RESUMEN
BACKGROUND: Pulmonary arterial hypertension (PAH) is a worldwide challenging disease characterized by progressive elevation of pulmonary artery pressure. The proliferation, migration and phenotypic transformation of pulmonary smooth muscle cells are the key steps of pulmonary vascular remodeling. Quercetin (3,3', 4', 5, 6-pentahydroxyflavone, Que) is a natural flavonol compound that has antioxidant, anti-inflammatory, anti-tumor and other biological activities. Studies have shown that Que has therapeutic effects on PAH. However, the effect of quercetin on pulmonary vascular remodeling in PAH and its mechanism remain unclear. METHODS AND RESULTS: In vivo, PAH rats were constructed by intraperitoneal injection of monocrotaline (MCT) at 60 mg/kg. Human pulmonary artery smooth muscle cells (HPASMCs) were treated with platelet-derived growth factor BB (PDGF-BB) 20 ng/mL to construct PAH cell model in vitro. The results showed that in vivo studies, MCT could induce right ventricular wall hyperplasia, narrow the small and medium pulmonary artery cavity, up-regulate the expression of proliferating and migration-related proteins proliferating cell nuclear antigen (PCNA) and osteopontin (OPN), and down-regulate the expression of alpha-smooth muscle actin (α-SMA). Que reversed the MCT-induced results. This process works by down-regulating the transforming growth factor-ß1 (TGF-ß1)/ Smad2/3 signaling pathway. In vitro studies, Que had the same effect on PDGF-BB-induced proliferation and migration cell models. CONCLUSIONS: Que inhibits the proliferation, migration and phenotypic transformation of HPASMCs by down-regulating TGF-ß1/Smad2/Smad3 pathway, thereby reducing right ventricular hyperplasia (RVH) and pulmonary vascular remodeling, providing potential pharmacological and molecular explanations for the treatment of PAH.
Asunto(s)
Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Monocrotalina , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Quercetina , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Remodelación Vascular , Animales , Remodelación Vascular/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/patología , Proteína Smad2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Quercetina/farmacología , Proliferación Celular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Becaplermina/farmacología , Osteopontina/metabolismoRESUMEN
Molecular hydrogen (H2) has antioxidant, anti-inflammatory, and anti-fibrotic effects. In a rat model simulating pulmonary fibrotic changes induced by monocrotaline-induced pulmonary hypertension (MPH), we had previously explored the impact of inhaled H2 on lung inflammation and blood pressure. In this study, we further focused the biological effects of H2 on mast cells (MCs) and the parameters of the fibrotic phenotype of the local tissue microenvironment. MPH resulted in a significantly increased number of MCs in both the pneumatic and respiratory parts of the lungs, an increased number of tryptase-positive MCs with increased expression of TGF-ß, activated interaction with immunocompetent cells (macrophages and plasma cells) and fibroblasts, and increased MC colocalization with a fibrous component of the extracellular matrix of connective tissue. The alteration in the properties of the MC population occurred together with intensified collagen fibrillogenesis and an increase in the integral volume of collagen and elastic fibers of the extracellular matrix of the pulmonary connective tissue. The exposure of H2 together with monocrotaline (MCT), despite individual differences between animals, tended to decrease the intrapulmonary MC population and the severity of the fibrotic phenotype of the local tissue microenvironment compared to changes in animals exposed to the MCT effect alone. In addition, the activity of collagen fibrillogenesis associated with MCs and the expression of TGF-ß and tryptase in MCs decreased, accompanied by a reduction in the absolute and relative content of reticular and elastic fibers in the lung stroma. Thus, with MCT exposure, inhaled H2 has antifibrotic effects involving MCs in the lungs of rats. This reveals the unknown development mechanisms of the biological effects of H2 on the remodeling features of the extracellular matrix under inflammatory background conditions of the tissue microenvironment.
Asunto(s)
Hidrógeno , Hipertensión Pulmonar , Pulmón , Mastocitos , Animales , Mastocitos/metabolismo , Mastocitos/efectos de los fármacos , Ratas , Hidrógeno/farmacología , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Microambiente Celular/efectos de los fármacos , Masculino , Factor de Crecimiento Transformador beta/metabolismo , Monocrotalina/toxicidad , Matriz Extracelular/metabolismo , Modelos Animales de Enfermedad , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Colágeno/metabolismo , Triptasas/metabolismoRESUMEN
Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid found in plants of the Crotalaria genus. As primary pollinators of Crotalaria plants, honeybees come into contact with this harmful substance. However, limited research has been conducted on the effects of MCT on Apis mellifera, particularly the risks of long-term exposure to sublethal concentrations. Through evaluating the proboscis extension reflex (PER) ability, analyzing the honeybee brain transcriptome, and analyzing the honeybee hemolymph metabolome, we discovered that sublethal concentrations of MCT impair the olfactory and memory capabilities of honeybees by affecting tryptophan (Trp) metabolism. Furthermore, MCT upregulates the expression of the corazonin receptor (CrzR) gene in the honeybee brain, which elevates reactive oxygen species (ROS) levels in the brain while reducing glucose levels in the hemolymph, consequently shortening the honeybees' lifespan. Our findings regarding the multifaceted impact of MCT on honeybees lay the foundation for exploring its toxicological pathways and management in honeybee populations.
Asunto(s)
Monocrotalina , Triptófano , Animales , Abejas/fisiología , Abejas/efectos de los fármacos , Triptófano/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Conducta Animal/efectos de los fármacos , Hemolinfa/metabolismo , NeuropéptidosRESUMEN
Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from Scutellaria baicalensis, which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Nontargeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCTPAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCTPAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCTinduced PAH in rats by reducing the Warburg effect.
Asunto(s)
Flavonoides , Glucólisis , Monocrotalina , Hipertensión Arterial Pulmonar , Animales , Ratas , Masculino , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Glucólisis/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ratas Sprague-Dawley , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Scutellaria baicalensis/química , Modelos Animales de Enfermedad , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Efecto Warburg en Oncología/efectos de los fármacosRESUMEN
Pulmonary arterial hypertension (PAH) is a complex disease characterized by elevated pulmonary vascular resistance, resulting in right ventricular (RV) hypertrophy and, eventually, failure, which remains the primary cause of mortality in PAH patients. While current PAH therapies primarily target vascular abnormalities, most fail to address RV dysfunction. Therefore, improving RV function is a critical treatment goal. Exercise has emerged as an effective intervention for PAH, but the specific impact of swimming exercise on this disease and its associated pathological changes has been less extensively studied. In this study, we investigated the effects of swimming training (60 min/day, 5 days/week for 4 weeks) on monocrotaline (MCT; 60 mg/kg, i. p.)-induced PAH in rats. Our findings demonstrate that swimming significantly attenuates RV hypertrophy and reduces mean pulmonary arterial pressure (MPAP), mitigating the detrimental effects of PAH. Furthermore, we observed structural remodeling in the right ventricle, including increased myocardial necrosis, collagen deposition, and fibrosis-related protein expression. Swimming exercise training was found to reduce these pathological changes, suggesting a protective effect on the right ventricle. Mechanistically, our study revealed the crucial role of meta-inflammation in PAH and the anti-PAH effects of exercise. Swimming training attenuated macrophage accumulation, reduced serum inflammatory cytokines, and improved systemic and RV insulin sensitivity, highlighting its potential to modulate meta-inflammatory processes. In summary, our study suggests that swimming training exerts a beneficial effect on RV function and hypertrophy in MCT-induced PAH rats by targeting meta-inflammation. These results underscore the potential value of exercise-based rehabilitation as a complementary therapy for PAH patients.
Asunto(s)
Hipertensión Pulmonar , Hipertrofia Ventricular Derecha , Monocrotalina , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Natación , Animales , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Masculino , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/patología , Ratas , Inflamación/terapia , Inflamación/patología , Inflamación/inducido químicamenteRESUMEN
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.
Asunto(s)
MicroARNs , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Función Ventricular Derecha , Animales , Humanos , Masculino , Ratones , Ratas , Proliferación Celular/genética , Modelos Animales de Enfermedad , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Monocrotalina , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Remodelación Vascular/genéticaRESUMEN
The number of individuals with underlying medical conditions has been increasing steadily. These individuals are relatively vulnerable to harmful external factors. But it has not been proven that the effects of hazardous chemicals may differ depending on their physicochemical properties. This study determines the toxic effects of two chemicals with high indoor exposure risk and different physicochemical properties on an underlying disease model. A pulmonary arterial hypertension (PAH) model was constructed by a single subcutaneous injection of monocrotaline (MCT; 60â¯mg/kg) into Sprague-Dawley rats. After three weeks, formaldehyde (FA; 2.5â¯mg/kg) and polyhexamethylene guanidine (PHMG; 0.05â¯mg/kg) were administered once via intratracheal instillation, and rats were necropsied one week later. Exposure to FA and PHMG affected organ weight and the Fulton and toxicity indices in rats induced with PAH. FA promoted bronchial injury and aggravated PAH, while PHMG only induced alveolar injury. Additionally, the differentially expressed genes were altered following exposure to FA and PHMG, as were the associated diseases (cardiovascular disease and pulmonary fibrosis, respectively). In conclusion, inhaled chemicals with different physicochemical properties can cause damage to organs, such as the lungs and heart, and can aggravate underlying diseases. This study elucidates indoor inhaled exposure-induced toxicities and alerts patients with pre-existing diseases to the harmful chemicals.
Asunto(s)
Modelos Animales de Enfermedad , Formaldehído , Lesión Pulmonar , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Formaldehído/toxicidad , Guanidinas/toxicidad , Monocrotalina/toxicidad , Exposición por Inhalación , Pulmón/efectos de los fármacos , Pulmón/patología , Hipertensión Arterial Pulmonar/inducido químicamente , Sustancias Peligrosas/toxicidadRESUMEN
Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy that, if not promptly treated, culminates in right heart failure. Therefore, pre-clinical studies are needed to support and optimize therapeutic approaches of PAH. Here, we explore a prospective function of sevoflurane in experimental PAH through regulating TRAF6. Monocrotaline (MCT)-induced PAH rats were subjected to sevoflurane inhalation and intratracheal instillation of lentivirus overexpressing TRAF6. Platelet-derived growth factor (PDGF)-treated pulmonary artery smooth muscle cells (PASMCs) were exposed to sevoflurane and genetically manipulated for TRAF6 overexpression. It was found that MCT and PDGF challenge upregulated the levels of TRAF6 in rat lung tissues and PASMCs, but sevoflurane treatment led to reduced TRAF6 expression. Sevoflurane inhalation in MCT-induced rats resulted in alleviative pulmonary vascular remodeling, mitigated right ventricular dysfunction and hypertrophy, improved mitochondrial function and dynamics, and inactivation of NF-κB pathway. In vitro studies confirmed that exposure to sevoflurane repressed PDGF-induced proliferation, migration, and phenotype switching of PASMCs, and suppressed mitochondrial dysfunction and NF-κB activation in PDGF-stimulated PASMCs. The beneficial impact of sevoflurane on pathological changes of lung and cell phenotype of PASMCs were reversed by overexpression of TRAF6. In summary, our study suggested the protective properties of sevoflurane in targeting PAH by downregulating TRAF6 expression, providing a novel avenue for the management of PAH.
Asunto(s)
Regulación hacia Abajo , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Ratas Sprague-Dawley , Sevoflurano , Factor 6 Asociado a Receptor de TNF , Animales , Sevoflurano/farmacología , Sevoflurano/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Ratas , Masculino , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Monocrotalina/toxicidad , FN-kappa B/metabolismo , Proliferación Celular/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células CultivadasRESUMEN
Induction of resistin-like molecule ß (Relm-ß) and mitofusin 2 (MFN2) mediated aberrant mitochondrial fission have been found to be involved in the pathogenesis of pulmonary arterial hypertension (PAH). However, the molecular mechanisms underlying Relm-ß regulation of MFN2 therefore mitochondrial fission remain unclear. This study aims to address these issues. Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. The results showed that Relm-ß promoted cells proliferation in PASMCs, this was accompanied with the upregulation of USP18, Twist1 and miR-214, and downregulation of MFN2. We found that Relm-ß increased USP18 expression which in turn raised Twist1 by suppressing its proteasome degradation. Elevation of Twist1 increased miR-214 expression and then reduced MFN2 expression and mitochondrial fragmentation leading to PASMCs proliferation. In vivo study, we confirmed that Relm-ß was elevated in MCT-induced PAH rat model, and USP18/Twist1/miR-214/MFN2 axis was altered similar as in vitro. Targeting this cascade by Relm-ß receptor inhibitor Calhex231, proteasome inhibitor MG-132, Twist1 inhibitor Harmine or miR-214 antagomiR prevented the development of pulmonary vascular remodeling and therefore PAH in MCT-treated rats. In conclusion, we demonstrate that Relm-ß promotes PASMCs proliferation and vascular remodeling by activating USP18/Twist1/miR-214 dependent MFN2 reduction and mitochondrial fission, suggesting that this signaling pathway might be a promising target for management of PAH.
Asunto(s)
Proliferación Celular , GTP Fosfohidrolasas , MicroARNs , Mitocondrias , Ratas Sprague-Dawley , Transducción de Señal , Proteína 1 Relacionada con Twist , Ubiquitina Tiolesterasa , Animales , Masculino , Ratas , Proliferación Celular/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales , Monocrotalina/toxicidad , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genéticaRESUMEN
ABSTRACT: Pulmonary arterial hypertension (PAH) is characterized by persistently elevated pulmonary artery pressure and vascular resistance. Sympathetic overactivity in hypertension participates in pulmonary vascular remodeling and heart failure. The present study aims to explore the efficacy of highly selective thoracic sympathectomy (HSTS) on lowering pulmonary artery pressure, reversing pulmonary vascular remodeling, and improving right ventricular function in rats. A total of 24 Sprague-Dawley rats were randomly assigned into the control group ( n = 8) and experimental group ( n = 16). Rats in the control group were intraperitoneally injected with 0.9% normal saline, and those in the experimental group were similarly administered with received monocrotaline (MCT) injections at 60 mg/kg. Two weeks later, rats in the experimental group were further subdivided randomly into the MCT-HSTS group ( n = 8) and MCT-sham group ( n = 8), and they were surgically treated with HSTS and sham operation, respectively. Two weeks later, significantly lowered mean pulmonary artery pressure (mPAP), pulmonary artery systolic pressure (sPAP), and the ratio of sPAP to femoral artery systolic pressure (sFAP) were detected in the MCT-HSTS group than those of the MCT-sham group. In addition, rats in the MCT-HSTS group presented a significantly lower ratio of vascular wall area to the total vascular area (WT%), right ventricular hypertrophy index, and degrees of right ventricular fibrosis and lung fibrosis in comparison to those of the MCT-sham group. HSTS significantly downregulated protein levels of inflammasomes in pulmonary artery smooth muscle cells (PASMCs). Collectively, HSTS effectively reduces pulmonary artery pressure, pulmonary arteriolar media hypertrophy, and right ventricular hypertrophy in MCT-induced PAH rats. It also exerts an anti-inflammatory effect on PASMCs in PAH rats by suppressing inflammasomes and the subsequent release of inflammatory cytokines.
Asunto(s)
Monocrotalina , Hipertensión Arterial Pulmonar , Ratas Sprague-Dawley , Simpatectomía , Animales , Simpatectomía/métodos , Masculino , Ratas , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/patología , Remodelación Vascular , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Progresión de la Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patologíaRESUMEN
Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs. Inhibition of ATIC attenuated PDGF-induced cell proliferation and collagen I synthesis in PASMCs. Conversely, overexpression or knockdown of ATIC causes a significant promotion or inhibition of Ras and ERK activation, cell proliferation, and collagen synthesis in PASMCs. Moreover, ATIC deficiency attenuated Ras activation in the lungs of hypoxia-induced PAH mice. Furthermore, Ras inhibition attenuates ATIC overexpression- and PDGF-induced collagen synthesis and PASMC proliferation. Notably, we identified that transcription factors MYC, early growth response protein 1 (EGR1), and specificity protein 1 (SP1) directly binds to promoters of Atic gene and regulate ATIC expression. These results provide the first evidence that ATIC promotes PASMC proliferation in pulmonary vascular remodeling through the Ras signaling pathway.NEW & NOTEWORTHY Our findings highlight the important role of ATIC in the PASMC proliferation of pulmonary vascular remodeling through its modulation of the Ras signaling pathway and its regulation by transcription factors MYC, EGR1, and SP1. ATIC's modulation of Ras signal pathway represents a novel mechanism contributing to PAH development.
Asunto(s)
Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Transducción de Señal , Animales , Masculino , Ratones , Ratas , Células Cultivadas , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Transferasas de Hidroximetilo y Formilo/metabolismo , Transferasas de Hidroximetilo y Formilo/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/enzimología , Ratones Endogámicos C57BL , Monocrotalina/toxicidad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Proteínas ras/metabolismo , Proteínas ras/genética , Ratas Sprague-Dawley , Remodelación Vascular/efectos de los fármacosRESUMEN
Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (e.g. COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. In vitro, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.
Asunto(s)
Hipertensión Pulmonar , Monocrotalina , Miocitos del Músculo Liso , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Regulación hacia Arriba , Zinc , Animales , Monocrotalina/toxicidad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Zinc/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Ratas , Masculino , Regulación hacia Arriba/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratas Sprague-Dawley , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacosRESUMEN
Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure and a compromised the right ventricle (RV), together with progression to heart failure and premature death. Studies have evaluated the role of melatonin as a promising therapeutic strategy for PAH. The objective of this study was to evaluate melatonin's effects on oxidative stress and on the TLR4/NF-kß inflammatory pathway in the RV of rats with PAH. Male Wistar rats were divided into the following groups: control, monocrotaline (MCT), and monocrotaline plus melatonin groups. These two last groups received one intraperitoneal injection of MCT (60 mg/kg) on the first day of experimental protocol. The monocrotaline plus melatonin group received 10 mg/kg/day of melatonin by gavage for 21 days. Echocardiographic analysis was performed, and the RV was collected for morphometric analysis oxidative stress and molecular evaluations. The main findings of the present study were that melatonin administration attenuated the reduction in RV function that was induced by monocrotaline, as assessed by TAPSE. In addition, melatonin prevented RV diastolic area reduction caused by PAH. Furthermore, animals treated with melatonin did not show an increase in ROS levels or in NF-kß expression. In addition, the monocrotaline plus melatonin group showed a reduction in TLR4 expression when compared with control and monocrotaline groups. To our knowledge, this is the first study demonstrating a positive effect of melatonin on the TLR4/NF-kß pathway in the RV of rats with PAH. In this sense, this study makes it possible to think of melatonin as a possible ally in mitigating RV alterations caused by PAH.
Asunto(s)
Ventrículos Cardíacos , Melatonina , Monocrotalina , Estrés Oxidativo , Ratas Wistar , Transducción de Señal , Receptor Toll-Like 4 , Animales , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Masculino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/metabolismo , Monocrotalina/toxicidad , Transducción de Señal/efectos de los fármacos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , FN-kappa B/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Ratas , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) results from pulmonary vasculopathy, initially leading to a compensatory right ventricular (RV) hypertrophy, and eventually to RV failure. Hypoxia can trigger both pulmonary vasculopathy and RV failure. Therefore, we tested if myo-inositol trispyrophosphate (ITPP), which facilitates oxygen dissociation from haemoglobin, can relieve pulmonary vasculopathy and RV hypoxia, and eventually prevent RV failure and mortality in the rat model of monocrotaline-induced PH. EXPERIMENTAL APPROACH: Rats were injected with monocrotaline (PH) or saline (control) and received ITPP or placebo for 5 weeks. Serial echocardiograms were obtained to monitor the disease, pressure-volume loops were recorded and evaluated, myocardial pO2 was measured using a fluorescent probe, and histological and molecular analyses were conducted at the conclusion of the experiment. KEY RESULTS AND CONCLUSIONS: ITPP reduced PH-related mortality. It had no effect on progressive increase in pulmonary vascular resistance, yet significantly relieved intramyocardial RV hypoxia, which was associated with improvement of RV function and reduction of RV wall stress. ITPP also tended to prevent increased hypoxia inducible factor-1α expression in RV cardiac myocytes but did not affect RV capillary density. IMPLICATIONS: Our study suggests that strategies aimed at increasing oxygen delivery to hypoxic RV in PH could potentially be used as adjuncts to other therapies that target pulmonary vessels, thus increasing the ability of the RV to withstand increased afterload and reducing mortality. ITPP may be one such potential therapy.
Asunto(s)
Hipertensión Pulmonar , Fosfatos de Inositol , Monocrotalina , Ratas Sprague-Dawley , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/prevención & control , Masculino , Fosfatos de Inositol/metabolismo , Ratas , Disfunción Ventricular Derecha/tratamiento farmacológico , Disfunción Ventricular Derecha/prevención & control , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/metabolismoRESUMEN
Pulmonary hypertension (PH) is a progressive and complex pulmonary vascular disease with poor prognosis. The aim of this study was to provide a new understanding of the lung pathology of disease and a noninvasive method in monitoring the establishment of animal models for basic and clinical studies of PH, indeed to explore clinical application value of lung ultrasound for patients with PH. Totally 32 male SD rats were randomly divided into control group, MCT (monocrotaline) group, PDTC (pyrrolidine dithiocarbamate) group, and NS (normal saline) group. Rats in the MCT group, PDTC group, and NS group received single intraperitoneal injection of MCT, while the control group received the same dose of NS. Then, PDTC group and NS group received PDTC and NS daily for treatment at the end of the model. Each group received lung ultrasound examination and measurement of pulmonary arterial pressure (PAP). Then, the rats were sacrificed to take the lung specimens to being observed. The ultrasound and pathological results were analyzed with a semiquantitative score. With the pulmonary artery pressure increases, the MCT group had a higher pulmonary ultrasound score and pathological score compared with the control group (p < 0.05). After PDTC treatment, the pulmonary ultrasound score and the pathological score decline (p < 0.05). We investigated both lung ultrasound scores, and the pathological scores were positively correlated with mean pulmonary artery pressure (mPAP) (both r > 0.8, p < 0.0001). Moreover, lung ultrasound scores were positively correlated with pathological scores (r > 0.8, p < 0.0001). We elucidated lung ultrasound evaluation providing more evidence for the management of PH in the rat model. Moreover, lung ultrasound provided a noninvasive method in monitoring the establishment of animal models for basic and clinical studies of PH.
Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar , Pulmón , Monocrotalina , Ratas Sprague-Dawley , Ultrasonografía , Animales , Monocrotalina/toxicidad , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Masculino , Ratas , Pulmón/diagnóstico por imagen , Pulmón/patología , Ultrasonografía/métodos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/patología , Tiocarbamatos , PirrolidinasRESUMEN
BACKGROUND: Metabolic abnormalities and immune inflammation are deeply involved in pulmonary vascular remodelling and the development of pulmonary hypertension (PH). However, the regulatory mechanisms of glycolysis in macrophages are still elusive. Cumulative evidence indicates that ß-catenin plays a crucial role in metabolic reprogramming. This study aimed to investigate the effect of ß-catenin on macrophage glycolysis in PH. METHODS: LPS-induced BMDMs were generated via in vitro experiments. A monocrotaline (MCT)-induced PH rat model was established, and the ß-catenin inhibitor XAV939 was administered in vivo. The role of ß-catenin in glycolysis was analysed. The degree of pulmonary vascular remodelling was measured. RESULTS: ß-catenin was significantly increased in both in vitro and in vivo models. In LPS-induced BMDMs, ß-catenin increased the levels of hexokinase 2 (HK2), phosphofructokinase (PFK), M2-pyruvate kinase (PKM2), lactate dehydrogenase (LDH), and lactate (LA) and the expression of inflammatory cytokines and promoted PASMC proliferation and migration in vitro. XAV939 decreased the level of glycolysis and downregulated the expression of inflammatory cytokines in vivo. MCT promoted pulmonary arterial structural remodelling and right ventricular hypertrophy, and XAV939 alleviated these changes. CONCLUSIONS: Our findings suggest that ß-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of ß-catenin could improve the progression of PH.
Asunto(s)
Modelos Animales de Enfermedad , Glucólisis , Hipertensión Pulmonar , Macrófagos , Monocrotalina , Arteria Pulmonar , Ratas Sprague-Dawley , Remodelación Vascular , beta Catenina , Animales , Glucólisis/efectos de los fármacos , beta Catenina/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Masculino , Remodelación Vascular/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/patología , Proliferación Celular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Transducción de Señal , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Mediadores de Inflamación/metabolismo , Ratas , Movimiento Celular/efectos de los fármacosRESUMEN
Platelet-derived growth factor (PDGF) is one of the most important cytokines associated with pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). PDGF receptor (PDGFR) inhibition exerted therapeutic effects on PAH in clinical trials, but serious side effects warrant the withdrawal of existing drugs. In this study, a novel highly selective PDGFR inhibitor WQ-C-401 was developed, and its effects on PDGFR signaling pathway and pulmonary vascular remodeling in PAH were investigated. Cell proliferation assays and Western blot analysis of PDGFRα/ß phosphorylation showed that WQ-C-401 inhibited PDGFR-mediated cell proliferation assay and suppressed PDGFR phosphorylation in a concentration-dependent manner. DiscoverX's KinomeScanTM technology confirmed the good kinome selectivity of WQ-C-401 (S score (1) of PDGFR = (0.01)). In monocrotaline (MCT)-induced PAH rats, intragastric administration of WQ-C-401 (25, 50, 100 mg/kg/d) or imatinib (50 mg/kg/d, positive control) significantly decreased right ventricular systolic pressure (RVSP). Histological analysis demonstrated that WQ-C-401 inhibited pulmonary vascular remodeling by reducing muscularization and fibrosis, as well as alleviated right ventricular hypertrophy in MCT-treated rats. In addition, WQ-C-401 suppressed MCT-induced cell hyperproliferation and CD68+ macrophage infiltration around the pulmonary artery. In vitro, WQ-C-401 inhibited PDGF-BB-induced proliferation and migration of human pulmonary arterial smooth muscle cells (PASMCs). Moreover, Western blot analysis showed that WQ-C-401 concertration-dependently inhibited PDGF-BB-induced phosphorylation of ERK1/2 and PDGFRß Y751, decreased collagen â synthesis and increased alpha smooth muscle actin (α-SMA) expression in PASMCs. Collectively, our results suggest that WQ-C-401 is a selective and potent PDGFR inhibitor which could be a promising drug for the therapeutics of PAH by preventing pulmonary vascular remodeling.
Asunto(s)
Proliferación Celular , Monocrotalina , Hipertensión Arterial Pulmonar , Ratas Sprague-Dawley , Remodelación Vascular , Animales , Remodelación Vascular/efectos de los fármacos , Ratas , Proliferación Celular/efectos de los fármacos , Masculino , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Humanos , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Fosforilación/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidoresRESUMEN
AIMS: Pulmonary vascular and right ventricular (RV) remodelling processes are important for development and progression of pulmonary hypertension (PH). The current study analysed the functional role of the extra domain A-containing fibronectin (ED-A+ Fn) for the development of PH by comparing ED-A+ Fn knockout (KO) and wild-type (WT) mice as well as the effects of an antibody-based therapeutic approach in a model of monocrotaline (MCT)-induced PH, which will be validated in a model of Sugen 5416/hypoxia-induced PH. METHODS AND RESULTS: PH was induced using MCT (PH mice). Sixty-nine mice were divided into the following groups: sham-treated controls (WT: n = 7; KO: n = 7), PH mice without specific treatment (WT: n = 12; KO: n = 10), PH mice treated with a dual endothelin receptor antagonist (macitentan; WT: n = 6; KO: n = 11), WT PH mice treated with the F8 antibody, specifically recognizing ED-A+ Fn, (n = 8), and WT PH mice treated with an antibody of irrelevant antigen specificity (KSF, n = 8). Compared to controls, WT_PH mice showed a significant elevation of the RV systolic pressure (P = 0.04) and RV functional impairment including increased basal RV (P = 0.016) diameter or tricuspid annular plane systolic excursion (P = 0.008). In contrast, KO PH did not show such effects compared to controls (P = n.s.). In WT_PH mice treated with F8, haemodynamic and echocardiographic parameters were significantly improved compared to untreated WT_PH mice or those treated with the KSF antibody (P < 0.05). On the microscopic level, KO_PH mice showed significantly less tissue damage compared to the WT_PH mice (P = 0.008). Furthermore, lung tissue damage could significantly be reduced after F8 treatment (P = 0.04). Additionally, these findings could be verified in the Sugen 5416/hypoxia mouse model, in which F8 significantly improved echocardiographic, haemodynamic, and histologic parameters. CONCLUSION: ED-A+ Fn is of crucial importance for PH pathogenesis representing a promising therapeutic target in PH. We here show a novel therapeutic approach using antibody-mediated functional blockade of ED-A+ Fn capable of attenuating and partially reversing PH-associated tissue remodelling.
Asunto(s)
Modelos Animales de Enfermedad , Fibronectinas , Hipertensión Pulmonar , Ratones Endogámicos C57BL , Ratones Noqueados , Monocrotalina , Función Ventricular Derecha , Remodelación Ventricular , Animales , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/inmunología , Fibronectinas/metabolismo , Fibronectinas/genética , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Pirimidinas/farmacología , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Masculino , Antagonistas de los Receptores de Endotelina/farmacología , Remodelación Vascular/efectos de los fármacos , Anticuerpos Bloqueadores/farmacología , Anticuerpos Monoclonales/farmacología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/patología , Sulfonamidas/farmacologíaRESUMEN
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remolding and occlusion, leading to the elevated pulmonary arterial pressures, right ventricular hypertrophy, and eventual heart failure if left untreated. Understanding the molecular mechanisms underlying the development and progression of pulmonary hypertension (PH) is crucial for devising efficient therapeutic approaches for the disease. Lung homogenates were collected weekly and underwent RNA-sequencing in the monocrotaline (MCT)-induced PH rat model to explore genes associated with PH progression. Statistical analyses revealed 1038, 1244, and 3125 significantly altered genes (P < 0.05, abs (log2fold change) > log21.5) between control and MCT-exposed rats during the first, second, and third week, respectively. Pathway enrichment analyses revealed involvement of cell cycle and innate immune system for the upregulated genes, GPCR and VEGF signaling for the downregulated genes. Furthermore, qRT-PCR validated upregulation of representative genes associated with cell cycle including Cdc25c (cell division cycle 25C), Cdc45, Top2a (topoisomerase IIα), Ccna2 (cyclin A2) and Ccnb1 (cyclin B1). Western blot and immunofluorescence analysis confirmed increases in PCNA, Ccna2, Top2a, along with other proliferation markers in the lung tissue of MCT-treated rats. In summary, RNA sequencing data highlights the significance of cell proliferation in progression of rodent PH.
Asunto(s)
Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Hipertensión Pulmonar , Monocrotalina , Animales , Ratas , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratas Sprague-Dawley , Transcriptoma , Pulmón/patología , Pulmón/metabolismoRESUMEN
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which endothelial-to-mesenchymal transition (EndMT) being its main progressive phase. Wogonin, a flavonoid extracted from the root of Scutellaria baicalensis Georgi, hinders the abnormal proliferation of cells and has been employed in the treatment of several cardiopulmonary diseases. This study was designed to investigate how wogonin affected EndMT during PH. Monocrotaline (MCT) was used to induce PH in rats. Binding capacity of TGF-ß1 receptor to wogonin detected by molecular docking and molecular dynamics. EndMT model was established in pulmonary microvascular endothelial cells (PMVECs) by transforming growth factor beta-1 (TGF-ß1). The result demonstrated that wogonin (20 mg/kg/day) attenuated right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular thickness in PH rats. EndMT in the pulmonary vascular was inhibited after wogonin treatment as evidenced by the restored expression of CD31 and decreased expression of α-SMA. Wogonin has strong affinity for both TGFBRI and TGFBRII, and has a better binding stability for TGFBRI. In TGF-ß1-treated PMVECs, wogonin (0.3, 1, and 3 µM) exhibited significant inhibitory effects on this transformation process via down-regulating the expression of p-Smad2 and Snail, while up-regulating the expression of p-Smad1/5. Additionally, results of Western blot and fluorescence shown that the expression of α-SMA were decrease with increasing level of CD31 in PMVECs. In conclusion, our research showed that wogonin suppressed EndMT via the TGF-ß1/Smad pathway which may lead to its alleviated effect on PH. Wogonin may be a promising drug against PH.