicate the effects of MAGL and substantially increase LPS-induced inflammation while accelerating the senescence of NPCs. These results strongly indicate that the inhibition of MAGL can significantly suppress nucleus pulposus senescence via its interaction with STING, consequently restoring the balance of ECM metabolism. This insight provides new perspectives for potential treatments for IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratas , Inflamación/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Lipopolisacáridos/farmacología , Monoacilglicerol Lipasas/metabolismo
5.
Neurochem Int ; 175: 105717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447759

RESUMEN

OBJECTIVES: Monoacylglycerol lipase (MAGL) is a cytosolic serine hydrolase considered a potential novel drug target for the treatment of CNS disorders including epilepsy. Here we examined MAGL levels in a rat model of epilepsy. METHODS: Autoradiography has been used to validate the binding properties of the MAGL radiotracer, [3H]T-401, in the rat brain, and to explore spatial and temporal changes in binding levels in a model of temporal lobe epilepsy model using unilateral intra-hippocampal injections of kainic acid (KA) in rats. RESULTS: Specific and saturable binding of [3H]T-401 was detected in both cortical grey and subcortical white matter. Saturation experiments revealed a KD in the range between 15 nM and 17 nM, and full saturation was achieved at concentrations around 30 nM. The binding could be completely blocked with the cold ligand (Ki 44.2 nM) and at higher affinity (Ki 1.27 nM) with another structurally different MAGL inhibitor, ABD 1970. Bilateral reduction in [3H]T-401 binding was observed in the cerebral cortex and the hippocampus few days after status epilepticus that further declined to a level of around 30% compared to the control. No change in binding was observed in either the hypothalamus nor the white matter at any time point. Direct comparison to [3H]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A), another protein localized in the pre-synapse, revealed that while binding to MAGL remained low in the chronic phase, SV2A was increased significantly in some cortical areas. SIGNIFICANCE: These data show that MAGL is reduced in the cerebral cortex and hippocampus in a chronic epilepsy model and indicate that MAGL inhibitors may further reduce MAGL activity in the treatment resistant epilepsy patient.


Asunto(s)
Epilepsia , Estado Epiléptico , Humanos , Ratas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Monoacilglicerol Lipasas , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Epilepsia/metabolismo , Inhibidores Enzimáticos/farmacología
6.
Theranostics ; 14(4): 1583-1601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389852

RESUMEN

Rationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/ß-catenin signaling. ß-catenin knockout blocked 2-AG/CB2-induced fatty acid ß-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.


Asunto(s)
Monoacilglicerol Lipasas , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , beta Catenina , Fibrosis , Riñón
7.
Mol Pharmacol ; 105(2): 75-83, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195158

RESUMEN

The mechanisms of ß-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: ß-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.


Asunto(s)
Analgesia , Ácidos Araquidónicos , Endocannabinoides , Glicéridos , Sesquiterpenos Policíclicos , Animales , Ratas , Endocannabinoides/farmacología , Glicerol , Isótopos , Monoacilglicerol Lipasas , Receptor Cannabinoide CB2
8.
Sci Rep ; 14(1): 522, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177255

RESUMEN

S-palmitoylases and S-depalmitoylases are differentially expressed in various cancers and several malignant tumors and show a strong prognostic ability. Notwithstanding, the potential clinical impact of S-palmitoylases and S-depalmitoylases, particularly in the prognosis and progression of lung adenocarcinoma (LUAD), has not been clarified. Expression levels of S-palmitoylases and S-depalmitoylases in LUAD were investigated using TCGA. GEPIA was used to evaluate the mRNA levels of S-palmitoylases and S-depalmitoylases at different pathological stages. Metascape was used to investigate the biological significance of S-palmitoylases and S-depalmitoylases. The Kaplan-Meier plotter was used to analyze the prognostic value of S-palmitoylases and S-depalmitoylases. CBioportal was used to analyze gene alterations in S-palmitoylases and S-depalmitoylases. UALCAN was used to examine DNA promoter methylation levels of S-palmitoylases and S-depalmitoylases. Finally, we investigated the relationship between S-palmitoylases, S-depalmitoylases, and tumor-infiltrating immune cells using TIMER. Correlations with immune checkpoint-related genes were determined using the R packages reshape2, ggpubr, ggplot2, and corrplot. PCR was also performed to assess the degree of ZDHHC4/12/18/24 and APT2 transcript expression in lung adenocarcinoma and adjacent normal lung tissues. HPA was utilized to investigate protein levels of S-palmitoylases and S-depalmitoylases in LUAD and normal lung tissue. Our study found that ZDHHC2/3/4/5/6/7/9/12/13/16/18/20/21/23/24, APT1/2, PPT1, LYPLAL1, ABHD4/10/11/12/13 and ABHD17C mRNA expression was significantly upregulated in LUAD, whereas ZDHHC1/8/11/11B/14/15/17/19/22, ABHD6/16A and ABHD17A mRNA expression was significantly downregulated. The functions of the differentially expressed S-palmitoylases and S-depalmitoylases were mainly associated with protein-cysteine S-palmitoyltransferase and protein-cysteine S-acyltransferase activities. Patients with high expression of ZDHHC4/12/18/24, APT2, ABHD4, ABHD11 and ABHD12 had a shorter overall survival. Infiltration of six immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) was closely associated with the expression of ZDHHC4/12/18/24 and APT2. ZDHHC4/12/18/24 and APT2 positively correlated with the immune checkpoint-related gene CD276. We assessed the mRNA levels of ZDHHC4/12/18/24 and APT2 using qRT-PCR and found increased expression of ZDHHC4/12/18/24 in LUAD compared with healty control lung tissues. ZDHHC4/12/18/24, and APT2 are potential prognostic biomarkers of LUAD. Their expression levels could be related to the tumor microenvironment in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Cisteína , Pronóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , ARN Mensajero/genética , Biomarcadores , Biomarcadores de Tumor/genética , Microambiente Tumoral , Antígenos B7 , Monoacilglicerol Lipasas , Serina Proteasas
9.
Cancer Immunol Res ; 12(2): 161-179, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38215051

RESUMEN

Tumor metastasis is a spatial and temporal process that starts with remodeling to generate a proper premetastatic niche in a distant tissue. Infiltration of immunosuppressive macrophages is one of the notable characteristics in the premetastatic niche, which is a fundamental requirement for primary tumor metastasis. Here, we demonstrated that small extracellular vesicles (sEV) carrying RAB21 homed to lung macrophages and interacted with integrin-ß1 on macrophages. ABHD12 expression was high in lung metastatic tumors and was mostly expressed by macrophages. Head and neck squamous cell carcinoma (HNSCC)-derived sEVs carrying ABHD12-polarized macrophages toward an immunosuppressive phenotype, driving premetastatic niche formation, which facilitated lung metastasis. ABHD12 additionally upregulated S1PR1 by activating the AKT-FoxO1 pathway in macrophages, and significantly enhanced antitumor responses were observed in tumor models treated with agents targeting both S1PR1 and PD-1. Collectively, our study suggests that RAB21+ABHD12+ sEVs derived from HNSCC cells contribute to the formation of the immunosuppressive microenvironment in the premetastatic niche and are a potential therapeutic target for enhancing the antitumor efficacy of anti-PD-1 therapy.


Asunto(s)
Vesículas Extracelulares , Neoplasias de Cabeza y Cuello , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Macrófagos/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Microambiente Tumoral , Proteínas de Unión al GTP rab/genética , Monoacilglicerol Lipasas
10.
Mol Carcinog ; 63(4): 647-662, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197491

RESUMEN

Colorectal cancer (CRC) continues to be a prevalent malignancy, posing a significant risk to human health. The involvement of alpha/beta hydrolase domain 6 (ABHD6), a serine hydrolase family member, in CRC development was suggested by our analysis of clinical data. However, the role of ABHD6 in CRC remains unclear. This study seeks to elucidate the clinical relevance, biological function, and potential molecular mechanisms of ABHD6 in CRC. We investigated the role of ABHD6 in clinical settings, conducting proliferation, migration, and cell cycle assays. To determine the influence of ABHD6 expression levels on Oxaliplatin sensitivity, we also performed apoptosis assays. RNA sequencing and KEGG analysis were utilized to uncover the potential molecular mechanisms of ABHD6. Furthermore, we validated its expression levels using Western blot and reactive oxygen species (ROS) detection assays. Our results demonstrated that ABHD6 expression in CRC tissues was notably lower compared to adjacent normal tissues. This low expression correlated with a poorer prognosis for CRC patients. Moreover, ABHD6 overexpression impeded CRC cell proliferation and migration while inducing G0/G1 cell cycle arrest. In vivo experiments revealed that downregulation of ABHD6 resulted in an increase in tumor weight and volume. Mechanistically, ABHD6 overexpression inhibited the activation of the AKT signaling pathway and decreased ROS levels in CRC cells, suggesting the role of ABHD6 in CRC progression via the AKT signaling pathway. Our findings demonstrate that ABHD6 functions as a tumor suppressor, primarily by inhibiting the AKT signaling pathway. This role establishes ABHD6 as a promising prognostic biomarker and a potential therapeutic target for CRC patients.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas c-akt , Humanos , Especies Reactivas de Oxígeno , Proliferación Celular , Puntos de Control de la Fase G1 del Ciclo Celular , Hidrolasas , Transducción de Señal , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Movimiento Celular , Monoacilglicerol Lipasas
11.
Ophthalmic Genet ; 45(2): 113-119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38186350

RESUMEN

BACKGROUND: PHARC syndrome (MIM:612674) is a rare neurodegenerative disorder characterized by demyelinating polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts (PHARC). The syndrome is caused by mutations in the ABHD12 gene, which encodes αß-hydrolase domain-containing protein 12 related to endocannabinoid metabolism. PHARC syndrome is one of the rare diseases; so far, only 51 patients have been reported in the literature. METHODS: We evaluated the 25-year-old male patient referred to us due to vision loss, cataracts, and hearing loss. Ophthalmological examinations and genetic analyses were performed using targeted next-generation sequencing. RESULTS: In the genetic analysis, the patient was diagnosed with PHARC syndrome by detecting homozygous (NM_001042472.3): c.871del (p.Tyr291IlefsTer28) novel pathogenic variation in the ABHD12 gene. Following the molecular diagnosis, he was referred to the neurology department for reverse phenotyping and sensorimotor demyelinating polyneuropathy was detected in the neurological evaluation. CONCLUSIONS: In this study, we report a novel variation in ABHD12 gene in the first Turkish-origin PHARC patient. We present this study to contribute genotype-phenotype correlation of PHARC syndrome and emphasize the importance of molecular genetic diagnosis in order to determine the appropriate clinical approach. This report is essential for expanding the phenotypic spectrum in different populations and understanding the genotype-phenotype correlation of PHARC syndrome via novel pathogenic variation in the ABHD12 gene.


Asunto(s)
Ataxia , Catarata , Pérdida Auditiva , Polineuropatías , Retinitis Pigmentosa , Masculino , Humanos , Adulto , Fenotipo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Mutación , Síndrome , Catarata/diagnóstico , Catarata/genética , Polineuropatías/diagnóstico , Polineuropatías/genética , Polineuropatías/patología , Linaje , Monoacilglicerol Lipasas/genética
12.
J Nucl Med ; 65(2): 300-305, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164615

RESUMEN

This study aimed to evaluate (R)-[18F]YH134 as a novel PET tracer for imaging monoacylglycerol lipase (MAGL). Considering the ubiquitous expression of MAGL throughout the whole body, the impact of various MAGL inhibitors on (R)-[18F]YH134 brain uptake and its application in brain-periphery crosstalk were explored. Methods: MAGL knockout and wild-type mice were used to evaluate (R)-[18F]YH134 in in vitro autoradiography and PET experiments. To explore the impact of peripheral MAGL occupancy on (R)-[18F]YH134 brain uptake, PET kinetics with an arterial input function were studied in male Wistar rats under baseline and blocking conditions. Results: In in vitro autoradiography, (R)-[18F]YH134 revealed a heterogeneous distribution pattern with high binding to MAGL-rich brain regions in wild-type mouse brain slices, whereas the radioactive signal was negligible in MAGL knockout mouse brain slices. The in vivo brain PET images of (R)-[18F]YH134 in wild-type and MAGL knockout mice demonstrated its high specificity and selectivity in mouse brain. A Logan plot with plasma input function was applied to estimate the distribution volume (V T) of (R)-[18F]YH134. V T was significantly reduced by a brain-penetrant MAGL inhibitor but was unchanged by a peripherally restricted MAGL inhibitor. The MAGL target occupancy in the periphery was estimated using (R)-[18F]YH134 PET imaging data from the brain. Conclusion: (R)-[18F]YH134 is a highly specific and selective PET tracer with favorable kinetic properties for imaging MAGL in rodent brain. Our results showed that blocking of the peripheral target influences brain uptake but not the V T of (R)-[18F]YH134. (R)-[18F]YH134 can be used for estimating the dose of MAGL inhibitor at half-maximal peripheral target occupancy.


Asunto(s)
Monoacilglicerol Lipasas , Neuroimagen , Ratas , Ratones , Masculino , Animales , Monoacilglicerol Lipasas/metabolismo , Ratas Wistar , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Ratones Noqueados , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
13.
J Med Chem ; 67(3): 1758-1782, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241614

RESUMEN

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Ratones , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Monoglicéridos , Ligandos
14.
Prog Neurobiol ; 233: 102559, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159878

RESUMEN

Trafficking of α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/ß-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6KO) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6KO mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.


Asunto(s)
Hidrolasas , Receptores AMPA , Ratones , Animales , Receptores AMPA/metabolismo , Hidrolasas/metabolismo , Plasticidad Neuronal/fisiología , Aprendizaje , Sinapsis/metabolismo , Endocitosis , Hipocampo/metabolismo , Monoacilglicerol Lipasas/metabolismo
15.
Nat Commun ; 14(1): 8039, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052772

RESUMEN

Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.


Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Animales , Ratones , Rimonabant , Endocannabinoides , Analgésicos/farmacología , Receptor Cannabinoide CB1 , Ratones Endogámicos C57BL
16.
Molecules ; 28(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959665

RESUMEN

Acute kidney injury (AKI) is a complication of a wide range of serious illnesses for which there is still no better therapeutic agent. We demonstrated that M-18C has a favorable inhibitory effect on monoacylglycerol lipase (MAGL), and several studies have demonstrated that nerve inflammation could be effectively alleviated by inhibiting MAGL, suggesting that M-18C has good anti-inflammatory activity. In this study, we investigated the effect of M-18C on LPS-induced acute kidney injury (AKI), both in vivo and in vitro, by using liquid chromatography-mass spectrometry (LC-MS), 16S rRNA gene sequencing, Western blot, and immunohistochemistry. The results showed that both in vivo and in vitro M-18C reduced the release of TNF-α and IL-1ß by inhibiting the expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) protein; in addition, M-18C was able to intervene in LPS-induced AKI by ameliorating renal pathological injury, repairing the intestinal barrier, and regulating gut bacterial flora and serum metabolism. In conclusion, this study suggests that M-18C has the potential to be a new drug for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Microbioma Gastrointestinal , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Monoacilglicerol Lipasas , Lipopolisacáridos/efectos adversos , ARN Ribosómico 16S , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Inflamasomas/metabolismo
17.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4397-4412, 2023 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-38013174

RESUMEN

Monoacylglycerol lipase (MGL) is a serine hydrolase that plays a major role in the degradation of endogenous cannabinoid 2-arachidonoylglycerol. The role of MGL in some cancer cells has been confirmed, where inhibition of the MGL activity shows inhibition on cell proliferation. This makes MGL a promising drug target for the treatment of cancer. Recently, the development of covalent inhibitors of MGL has developed rapidly. These drugs have strong covalent binding ability, high affinity, long duration, low dose and low risk of drug resistance, so they have received increasing attention. This article introduces the structure and function of MGL, the characteristics, mechanisms and progress of covalent MGL inhibitors, providing reference for the development of novel covalent small molecule inhibitors of MGL.


Asunto(s)
Endocannabinoides , Monoacilglicerol Lipasas , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/metabolismo , Endocannabinoides/metabolismo
18.
Nat Commun ; 14(1): 7649, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012138

RESUMEN

The identification and characterization of enzyme function is largely lacking behind the rapidly increasing availability of large numbers of sequences and associated high-resolution structures. This is often hampered by lack of knowledge on in vivo relevant substrates. Here, we present a case study of a high-resolution structure of an unusual orphan lipase in complex with an endogenous C18 monoacylglycerol ester reaction intermediate from the expression host, which is insoluble under aqueous conditions and thus not accessible for studies in solution. The data allowed its functional characterization as a prototypic long-chain monoacylglycerol lipase, which uses a minimal lid domain to position the substrate through a hydrophobic tunnel directly to the enzyme's active site. Knowledge about the molecular details of the substrate binding site allowed us to modulate the enzymatic activity by adjusting protein/substrate interactions, demonstrating the potential of our findings for future biotechnology applications.


Asunto(s)
Lipasa , Monoacilglicerol Lipasas , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Lipasa/metabolismo , Dominios Proteicos , Dominio Catalítico
19.
BMC Med Genomics ; 16(1): 235, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803361

RESUMEN

BACKGROUND: Mutations in ABHD12 (OMIM: 613,599) are associated with polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) syndrome (OMIM: 612674), which is a rare autosomal recessive neurodegenerative disease. PHARC syndrome is easily misdiagnosed as other neurologic disorders, such as retinitis pigmentosa, Charcot-Marie-Tooth disease, and Refsum disease, due to phenotype variability and slow progression. This paper presents a novel mutation in ABHD12 in two affected siblings with PHARC syndrome phenotypes. In addition, we summarize genotype-phenotype information of the previously reported patients with ABHD12 mutation. METHODS: Following a thorough medical evaluation, whole-exome sequencing was done on the proband to look for potential genetic causes. This was followed by confirmation of identified variant in the proband and segregation analysis in the family by Sanger sequencing. The variants were interpreted based on the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A novel pathogenic homozygous frameshift variant, NM_001042472.3:c.601dup, p.(Val201GlyfsTer4), was identified in exon 6 of ABHD12 (ACMG criteria: PVS1 and PM2, PM1, PM4, PP3, and PP4). Through Sanger sequencing, we showed that this variant is co-segregated with the disease in the family. Further medical evaluations confirmed the compatibility of the patients' phenotype with PHARC syndrome. CONCLUSIONS: Our findings expand the spectrum of mutations in the ABHD12 and emphasize the significance of multidisciplinary diagnostic collaboration among clinicians and geneticists to solve the differential diagnosis of related disorders. Moreover, a summary based on mutations found so far in the ABHD12 gene did not suggest a clear genotype-phenotype correlation for PHARC syndrome.


Asunto(s)
Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Humanos , Mutación del Sistema de Lectura , Retinitis Pigmentosa/genética , Mutación , Fenotipo , Linaje , Monoacilglicerol Lipasas/genética
20.
Mol Metab ; 78: 101822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838014

RESUMEN

OBJECTIVE: Pro-inflammatory polarization of adipose tissue macrophages (ATMs) plays a critical role in the pathogenesis of obesity-associated chronic inflammation. However, little is known about the role of lipids in the regulation of ATMs polarity and inflammation in response to metabolic stress. Deletion of α/ß-hydrolase domain-containing 6 (ABHD6), a monoacylglycerol (MAG) hydrolase, has been shown to protect against diet-induced obesity and insulin resistance. METHODS: Here we investigated the immunometabolic role of macrophage ABHD6 in response to nutrient excess using whole-body ABHD6-KO mice and human and murine macrophage cell-lines treated with KT203, a selective and potent pharmacological ABHD6 inhibitor. RESULTS: KO mice on high-fat diet showed lower susceptibility to systemic diet-induced inflammation. Moreover, in the setting of overnutrition, stromal vascular cells from gonadal fat of KO vs. control mice contained lower number of M1 macrophages and exhibited enhanced levels of metabolically activated macrophages (MMe) and M2 markers, oxygen consumption, and interleukin-6 (IL-6) release. Likewise, under in vitro nutri-stress condition, inhibition of ABHD6 in MMe-polarized macrophages attenuated the expression and release of pro-inflammatory cytokines and M1 markers and induced the upregulation of lipid metabolism genes. ABHD6-inhibited MMe macrophages showed elevated levels of peroxisome proliferator-activated receptors (PPARs) and 2-MAG species. Notably, among different MAG species, only 2-MAG treatment led to increased levels of PPAR target genes in MMe macrophages. CONCLUSIONS: Collectively, our findings identify ABHD6 as a key component of pro-inflammatory macrophage activation in response to excess nutrition and implicate an endogenous macrophage lipolysis/ABHD6/2-MAG/PPARs cascade, as a lipid signaling and immunometabolic pathway, which favors the anti-inflammatory polarization of ATMs in obesity.


Asunto(s)
Monoglicéridos , Receptores Activados del Proliferador del Peroxisoma , Humanos , Animales , Ratones , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Monoglicéridos/metabolismo , Ratones Obesos , Hidrolasas/genética , Hidrolasas/metabolismo , Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Antiinflamatorios , Dieta Alta en Grasa/efectos adversos , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA