Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705547

RESUMEN

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Asunto(s)
Empalme Alternativo , Copépodos , Enfermedades de los Peces , Moritella , Salmo salar , Animales , Salmo salar/inmunología , Salmo salar/genética , Copépodos/fisiología , Enfermedades de los Peces/inmunología , Moritella/inmunología , Moritella/genética , Transcriptoma , Infestaciones Ectoparasitarias/veterinaria , Infestaciones Ectoparasitarias/inmunología , Infestaciones Ectoparasitarias/genética
2.
Fish Shellfish Immunol ; 148: 109506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508541

RESUMEN

Paecilomyces variotii (a filamentous fungus), is a promising novel protein source in fish feeds due to its high nutritional value. Also, P. variotii has Microbial-Associated Molecular Patterns (MAMPs) such as glucans and nucleic acids that could modulate the host's immune response. To understand the potential bioactive properties of this fungus in Atlantic salmon (Salmo salar), our study was conducted to evaluate the gene expression of immune-related biomarkers (e.g., cytokines, effector molecules and receptors) on primary cultures from salmon head kidney (HKLs) and spleen leukocytes (SLs) exposed to either UV inactivated or fractions from P. variotii with or without inactivated Moritella viscosa (a skin pathogen in salmonids). Moreover, the effect of the fermentation conditions and down-stream processing on the physical ultrastructure and cell wall glucan content of P. variotii was characterized. The results showed that drying had a significant effect on the cell wall ultrastructure of the fungi and the choice of fermentation has a significant effect on the quantity of ß-glucans in P. variotii. Furthermore, stimulating Atlantic salmon HKLs and SLs with P. variotii and its fractions induced gene expression related to pro-inflammatory (tnfα, il1ß) and antimicrobial response (cath2) in HKLs, while response in SLs was related to both pro-inflammatory and regulatory response (tnfα, il6 and il10). Similarly, the stimulation with inactivated M. viscosa alone led to an up-regulation of genes related to pro-inflammatory (tnfα, il1ß, il6) antimicrobial response (cath2), intra-cellular signalling and recognition of M. viscosa (sclra, sclrb) and a suppression of regulatory response (il10) in both HKLs and SLs. Interestingly, the co-stimulation of cells with P. variotii and M. viscosa induced immune homeostasis (il6, tgfß) and antimicrobial response (cath2) in SLs at 48h. Thus, P. variotii induces immune activation and cellular communication in Atlantic salmon HKLs and SLs and modulates M. viscosa induced pro-inflammatory responses in SLs. Taken together, the results from physical and chemical characterization of the fungi, along with the differential gene expression of key immune biomarkers, provides a theoretical basis for designing feeding trials and optimize diets with P. variotii as a functional novel feed ingredient for Atlantic salmon.


Asunto(s)
Antiinfecciosos , Byssochlamys , Enfermedades de los Peces , Moritella , Salmo salar , Animales , Moritella/genética , Interleucina-10 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Biomarcadores
3.
Fish Shellfish Immunol ; 145: 109306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122955

RESUMEN

Moritella viscosa (M. viscosa) is one of the major etiological agents of winter-ulcers in Atlantic salmon (Salmo salar) in Norway. Outbreaks of ulcerative disease in farmed fish occur across the North Atlantic region, causing reduced animal welfare and economical challenges, and are of hindrance for sustainable growth within the industry. Commercially available multivalent core vaccines containing inactivated bacterin of M. viscosa reduce mortality and clinical signs related to winter ulcer disease. It has previously been described two major genetic clades within M. viscosa, typical (hereafter referred to as classic) and variant, based on gyrB sequencing. In addition, there are phenotypical traits such as viscosity that may differ between different types of isolates. Western blot using salmon plasma showed that classic non-viscous strains are antigenically different from the classic viscous type included in core vaccines. Further, Western blot also showed that there are similarities in binding patterns between Norwegian variant and classic non-viscous isolates, indicating they may be antigenically related. Vaccination-challenge trials using Norwegian gyrB-classic non-viscous isolates of M. viscosa, demonstrate that the isolates from the classic clade that are included in current commercial multivalent core vaccines, provide limited cross protection against the emerging non-viscous strains. However, a vaccine recently approved for marketing authorization in Norway, containing inactivated antigen of a variant M. viscosa strain, demonstrates reduced mortality as well as clinical signs caused by infections with the classic non-viscous M. viscosa isolated from outbreaks in Norwegian salmon farms. The study shows that there are antigenic similarities between variant and classic non-viscous types of M. viscosa, and these similarities are mirrored in the observed cross-protection in vaccination-challenge trials.


Asunto(s)
Enfermedades de los Peces , Moritella , Salmo salar , Vacunas , Animales , Moritella/genética , Protección Cruzada , Noruega
4.
Fish Shellfish Immunol ; 137: 108784, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141956

RESUMEN

Moritella viscosa is one on the major etiological agents of winter-ulcers in Atlantic salmon (Salmo salar) in Norway. Outbreaks of ulcerative disease in farmed fish occurs across the North Atlantic region and is an impeding factor for sustainable growth within the industry. Commercially available multivalent core vaccines containing inactivated bacterin of M. viscosa reduce mortality and clinical signs related to winter ulcer disease. Two major genetic clades within M. viscosa have previously been described based on gyrB sequencing, namely typical (hereafter referred to as classic) and variant. Vaccination-challenge trials using vaccines including either variant and or classic isolates of M. viscosa show that classic clade isolates included in current commercial multivalent core vaccines provide poor cross-protection against emerging variant strains, while variant strains confer high level of protection against variant M. viscosa but to a lesser extent to classic clade isolates. This demonstrates that future vaccine regimens should include a combination of strains from both clades.


Asunto(s)
Enfermedades de los Peces , Moritella , Salmo salar , Animales , Úlcera , Moritella/genética , Vacunas Bacterianas , Vacunación/veterinaria , Enfermedades de los Peces/prevención & control
5.
J Fish Dis ; 46(5): 535-543, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36787245

RESUMEN

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) genotyping scheme was developed for the epidemiological study of Moritella viscosa, which causes 'winter ulcer' predominantly in sea-reared Atlantic salmon (Salmo salar L.). The assay involves multiplex PCR amplification of six Variable Number of Tandem Repeat (VNTR) loci, followed by capillary electrophoresis and data interpretation. A collection of 747 spatiotemporally diverse M. viscosa isolates from nine fish species was analysed, the majority from farmed Norwegian salmon. MLVA distributed 76% of the isolates across three major clonal complexes (CC1, CC2 and CC3), with the remaining forming minor clusters and singletons. While 90% of the salmon isolates belong to either CC1, CC2 or CC3, only 20% of the isolates recovered from other fish species do so, indicating a considerable degree of host specificity. We further highlight a series of 'clonal shifts' amongst Norwegian salmon isolates over the 35-year sampling period, with CC1 showing exclusive predominance prior to the emergence of CC2, which was later supplanted by CC3, before the recent re-emergence of CC1. Apparently, these shifts have rapidly swept the entire Norwegian coastline and conceivably, as suggested by typing of a small number of non-Norwegian isolates, the Northeast Atlantic region as a whole.


Asunto(s)
Enfermedades de los Peces , Moritella , Salmo salar , Animales , Genotipo , Agricultura
6.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232504

RESUMEN

Moritella viscosa is a bacterial pathogen causing winter-ulcer disease in Atlantic salmon. The lesions on affected fish lead to increased mortality, decreased fish welfare, and inferior meat quality in farmed salmon. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation by guiding the miRNA-induced silencing complex to specific mRNA transcripts (target genes). The goal of this study was to identify miRNAs responding to Moritella viscosa in salmon by investigating miRNA expression in the head-kidney and the muscle/skin from lesion sites caused by the pathogen. Protein coding gene expression was investigated by microarray analysis in the same materials. Seventeen differentially expressed guide-miRNAs (gDE-miRNAs) were identified in the head-kidney, and thirty-nine in lesion sites, while the microarray analysis reproduced the differential expression signature of several thousand genes known as infection-responsive. In silico target prediction and enrichment analysis suggested that the gDE-miRNAs were predicted to target genes involved in immune responses, hemostasis, angiogenesis, stress responses, metabolism, cell growth, and apoptosis. The majority of the conserved gDE-miRNAs (e.g., miR-125, miR-132, miR-146, miR-152, miR-155, miR-223 and miR-2188) are known as infection-responsive in other vertebrates. Collectively, the findings indicate that gDE-miRNAs are important post-transcriptional gene regulators of the host response to bacterial infection.


Asunto(s)
MicroARNs , Moritella , Salmo salar , Animales , Riñón Cefálico/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero , Salmo salar/genética , Salmo salar/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232620

RESUMEN

Mining of Phospholipase D (PLD) with high activity and stability has attracted strong interest for investigation. A novel PLD from marine Moritella sp. JT01 (MsPLD) was biochemically and structurally characterized in our previous study; however, the short half-life time (t1/2) under its optimum reaction temperature seriously hampered its further applications. Herein, the disulfide bond engineering strategy was applied to improve its thermostability. Compared with wild-type MsPLD, mutant S148C-T206C/D225C-A328C with the addition of two disulfide bonds exhibited a 3.1-fold t1/2 at 35 °C and a 5.7 °C increase in melting temperature (Tm). Unexpectedly, its specific activity and catalytic efficiency (kcat/Km) also increased by 22.7% and 36.5%, respectively. The enhanced activity might be attributed to an increase in the activation entropy by displacing more water molecules by the transition state. The results of molecular dynamics simulations (MD) revealed that the introduction of double disulfide bonds rigidified the global structure of the mutant, which might cause the enhanced thermostability. Finally, the synthesis capacity of the mutant to synthesize phosphatidic acid (PA) was evaluated. The conversion rate of PA reached about 80% after 6 h reaction with wild-type MsPLD but reached 78% after 2 h with mutant S148C-T206C/D225C-A328C, which significantly reduced the time needed for the reaction to reach equilibrium. The present results pave the way for further application of MsPLD in the food and pharmaceutical industries.


Asunto(s)
Moritella , Fosfolipasa D , Disulfuros/química , Estabilidad de Enzimas , Ácidos Fosfatidicos , Fosfolipasa D/genética , Ingeniería de Proteínas/métodos , Temperatura , Agua
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232934

RESUMEN

A new phospholipase D from marine Moritella sp. JT01 (MsPLD) was recombinantly expressed and biochemically characterized. The optimal reaction temperature and pH of MsPLD were determined to be 35 °C and 8.0. MsPLD was stable at a temperature lower than 35 °C, and the t1/2 at 4 °C was 41 days. The crystal structure of apo-MsPLD was resolved and the functions of a unique extra loop segment on the enzyme activity were characterized. The results indicated that a direct deletion or fastening of the extra loop segment by introducing disulfide bonds both resulted in a complete loss of its activity. The results of the maximum insertion pressure indicated that the deletion of the extra loop segment significantly decreased MsPLD's interfacial binding properties to phospholipid monolayers. Finally, MsPLD was applied to the synthesis of phosphatidic acid by using a biphasic reaction system. Under optimal reaction conditions, the conversion rate of phosphatidic acid reached 86%. The present research provides a foundation for revealing the structural-functional relationship of this enzyme.


Asunto(s)
Moritella , Fosfolipasa D , Cristalización , Disulfuros , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo
9.
Sci Rep ; 12(1): 4622, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301338

RESUMEN

Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.


Asunto(s)
Enfermedades de los Peces , Moritella , Salmo salar , Animales , Moritella/genética , Salmo salar/genética , Piel/patología , Transcriptoma
10.
Microb Genom ; 7(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34319226

RESUMEN

Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium Moritella yayanosii DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic Moritella strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other Moritella strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other Moritella strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain Moritella yayanosii DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.


Asunto(s)
Aclimatación/genética , Metabolismo Energético/genética , Genoma Bacteriano/genética , Moritella/genética , Colina/metabolismo , Ecosistema , Fermentación/genética , Fermentación/fisiología , Presión Hidrostática , Moritella/fisiología , Océanos y Mares , Microbiología del Agua , Secuenciación Completa del Genoma
11.
J Microbiol Methods ; 183: 106171, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610596

RESUMEN

Modern aquaculture systems are designed for intensive rearing of fish or other species. Both land-based and offshore systems typically contain high loads of biomass and the water quality in these systems is of paramount importance for fish health and production. Microorganisms play a crucial role in removal of organic matter and nitrogen-recycling, production of toxic hydrogen sulfide (H2S), and can affect fish health directly if pathogenic for fish or exerting probiotic properties. Methods currently used in aquaculture for monitoring certain bacteria species numbers still have typically low precision, specificity, sensitivity and are time-consuming. Here, we demonstrate the use of Digital PCR as a powerful tool for absolute quantification of sulfate-reducing bacteria (SRB) and major pathogens in salmon aquaculture, Moritella viscosa, Yersinia ruckeri and Flavobacterium psychrophilum. In addition, an assay for quantification of Listeria monocytogenes, which is a human pathogen bacterium and relevant target associated with salmonid cultivation in recirculating systems and salmon processing, has been assessed. Sudden mass mortality incidents caused by H2S produced by SRB have become of major concern in closed aquaculture systems. An ultra-sensitive assay for quantification of SRB has been established using Desulfovibrio desulfuricans as reference strain. The use of TaqMan® probe technology allowed for the development of multi-plex assays capable of simultaneous quantification of these aquaculture priority bacteria. In single-plex assays, limit of detection was found to be at around 20 fg DNA for M. viscosa, Y. ruckeri and F. psychrophilum, and as low as 2 fg DNA for L. monocytogenes and D. desulfuricans.


Asunto(s)
Enfermedades de los Peces/microbiología , Flavobacterium/aislamiento & purificación , Agua Dulce/microbiología , Moritella/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Yersinia ruckeri/aislamiento & purificación , Animales , Acuicultura , Flavobacterium/genética , Flavobacterium/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/metabolismo , Moritella/genética , Moritella/metabolismo , Salmón/crecimiento & desarrollo , Sulfatos/metabolismo , Yersinia ruckeri/genética , Yersinia ruckeri/metabolismo
12.
Biochemistry ; 59(50): 4735-4743, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33283513

RESUMEN

Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential ingredients of the human diet. They are synthesized by LC-PUFA synthases (PFASs) expressed in marine bacteria and other organisms. PFASs are large enzyme complexes that are homologous to mammalian fatty acid synthases and microbial polyketide synthases. One subunit of each PFAS harbors consecutive ketosynthase (KSc) and chain length factor (CLF) domains that collectively catalyze the elongation of a nascent fatty acyl chain via iterative carbon-carbon bond formation. We report the X-ray crystal structure of the KS-CLF didomain from a well-studied PFAS in Moritella marina. Our structure, in combination with biochemical analysis, provides a foundation for understanding the mechanism of substrate recognition and chain length control by the KS-CLF didomain as well as its interaction with a cognate acyl carrier protein partner.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Vías Biosintéticas , Dominio Catalítico/genética , Cristalografía por Rayos X , Acido Graso Sintasa Tipo II/genética , Ácidos Grasos Insaturados/química , Humanos , Espectrometría de Masas , Modelos Moleculares , Moritella/enzimología , Moritella/genética , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato
13.
Sci Rep ; 10(1): 11995, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686701

RESUMEN

Nonulosonic acid (NulO) biosynthesis in bacteria is directed by nab gene clusters that can lead to neuraminic, legionaminic or pseudaminic acids. Analysis of the gene content from a set mainly composed of Aliivibrio salmonicida and Moritella viscosa strains reveals the existence of several unique nab clusters, for which the NulO products were predicted. This prediction method can be used to guide tandem mass spectrometry studies in order to verify the products of previously undescribed nab clusters and identify new members of the NulOs family.


Asunto(s)
Vías Biosintéticas/genética , Moritella/genética , Familia de Multigenes , Análisis de Secuencia de ADN , Azúcares Ácidos/metabolismo , Vibrionaceae/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Evolución Molecular , Filogenia , Azúcares Ácidos/química
14.
Elife ; 92020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32716842

RESUMEN

The thermodynamics of protein folding in bulk solution have been thoroughly investigated for decades. By contrast, measurements of protein substrate stability inside the GroEL/ES chaperonin cage have not been reported. Such measurements require stable encapsulation, that is no escape of the substrate into bulk solution during experiments, and a way to perturb protein stability without affecting the chaperonin system itself. Here, by establishing such conditions, we show that protein stability in the chaperonin cage is reduced dramatically by more than 5 kcal mol-1 compared to that in bulk solution. Given that steric confinement alone is stabilizing, our results indicate that hydrophobic and/or electrostatic effects in the cavity are strongly destabilizing. Our findings are consistent with the iterative annealing mechanism of action proposed for the chaperonin GroEL.


All cells contain molecules known as proteins that perform many essential roles. Proteins are made of chains of building blocks called amino acids that fold to form the proteins' three-dimensional structures. Many proteins fold spontaneously into their well-defined and correct structures. However, some proteins fold incorrectly, which prevents them from working properly, and can lead to formation of aggregates that may harm the cell. To prevent such damage, cells have evolved proteins known as molecular chaperones that assist in the folding of other proteins. For example, a molecular chaperone called GroEL is found in a bacterium known as Escherichia coli. This molecular chaperone contains a cavity which prevents target proteins from forming clumps by keeping them away from other proteins. However, it remained unclear precisely how GroEL works and whether enclosing target proteins in its cavity has other effects. Moritella profunda is a bacterium that thrives in cold environments and, as a result, many of its proteins are unstable at room temperature and tend to unfold or fold incorrectly. To study how GroEL works, Korobko et al. used a protein from M. profunda called dihydrofolate reductase as a target protein for the chaperone. A clever trick was then used to determine the folding state of dihydrofolate reductase when inside the chaperone cavity. The experiments revealed that the environment within the cavity of GroEL strongly favors dihydrofolate reductase adopting its unfolded state instead of its folded state. This suggests that GroEL helps dihydrofolate reductase and other incorrectly folded target proteins to unfold, thus providing the proteins another opportunity to fold again correctly. Parkinson's disease, Alzheimer's disease and many other diseases are caused by proteins folding incorrectly and forming aggregates. A better understanding of how proteins fold may, therefore, assist in developing new therapies for such diseases. These findings may also help biotechnology researchers develop methods for producing difficult-to-fold proteins on a large scale.


Asunto(s)
Chaperoninas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Pliegue de Proteína , Tetrahidrofolato Deshidrogenasa/metabolismo , Chaperoninas/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Interacciones Hidrofóbicas e Hidrofílicas , Moritella/metabolismo , Agregación Patológica de Proteínas
15.
Mar Drugs ; 18(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033203

RESUMEN

The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In this study the aim was to isolate and characterize galectin(s), ß-galactosides binding proteins, present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration. Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3 (galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination, and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney, and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13. Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.


Asunto(s)
Galectina 3/inmunología , Galectina 3/metabolismo , Moritella/efectos de los fármacos , Moco/metabolismo , Aglutinación , Animales , Proteínas Portadoras , Proteínas de Peces , Galectina 3/genética , Bacterias Gramnegativas/efectos de los fármacos , Inmunidad Innata , Péptidos , Dominios y Motivos de Interacción de Proteínas , Proteoma , Salmo salar/metabolismo , Piel/metabolismo
16.
J Fish Dis ; 43(4): 459-473, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32100325

RESUMEN

This study was conducted to determine the effects of a co-infection with Moritella viscosa at different exposure levels of sea lice Lepeophtheirus salmonis in Atlantic salmon (Salmo salar). M. viscosa (1.14 × 106  cfu/ml) was introduced to all experimental tanks at 10 days post-lice infection (dpLs). Mean lice counts decreased over time in both the medium lice co-infection (31.5 ± 19.0 at 7 dpLs; 16.9 ± 9.3 at 46 dpLs) and high lice co-infection (62.0 ± 10.8 at 7 dpLs; 37.6 ± 11.3 at 46 dpLs). There were significantly higher mortalities and more severe skin lesions in the high lice co-infected group compared to medium lice co-infected group or M. viscosa-only infection. Quantitative gene expression analysis detected a significant upregulation of genes in skin from the high lice co-infection group consistent with severe inflammation (il-8, mmp-9, hep, saa). Skin lesions retrieved throughout the study were positive for M. viscosa growth, but these were rarely located in regions associated with lice. These results suggest that while M. viscosa infection itself may induce skin lesion development in salmon, co-infection with high numbers of lice can enhance this impact and significantly reduce the ability of these lesions to resolve, resulting in increased mortality.


Asunto(s)
Coinfección/veterinaria , Copépodos/fisiología , Enfermedades de los Peces/mortalidad , Infecciones por Bacterias Gramnegativas/veterinaria , Moritella/fisiología , Salmo salar , Enfermedades Cutáneas Bacterianas/veterinaria , Animales , Acuicultura , Coinfección/inmunología , Coinfección/microbiología , Coinfección/parasitología , Femenino , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/parasitología , Infecciones por Bacterias Gramnegativas/mortalidad , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Inflamación/parasitología , Inflamación/veterinaria , Masculino , Enfermedades Cutáneas Bacterianas/epidemiología , Enfermedades Cutáneas Bacterianas/microbiología , Enfermedades Cutáneas Bacterianas/parasitología , Cicatrización de Heridas/genética
17.
PLoS One ; 14(5): e0215583, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31125340

RESUMEN

Disease outbreaks are limiting factors for an ethical and economically sustainable aquaculture industry. The first point of contact between a pathogen and a host occurs in the mucus, which covers the epithelial surfaces of the skin, gills and gastrointestinal tract. Increased knowledge on host-pathogen interactions at these primary barriers may contribute to development of disease prevention strategies. The mucus layer is built of highly glycosylated mucins, and mucin glycosylation differs between these epithelial sites. We have previously shown that A. salmonicida binds to Atlantic salmon mucins. Here we demonstrate binding of four additional bacteria, A. hydrophila, V. harveyi, M. viscosa and Y. ruckeri, to mucins from Atlantic salmon and Arctic char. No specific binding could be observed for V. salmonicida to any of the mucin groups. Mucin binding avidity was highest for A. hydrophila and A. salmonicida, followed by V. harveyi, M. viscosa and Y. ruckeri in decreasing order. Four of the pathogens showed highest binding to either gills or intestinal mucins, whereas none of the pathogens had preference for binding to skin mucins. Fluid velocity enhanced binding of intestinal mucins to A. hydrophila and A. salmonicida at 1.5 and 2 cm/s, whereas a velocity of 2 cm/s for skin mucins increased binding of A. salmonicida and decreased binding of A. hydrophila. Binding avidity, specificity and the effect of fluid velocity on binding thus differ between salmonid pathogens and with mucin origin. The results are in line with a model where the short skin mucin glycans contribute to contact with pathogens whereas pathogen binding to mucins with complex glycans aid the removal of pathogens from internal epithelial surfaces.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Mucinas/metabolismo , Salmo salar/microbiología , Trucha/microbiología , Aeromonas hydrophila/metabolismo , Aliivibrio salmonicida/metabolismo , Animales , Proteínas de Peces/metabolismo , Moritella/metabolismo , Salmo salar/metabolismo , Especificidad de la Especie , Trucha/metabolismo , Vibrio/metabolismo , Yersinia ruckeri/metabolismo
18.
Dis Aquat Organ ; 133(2): 119-125, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31019136

RESUMEN

Skin ulcers in Atlantic salmon Salmo salar in the Canadian east coast salmon aquaculture industry lead to high mortality rates. This condition is clinically similar to winter ulcer disease in Norway with the exception that it occurs at temperatures above 10°C. Moritella viscosa is thought to be the causative agent for winter ulcer disease in Norway, and it is occasionally also isolated from skin ulcer cases in Atlantic Canada. This bacterium is known to produce cytotoxins. The objective of this study was to determine if extracellular products (ECP) from an Atlantic Canadian strain of M. viscosa could induce a tissue response similar to what is observed with M. viscosa infections in Atlantic salmon in eastern Canada. We injected fish subcutaneously with ECP and monitored the development of skin lesions. We sampled fish with early skin lesions and ulcers to describe the pathology associated with the condition. Samples were taken for histopathology, bacterial culture, and quantitative PCR (qPCR). All experimental fish expressed early skin lesions, with 5 fish (8.3%) developing deep skin ulcers after 12 d post-exposure. Our results suggest the ECP of M. viscosa from the east coast of Canada induces a similar tissue response to what is described in ulcer disease in Atlantic salmon. These extracelluar products may partially explain the pathology associated with M. viscosa.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas/veterinaria , Moritella , Salmo salar , Animales , Canadá , Noruega
19.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909394

RESUMEN

Determining the effects of extreme conditions on proteins from "extremophilic" and mesophilic microbes is important for understanding how life adapts to living at extremes as well as how extreme conditions can be used for sterilization and food preservation. Previous molecular dynamics simulations of dihydrofolate reductase (DHFR) from a psychropiezophile (cold- and pressure-loving), Moritella profunda (Mp), and a mesophile, Escherichia coli (Ec), at various pressures and temperatures indicate that atomic fluctuations, which are important for enzyme function, increase with both temperature and pressure. Here, the factors that cause increases in atomic fluctuations in the simulations are examined. The fluctuations increase with temperature not only because of greater thermal energy and thermal expansion of the protein but also because hydrogen bonds between protein atoms are weakened. However, the increase in fluctuations with pressure cannot be due to thermal energy, which remains constant, nor the compressive effects of pressure, but instead, the hydrogen bonds are also weakened. In addition, increased temperature causes larger increases in fluctuations of the loop regions of MpDHFR than EcDHFR, and increased pressure causes both increases and decreases in fluctuations of the loops, which differ between the two.


Asunto(s)
Moritella/enzimología , Presión , Temperatura , Tetrahidrofolato Deshidrogenasa/química , Activación Enzimática , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Conformación Proteica , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo
20.
Dev Comp Immunol ; 94: 1-10, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30648602

RESUMEN

Bacterial infection and heat stress are considered as two major environmental threats for the aquaculture industry of oyster Crassostrea gigas. In the present study, the expression profiles of mRNA transcripts in the hemocytes of oysters under bacterial challenge and heat stress were examined by next-generation sequencing. There were 21,095, 21,957 and 21,141 transcripts identified in the hemocytes of oysters from three groups, respectively, including control group (designated as Con group), Vibrio splendidus challenge group (Bac group), and bacterial and heat stress combined treatment group (BacHeat group). There were 4610, 5093 and 5149 differentially expressed transcripts (DTs) in the three pairwise comparisons Con/Bac, Con/BacHeat and Bac/BacHeat, respectively. The main enriched GO terms in biological process category of the DTs included the metabolic processes, cellular process, response to stimulus and immune system process. The expression patterns of DTs involved in pattern recognition, immune signal transduction and energy metabolic indicated that the immune response to bacterial challenge was disturbed under acute heat stress, which was also confirmed by quantitative real-time PCR. The neuroendocrine immunomodulation, especially the catecholaminergic regulation, played indispensable roles in stress response. The total energy reserves as well as cellular energy allocation (CEA) in hepatopancreas of oysters decreased remarkably especially in BacHeat group, while the energy consumption generally increased, suggesting that the immune defense against the simultaneous stimulation of pathogen and heat stress imposed greater costs on oyster's energy expenditure than a single stressor. These results above indicated that, the heat stress disturbed the normal expression of genes involved in immune response and energy metabolism, accelerated energy consumption and broke the metabolic balance, leading to a decline in resilience to infection and mass mortality of oyster in summer.


Asunto(s)
Crassostrea/fisiología , Respuesta al Choque Térmico/inmunología , Hemocitos/inmunología , Moritella/fisiología , Vibriosis/inmunología , Animales , Acuicultura , Catecolaminas/metabolismo , Metabolismo Energético , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neuroinmunomodulación , Receptores de Reconocimiento de Patrones/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...