Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.251
Filtrar
1.
J Hazard Mater ; 475: 134910, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889465

RESUMEN

Aspergillus niger (A. niger) spores can induce numerous health problems. Once the airflow-imposed drag force on an A. niger spore exceeds its binding force with the colony, the spore is detached. Turbulent flow may considerably increase the spore detachment. No method is currently available for prediction of the drag force on a spore and its detachment in turbulent flows. This investigation measured the turbulent velocities and detachment of A. niger colonies in a wind tunnel. Computational fluid dynamics (CFD) was employed to model an A. niger unit subjected to turbulent flow blowing. The top 1 % quantile instantaneous velocity of the turbulent flow was specified as the steady entry flow boundary condition for solving the peak velocity distribution and the peak drag forces onto spores. The predicted spore detachment ratios were compared with the measurement data for model validation. The results revealed that the spore detachment ratios with a turbulence intensity of 17 % to 20 % can be twice to triple the ratio with a turbulence intensity of approximately 1 %, when the average velocity for blowing remains the same. The proposed CFD model can accurately predict the detachment ratios of the A. niger spores. ENVIRONMENTAL IMPLICATION: Some people are sensitive to the Aspergillus niger (A. niger) spores, and excessive exposure can cause nasal congestion, skin tingling, coughing, and even asthma. Turbulent flow can considerably increase the spore detachment, due to the increased airflow-imposed drag force on the spores during turbulence. This investigation developed a numerical model to solve for the peak velocity distribution and the peak drag forces onto spores in turbulent flows to predict the spore detachment. With the numerical tool, the airborne fungal spore concentrations would be predictable, which paves a way for intelligent and precise control of fungal aerosol pollution.


Asunto(s)
Aspergillus niger , Esporas Fúngicas , Microbiología del Aire , Modelos Teóricos , Hidrodinámica , Movimientos del Aire
2.
Environ Sci Pollut Res Int ; 31(22): 31818-31842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639909

RESUMEN

Building envelope features (BEFs) have attracted more and more attention as they have a significant impact on flow structure and pollutant dispersion within street canyons. This paper conducted CFD numerical models validated by wind-tunnel experiments, to explore the effects of the BEFs on characteristics of the airflow and pollutant distribution inside a symmetric street canyon under perpendicular incoming flow. Three different BEFs (balconies, overhangs, and wing walls) and their locations and continuity/discontinuity structures were considered. For each canyon with various BEFs, the air exchange rate (ACH), airflow patterns, and pollutant distributions were evaluated and compared in detail. The results show that compared to the regular canyon, the BEFs will reduce the ACH of the canyon, but increase the disturbances (the proportion of ACH') inside the canyon. The BEFs on the leeward wall have the least influence on the in-canyon airflow and pollutant distributions, followed by that on the windward wall. Then when the BEFs are on both walls, the ventilation capacity of the canyon is weakened greatly, and the pollutant concentration in the ground center is increased significantly, especially near the windward side. Moreover, the discontinuity BEFs will weaken the effect of the continuity BEFs on the in-canyon flow and dispersion, specifically, the discontinuity BEFs reduced the region of high pollutant concentration distributions. These findings can help optimize the BEFs design to enhance ventilation and mitigate traffic pollution.


Asunto(s)
Movimientos del Aire , Contaminantes Atmosféricos , Viento , Monitoreo del Ambiente , Modelos Teóricos , Ventilación
3.
J Forensic Sci ; 69(3): 888-904, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528830

RESUMEN

There are many factors that may affect the longevity of or guide the use of canine training aids. Literature to date has mainly focused on identifying the headspace volatiles associated with training aids or odors and only minimal research exists into how different variables may alter those volatiles. The current study examines several factors affecting canine training aids: humidity, air flow, transportation, and operational deployment, using the triacetone triperoxide polymer odor capture-and-release canine training aid (TATP POCR) as the target. The TATP POCR is an absorption-based canine training aid developed to be used to safely train canines to detect the odor of the explosive TATP in operational settings. Comparisons of the TATP POCR to neat TATP are made throughout the manuscript. First, humidity increased the background components of the POCR matrix, as well as the amount of TATP recovered was above the POCR. Humidity thus affected the amount of TATP detected but did not prevent detection. Second, air flow lessened the lifetime of the TATP POCR. Third, the practice of using primary and secondary containment successfully prevented contamination, cross-contamination, and significant target loss, thereby maintaining kit integrity. Finally, the absorption of background odors from training environments was not observed. TATP headspace concentrations between a Deployed and Control POCR kit were not significantly different at time 0 (i.e., upon opening), which suggests that the operational use does not affect the function of the TATP POCR system. This information provides pivotal evidence for explosives detection canine handlers or trainers who utilize the TATP POCR.


Asunto(s)
Humedad , Odorantes , Perros , Animales , Compuestos Heterocíclicos con 1 Anillo , Peróxidos/análisis , Movimientos del Aire , Polímeros , Sustancias Explosivas
4.
J Hosp Infect ; 148: 51-57, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537748

RESUMEN

BACKGROUND: Surgical site infection (SSI) in the form of postoperative deep sternal wound infection (DSWI) after cardiac surgery is a rare, but potentially fatal, complication. In addressing this, the focus is on preventive measures, as most risk factors for SSI are not controllable. Therefore, operating rooms are equipped with heating, ventilation and air conditioning (HVAC) systems to prevent airborne contamination of the wound, either through turbulent mixed air flow (TMA) or unidirectional air flow (UDAF). AIM: To investigate if the risk for SSI after cardiac surgery was decreased after changing from TMA to UDAF. METHODS: This observational retrospective single-centre cohort study collected data from 1288 patients who underwent open heart surgery over 2 years. During the two study periods, institutional SSI preventive measures remained the same, with the exception of the type of HVAC system that was used. FINDINGS: Using multi-variable logistic regression analysis that considered confounding factors (diabetes, obesity, duration of surgery, and re-operation), the hypothesis that TMA is an independent risk factor for SSI was rejected (odds ratio 0.9, 95% confidence interval 0.4-1.8; P>0.05). It was not possible to demonstrate the preventive effect of UDAF on the incidence of SSI in patients undergoing open heart surgery when compared with TMA. CONCLUSION: Based on these results, the use of UDAF in open heart surgery should be weighed against its low cost-effectiveness and negative environmental impact due to high electricity consumption. Reducing energy overuse by utilizing TMA for cardiac surgery can diminish the carbon footprint of operating rooms, and their contribution to climate-related health hazards.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Infección de la Herida Quirúrgica , Ventilación , Humanos , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/epidemiología , Estudios Retrospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Ventilación/métodos , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Quirófanos , Anciano de 80 o más Años , Aire Acondicionado/efectos adversos , Movimientos del Aire , Incidencia , Control de Infecciones/métodos , Factores de Riesgo , Adulto
5.
Am J Forensic Med Pathol ; 45(1): 10-14, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589602

RESUMEN

ABSTRACT: Spit hoods are used by law enforcement, officers in correctional facilities, and medical personnel during the restraint of agitated subjects that are actively spitting to prevent the transmission of droplet-transmitted pathogens. We could find no studies reporting on the time course of normal breathing to clear saliva from such a saturated spit hood. We purchased samples of 3 popular spit hood models and applied a section over the output of a pneumatic test system. We used a digital anemometer, digital manometer, and an inline controllable fan for back pressure and flow. The pressure was 3 mm Hg to match quiet breathing. The tested area was saturated with artificial saliva, and air pressure was applied while we recorded the pressure and airflow. Within 5 seconds, the spit hoods all cleared sufficient artificial saliva to allow 1 m/s of airflow, which exceeds that of an N95 mask with similar pressure. Commonly used spit hoods offer very low resistance to breathing even after being initially saturated with artificial saliva. Our results do not support the hypothesis that a saliva-filled spit hood might contribute to death.


Asunto(s)
Saliva , Ventilación , Humanos , Saliva Artificial , Movimientos del Aire
6.
Nature ; 622(7983): 521-527, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704729

RESUMEN

The tropical Atlantic climate is characterized by prominent and correlated multidecadal variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane activity1-4. Owing to uncertainties in both the models and the observations, the origin of the physical relationships among these systems has remained controversial3-7. Here we show that the cross-equatorial gradient in tropical Atlantic SSTs-largely driven by radiative perturbations associated with anthropogenic emissions and volcanic aerosols since 19503,7-is a key determinant of Atlantic hurricane formation and Sahel rainfall. The relationship is obscured in a large ensemble of CMIP6 Earth system models, because the models overestimate long-term trends for warming in the Northern Hemisphere relative to the Southern Hemisphere from around 1950 as well as associated changes in atmospheric circulation and rainfall. When the overestimated trends are removed, correlations between SSTs and Atlantic hurricane formation and Sahel rainfall emerge as a response to radiative forcing, especially since 1950 when anthropogenic aerosol forcing has been high. Our findings establish that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts than SSTs across the entire North Atlantic, because the gradient is more physically connected to tropical impacts via local atmospheric circulations8. Our findings highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted from radiative forcing driven by anthropogenic emissions and volcanism, but firmer predictions are limited by the signal-to-noise paradox9-11 and uncertainty in future climate forcings.


Asunto(s)
Modelos Teóricos , Temperatura , Clima Tropical , Aerosoles , Movimientos del Aire , Océano Atlántico , Tormentas Ciclónicas , Historia del Siglo XX , Actividades Humanas , Lluvia , Incertidumbre , Erupciones Volcánicas
7.
Nature ; 622(7981): 93-100, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37612511

RESUMEN

The Pacific Walker circulation (PWC) has an outsized influence on weather and climate worldwide. Yet the PWC response to external forcings is unclear1,2, with empirical data and model simulations often disagreeing on the magnitude and sign of these responses3. Most climate models predict that the PWC will ultimately weaken in response to global warming4. However, the PWC strengthened from 1992 to 2011, suggesting a significant role for anthropogenic and/or volcanic aerosol forcing5, or internal variability. Here we use a new annually resolved, multi-method, palaeoproxy-derived PWC reconstruction ensemble (1200-2000) to show that the 1992-2011 PWC strengthening is anomalous but not unprecedented in the context of the past 800 years. The 1992-2011 PWC strengthening was unlikely to have been a consequence of volcanic forcing and may therefore have resulted from anthropogenic aerosol forcing or natural variability. We find no significant industrial-era (1850-2000) PWC trend, contrasting the PWC weakening simulated by most climate models3. However, an industrial-era shift to lower-frequency variability suggests a subtle anthropogenic influence. The reconstruction also suggests that volcanic eruptions trigger El Niño-like PWC weakening, similar to the response simulated by climate models.


Asunto(s)
Movimientos del Aire , Atmósfera , Clima , Tiempo (Meteorología) , Aerosoles/análisis , Atmósfera/química , Modelos Climáticos , El Niño Oscilación del Sur , Calentamiento Global , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Actividades Humanas , Océano Pacífico , Erupciones Volcánicas
8.
Workplace Health Saf ; 71(9): 412-418, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515535

RESUMEN

BACKGROUND: Pill crushing is a common practice in patient care settings. Crushing pills can disperse particulate matter (PM) into indoor air. The PM is a widespread air pollutant composed of microscopic particles and droplets of various sizes and may carry active and/or inactive ingredients nurses can inhale. This study aimed to quantify PM sizes and concentration in indoor air when pills are crushed and examine the role of a fume hood in reducing particulate pollution. METHODS: Two scenarios (with and without a fume hood) representing nurses' pill-crushing behaviors were set up in a positive-pressure cleanroom. Two acetaminophen tablets (325 mg/tablet) were crushed into powder and mixed with unsweetened applesauce. The PM sizes and concentrations were measured before and during crushing. RESULTS: Different sizes of PM, including inhalable, respirable, and thoracic particles, were emitted during medication crushing. The total count of all particle sizes and mass concentrations of particles were significantly lower during crushing when a fume hood was used (p = .00). CONCLUSION: Pill crushing increases PM and should be considered a workplace safety health hazard for nurses. Healthcare professionals should work under a fume hood when crushing pills and wear proper protective equipment. The findings of significant particulate pollution related to pill crushing suggest that further research is warranted.


Asunto(s)
Contaminación del Aire Interior , Enfermeras y Enfermeros , Exposición Profesional , Humanos , Material Particulado , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Ventilación , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Movimientos del Aire , Gases , Polvo
9.
Ind Health ; 61(3): 222-231, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35675990

RESUMEN

When using a local exhaust hood to remove harmful substances from the production process, the exhaust airflow rate must be calculated according to the capturing velocity specified by the relevant regulations. The Numano and American Conference of Governmental Industrial Hygienists (ACGIH) equations are used in Japan and the US, respectively, for estimating the exhaust airflow rate of slot hoods. However, these equations differ from each other, and when using these equations to calculate the exhaust airflow rate of the capture hood, whether using Japan's equation or ACGIH, the hood type (slot or rectangular hood) should be distinguished at first. Therefore, this study performs experiments and a computational fluid dynamics (CFD) simulation to investigate the relationship between the centerline velocity and the aspect ratio for five types of capture hoods. The results showed good agreement between simulated and experimental centerline velocities when the distance from the hood face. A dimensionless velocity was introduced and a significant difference in the relationship between the centerline velocity and the distance from the hood face with different aspect ratios was found. A unified equation was obtained that can express the relationship between exhaust airflow rate and centerline velocity regardless of the aspect ratio of the hood face of the free-standing capture hood.


Asunto(s)
Ventilación , Humanos , Movimientos del Aire , Japón , Diseño de Equipo
10.
Environ Sci Pollut Res Int ; 30(8): 20821-20832, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36260226

RESUMEN

In this work, the external and internal airflow analysis in an urban bus is carried out through computational fluid dynamics. The research addresses the study of the internal flow to estimate the air change rate caused by the opening of windows. Two cases are considered: fully opening and partially opening the windows, and three bus speeds of 20, 40, and 60 km/h are assessed. The quantification of the air flow rate through the windows clearly displays that air enters through the rear windows and exits the bus through the front windows. This effect is explained by the pressure distribution in the outer of the bus, which causes the suction of the indoor air. At low bus speeds, the incoming air flow rate increases linearly with the speed, but the improvement is lower for high speeds. The theoretical air change time at 20 km/h is around 25.7 s, which is 9 times lower than expected by using HVAC systems. On the other hand, the estimation of the real air renewal time by solving a concentration shows that 40 s are needed to exchange 85% of the internal air of the bus. The research also assesses the effect of different levels of occupation inside the bus. Results are conclusive to recommend the circulation with full or partial window opening configurations in order to reduce the risk of airborne disease transmission.


Asunto(s)
Movimientos del Aire , Contaminación del Aire , Vehículos a Motor , Contaminación del Aire/análisis
11.
Environ Sci Pollut Res Int ; 29(53): 80137-80160, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36194323

RESUMEN

An indoor environment in a hospital building requires a high indoor air quality (IAQ) to overcome patients' risks of getting wound infections without interrupting the recovery process. However, several problems arose in obtaining a satisfactory IAQ, such as poor ventilation design strategies, insufficient air exchange, improper medical equipment placement and high door opening frequency. This paper presents an overview of various methods used for assessing the IAQ in hospital facilities, especially in an operating room, isolation room, anteroom, postoperative room, inpatient room and dentistry room. This review shows that both experimental and numerical methods demonstrated their advantages in the IAQ assessment. It was revealed that both airflow and particle tracking models could result in different particle dispersion predictions. The model selection should depend on the compatibility of the simulated result with the experimental measurement data. The primary and secondary forces affecting the characteristics of particle dispersion were also discussed in detail. The main contributing forces to the trajectory characteristics of a particle could be attributed to the gravitational force and drag force regardless of particle size. Meanwhile, the additional forces could be considered when there involves temperature gradient, intense light source, submicron particle, etc. The particle size concerned in a healthcare facility should be less than 20 µm as this particle size range showed a closer relationship with the virus load and a higher tendency to remain airborne. Also, further research opportunities that reflect a more realistic approach and improvement in the current assessment approach were proposed.


Asunto(s)
Contaminación del Aire Interior , Ventilación , Humanos , Movimientos del Aire , Ventilación/métodos , Contaminación del Aire Interior/análisis , Tamaño de la Partícula , Atención a la Salud
12.
Artículo en Inglés | MEDLINE | ID: mdl-36141667

RESUMEN

Local exhaust ventilation is an important method of contamination control, and the type of exhaust hood and the air distribution at the hood face have an important influence on the contamination control effect. When the hood face is large, it is difficult to create a uniform airflow distribution at the hood face, which if achieved, could improve the effect of contamination control. To that end, the large-area workbench used in the process of vaccine purification was taken as the research subject prototype for this study. According to the methods for generating a uniform airflow distribution at the hood face, the lower exhaust workbenches of four structures were established using CAD and simulated using Ansys Fluent. The best uniformity of workbench surface air distribution was with Structure-4, while the worst was with Structure-1. The workbench surface airflow distribution could not achieve uniformity when only an inclined bottom was used for the large-area lower exhaust workbench with one side outlet. The more internal slits there were, the greater the air distribution area and the more uniform the air distribution. The width of the area of workbench surface airflow distribution was determined by the width of the slits. The numerical simulation results were verified by experiments, which showed them to be credible.


Asunto(s)
Ventilación , Movimientos del Aire , Simulación por Computador , Diseño de Equipo
13.
Sensors (Basel) ; 22(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808329

RESUMEN

Air velocity of coal mine ventilation is an important consideration that may cause serious damage. This paper proposes a simple, low cost and effective air velocity monitor (AVM) for coal mine ventilation. The AVM uses the lock-in characteristic of vortex-induced vibration (VIV) to sense the air velocity. Amplitude of the VIV is converted into frequency signal of a vortex-induced triboelectric nanogenerator (VI-TENG) to improve the durability. Structure of the AVM are designed, and parameters of the AVM are optimized with experiments. For the upper and lower air velocity thresholds of 3.1 and 3.6 m/s, the optimized flexible beam length, slider weight, electrode space and electrode width are 42.5 mm, 0.4 g, 0.2 mm and 0.5 mm, respectively. Experiments also show that the output frequency of the VI-TENG could represent the amplitude of VIV well with the correlation coefficient of 0.93. Durability test demonstrates that the AVM generates stable output frequency in 120,000 cycles. A prototype and its controller are fabricated. Wind tunnel tests of this prototype show that it can give alarm when the gas velocity goes above the upper threshold or below the lower threshold. The proposed AVM could be a good solution for simple and effective coal mine ventilation alarm.


Asunto(s)
Movimientos del Aire , Minería , Ventilación , Carbón Mineral , Electrodos , Gases/análisis , Nanotecnología , Vibración
14.
Environ Sci Pollut Res Int ; 29(54): 82492-82511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35751730

RESUMEN

The present study examines the effect of medical staff's turning movements on particle concentration in the surgical zone and settlement on the patient under single large diffuser (SLD) ventilation. A computational domain representing the operating room (OR) was constructed using computer-aided design (CAD) software. The airflow and particle models were validated against the published data before conducting the case studies. The airflow in the OR was simulated using an RNG k-ε turbulence model, while the dispersion of the particles was simulated using a discrete phase model based on the Lagrangian approach. A user-defined function (UDF) code was written and compiled in the simulation software to describe the medical staff member's turning movements. In this study, three cases were examined: baseline, SLD 1, and SLD 2, with the air supply areas of 4.3 m2, 5.7 m2, and 15.9 m2, respectively. Results show that SLD ventilations in an OR can reduce the number of dispersed particles in the surgical zone. The particles that settled on the patient were reduced by 41% and 39% when using the SLD 1 and SLD 2 ventilations, respectively. The use of the larger air supply area of SLD 2 ventilation in the present study does not significantly reduce the particles that settle on a patient. Likewise, the use of SLD 2 ventilation may increase operating and maintenance costs.


Asunto(s)
Contaminación del Aire Interior , Ventilación , Humanos , Ventilación/métodos , Quirófanos , Simulación por Computador , Cuerpo Médico , Contaminación del Aire Interior/análisis , Movimientos del Aire , Microbiología del Aire
15.
Ann Work Expo Health ; 66(8): 1086-1090, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35716067

RESUMEN

Although containment testing of fume cupboards (FC) according to the standards EN 14175-3 (2019) or ANSI/ASHRAE 110 (2016) is well established for type testing, its application is currently much less accepted and practised for evaluating containment on-site. Few of the several million FC in the market have been tested at installation and commissioning, and even less undergo verification of containment during their service life in the laboratories. Several reasons have led to this unsafe situation. To address this challenge, a new concept has been developed to allow for rapid on-site testing of FC to gain knowledge as to the functional efficiency as well as to safety aspects for the operator. The concept consists of a movable robot-aided test equipment that can be installed quickly to the FC in running labs. Multiple sensors detect the tracer gas isopropanol. Within a test run of only 10-min data is collected to quantify containment at the sash opening and to determine purge efficiency. The method reveals impact from interfering effects such as draughts, air distribution, and movements and from equipment installed, and is a tool for the optimization of operating conditions of a lab. This article presents an advanced alternative to the existing containment tests, particularly for on-site testing. The method assesses not only proper operation of the FC in its environment, but also the suitability of a FC for a given use under aspects of health and safety evaluation.


Asunto(s)
Exposición Profesional , Robótica , 2-Propanol , Movimientos del Aire , Diseño de Equipo , Gases/análisis , Humanos , Exposición Profesional/análisis , Ventilación
16.
Proc Natl Acad Sci U S A ; 119(22): e2202521119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35605123

RESUMEN

Many airborne pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted indoors via aerosol particles. During exercise, pulmonary ventilation can increase over 10-fold, and therefore, exercisers will exhale a greater volume of aerosol-containing air. However, we currently do not know how exercise affects the concentration of aerosol particles in exhaled air and the overall emission of aerosol particles. Consequently, we developed a method to measure in parallel the concentration of aerosol particles in expired air, pulmonary ventilation, and aerosol particle emission at rest and during a graded exercise test to exhaustion. We used this method to test eight women and eight men in a descriptive study. We found that the aerosol particle concentration in expired air increased significantly from 56 ± 53 particles/liter at rest to 633 ± 422 particles/liter at maximal intensity. Aerosol particle emission per subject increased significantly by a factor of 132 from 580 ± 489 particles/min at rest to a super emission of 76,200 ± 48,000 particles/min during maximal exercise. There were no sex differences in aerosol particle emission, but endurance-training subjects emitted significantly more aerosol particles during maximal exercise than untrained subjects. Overall, aerosol particle emission increased moderately up to an exercise intensity of ∼2 W/kg and exponentially thereafter. Together, these data might partly explain superspreader events especially during high-intensity group exercise indoors and suggest that strong infection prevention measures are needed especially during exercise at an intensity that exceeds ∼2 W/kg. Investigations of influencing factors like airway and whole-body hydration status during exercise on aerosol particle generation are needed.


Asunto(s)
Aerosoles , COVID-19 , Ejercicio Físico , SARS-CoV-2 , Movimientos del Aire , COVID-19/prevención & control , Humanos , Respiración
17.
Nat Commun ; 13(1): 2015, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440102

RESUMEN

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Asunto(s)
Fagus , Movimientos del Aire , Carbono , Cambio Climático , Bosques
18.
Work ; 71(3): 771-778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35253687

RESUMEN

BACKGROUND: Various chemical substances and carcinogens have been presented in medical sciences universities' educational and research laboratories. For this purpose a suitable ventilation system had to be implemented to ensure the correct operation of the hoods. OBJECTIVE: To evaluate the performance of laboratory chemical fume hoods of the University of Medical Sciences using a novel quantitative method. METHODS: In this study, 43 chemical fume hoods were investigated in the laboratories of the University of Medical Sciences. The technical specifications of the hoods and their compliance with the standard have been investigated. The hoods face velocity was measured using a thermal anemometer. Quantitative evaluation was performed using the new method of CO2 tracer gas and the results were analyzed using SPSS software version 19. FINDINGS: The hoods presented both favorable and unfavorable results in terms of technical specifications and location. The results showed 50.2% of the hoods have visible leakage. Hood face velocity was not suitable for any of the hoods in the case fully open.when half open only 16.3% of the hoods and in the case of 25% open face, 34.9% of the hoods had a good velocity. Most hoods have CO2 leakage even at small amounts. CONCLUSIONS: the unsuitable performance of the hoods is mainly due to the unsuitability of the fans, furthermore investigation and correction of technical problems are required. The new quantitative method is a suitable method for routine evaluating chemical fume hoods and can replace the SF6 gas tracer method.


Asunto(s)
Exposición Profesional , Ventilación , Movimientos del Aire , Dióxido de Carbono , Diseño de Equipo , Humanos , Laboratorios
19.
Artículo en Inglés | MEDLINE | ID: mdl-35270650

RESUMEN

The method of flow ratio k is often used for designing parallel push-pull ventilation. The k value is mostly selected empirically and is difficult to determine accurately, resulting in an imprecise design of the push-pull ventilation system. Therefore, parallel push-pull ventilation was taken as the research object in this paper. The push-pull ventilation studied consists of a square uniform supply hood and a square uniform exhaust hood, and the side length of pull hood and pull hood was same. A workbench was set between the push hood and pull hood, and the source of toluene pollutions was set in the center of the worktable surface. The optimal k values for different distances between push hood and pull hood were studied by numerical simulation using Ansys Fluent, which were obtained base on the distribution of wind speed and toluene concentration. The results showed that parallel push-pull ventilation is not suitable for applications when L/a ≥ 6. The changing patterns of k value with L/a is proposed in the range of 1.5 ≤ L/a ≤ 5 for the parallel square push-pull ventilation, which can be used to estimate k value relatively accurately under the condition that L/a is known, so as to guide the determination of the exhaust air volume of the parallel push-pull ventilation system.


Asunto(s)
Aire Acondicionado , Ventilación , Movimientos del Aire , Diseño de Equipo , Tolueno , Ventilación/métodos
20.
Rev Sci Instrum ; 93(2): 025001, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232161

RESUMEN

As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.


Asunto(s)
Movimientos del Aire , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...