Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94.550
Filtrar
1.
Front Immunol ; 15: 1394501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774883

RESUMEN

Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.


Asunto(s)
Bacillus subtilis , Vesículas Extracelulares , Leucocitos , Oncorhynchus mykiss , Bazo , Animales , Bacillus subtilis/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/microbiología , Bazo/inmunología , Bazo/citología , Leucocitos/inmunología , Leucocitos/metabolismo , Probióticos/farmacología , Línea Celular , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inmunomodulación , Intestinos/inmunología
2.
Curr Protoc ; 4(5): e1062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775005

RESUMEN

The architecture and morphology of the intestinal tissue from mice or other small animals are difficult to preserve for histological and molecular analysis due to the fragile nature of this tissue. The intestinal mucosa consists of villi and crypts lined with epithelial cells. In between the epithelial folds extends the lamina propria, a loose connective tissue that contains blood and lymph vessels, fibroblasts, and immune cells. Underneath the mucosa are two layers of contractile smooth muscle and nerves. The tissue experiences significant changes during fixation, which can impair the reliability of histologic analysis. Poor-quality histologic sections are not suitable for quantitative image-based tissue analysis. This article offers a new fixative composed of neutral buffered formalin (NBF) and acetic acid, called FA. This fixative significantly improved the histology of mouse intestinal tissue compared to traditional NBF and enabled precise, reproducible histologic molecular analyses using QuPath software. Algorithmic training of QuPath allows for automated segmentation of intestinal compartments, which can be further interrogated for cellular composition and disease-related changes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Improved preservation of mouse intestinal tissue using a formalin/acetic acid fixative Support Protocol: Quantitative tissue analysis using QuPath.


Asunto(s)
Ácido Acético , Fijadores , Formaldehído , Fijación del Tejido , Animales , Ratones , Fijación del Tejido/métodos , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/patología , Programas Informáticos
3.
PLoS One ; 19(5): e0301477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768108

RESUMEN

Food allergy is widely recognized as a significant health issue, having escalated into a global epidemic, subsequently giving rise to the development of numerous additional complications. Currently, the sole efficient method to curb the progression of allergy is through the implementation of an elimination diet. The increasing number of newly identified allergens makes it harder to completely remove or avoid them effectively. The immunoreactivity of proteins of bacterial origin remains an unexplored topic. Despite the substantial consumption of microbial proteins in our diets, the immunologic mechanisms they might induce require thorough validation. This stands as the primary objective of this study. The primary objective of this study was to evaluate the effects of bacterial proteins on the intestinal barrier and immune system parameters during hypersensitivity induction in both developing and mature organisms. The secondary objective was to evaluate the role of lipids in the immunoreactivity programming of these bacterial proteins. Notably, in this complex, comprehensively designed in vitro, in vivo, and ex vivo trial, the immunoreactivity of various bacterial proteins will be examined. In summary, the proposed study intends to address the knowledge gaps regarding the effects of Lactobacillus microbial proteins on inflammation, apoptosis, autophagy, and intestinal barrier integrity in a single study.


Asunto(s)
Proteínas Bacterianas , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología , Lípidos , Leche/microbiología , Leche/inmunología , Ratones , Lactobacillales/metabolismo , Lactobacillales/inmunología , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/microbiología , Femenino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología
4.
Food Res Int ; 187: 114343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763636

RESUMEN

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Asunto(s)
Filtración , Fórmulas Infantiles , Moco , Animales , Fórmulas Infantiles/química , Moco/metabolismo , Porcinos , Proteína de Suero de Leche/metabolismo , Intestino Delgado/metabolismo , Tripsina/metabolismo , Humanos , Células Caliciformes/metabolismo , Claudina-1/metabolismo , Claudina-1/genética , Lactasa/metabolismo , Lactasa/genética , Mucina 2/metabolismo , Mucina 2/genética , Mucosa Intestinal/metabolismo , Duodeno/metabolismo , Yeyuno/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de la Leche/metabolismo , Proteínas de la Leche/análisis
7.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731514

RESUMEN

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Ligandos , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos
8.
Mediators Inflamm ; 2024: 7524314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725539

RESUMEN

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Asunto(s)
Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Ligando RANK , Sorbitol , Sorbitol/farmacología , Ligando RANK/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diferenciación Celular/efectos de los fármacos , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Ratones Endogámicos C57BL , Células M
9.
Food Res Int ; 186: 114322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729712

RESUMEN

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Asunto(s)
Colitis , Productos Lácteos Cultivados , Sulfato de Dextran , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Lactobacillus delbrueckii/metabolismo , Productos Lácteos Cultivados/microbiología , Ratones , Probióticos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inflamación , Colon/microbiología , Colon/metabolismo , Lactobacillus
10.
Food Res Int ; 186: 114338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729719

RESUMEN

Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.


Asunto(s)
Ayuno , Péptido 2 Similar al Glucagón , Obesidad , Permeabilidad , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Adulto , Ayuno/sangre , Masculino , Péptido 2 Similar al Glucagón/sangre , Mucosa Intestinal/metabolismo , Microbioma Gastrointestinal , Nutrientes , Adulto Joven , Haptoglobinas/metabolismo , Endotoxemia , Receptores de Lipopolisacáridos/sangre , Proteínas de Fase Aguda/metabolismo , Biomarcadores/sangre , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/metabolismo , Grasas de la Dieta , Glucosa/metabolismo , Funcion de la Barrera Intestinal , Proteínas Portadoras , Precursores de Proteínas
11.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716199

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Asunto(s)
Infecciones por Coronavirus , Suplementos Dietéticos , Lacticaseibacillus rhamnosus , Virus de la Diarrea Epidémica Porcina , Probióticos , Enfermedades de los Porcinos , Animales , Porcinos , Probióticos/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/terapia , Estrés Oxidativo , Intestinos/patología , Polvos , Mucosa Intestinal/patología
12.
Nutrients ; 16(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732497

RESUMEN

Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.


Asunto(s)
Laurus , Proteínas de Uniones Estrechas , Animales , Proteínas de Uniones Estrechas/metabolismo , Laurus/química , Permeabilidad , Extractos Vegetales/farmacología , Masculino , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Humanos , Citocinas/metabolismo
13.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732540

RESUMEN

Zinc deficiency affects the physical and intellectual development of school-age children, while studies on the effects on intestinal microbes and metabolites in school-age children have not been reported. School-age children were enrolled to conduct anthropometric measurements and serum zinc and serum inflammatory factors detection, and children were divided into a zinc deficiency group (ZD) and control group (CK) based on the results of serum zinc. Stool samples were collected to conduct metagenome, metabolome, and diversity analysis, and species composition analysis, functional annotation, and correlation analysis were conducted to further explore the function and composition of the gut flora and metabolites of children with zinc deficiency. Beta-diversity analysis revealed a significantly different gut microbial community composition between ZD and CK groups. For instance, the relative abundances of Phocaeicola vulgatus, Alistipes putredinis, Bacteroides uniformis, Phocaeicola sp000434735, and Coprococcus eutactus were more enriched in the ZD group, while probiotic bacteria Bifidobacterium kashiwanohense showed the reverse trend. The functional profile of intestinal flora was also under the influence of zinc deficiency, as reflected by higher levels of various glycoside hydrolases in the ZD group. In addition, saccharin, the pro-inflammatory metabolites, and taurocholic acid, the potential factor inducing intestinal leakage, were higher in the ZD group. In conclusion, zinc deficiency may disturb the gut microbiome community and metabolic function profile of school-age children, potentially affecting human health.


Asunto(s)
Heces , Microbioma Gastrointestinal , Zinc , Humanos , Microbioma Gastrointestinal/fisiología , Zinc/deficiencia , Zinc/sangre , Niño , Masculino , Femenino , Heces/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Metaboloma , Intestinos/microbiología
14.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732577

RESUMEN

BACKGROUND: Cadmium (Cd) is an environmental contaminant that poses risks to human and animal health. Selenium (Se), a beneficial element, alleviates the detrimental consequences of colitis and Cd toxicity. Se is found in food products as both inorganic Se (sodium selenite) and organic Se (typically Se-enriched yeast). Nano-selenium (nano-Se; a novel form of Se produced through the bioreduction of Se species) has recently garnered considerable interest, although its effects against Cd-induced enterotoxicity are poorly understood. The aim of this study was to investigate the impact of nano-selenium on mitigating cadmium toxicity and safeguarding the integrity of the intestinal barrier. METHODS: For a total of two cycles, we subjected 6-week-old C57 mice to chronic colitis by exposing them to Cd and nano-selenium for two weeks, followed by DSS water for one week. RESULTS: The application of nano-selenium mitigated the intensity of colitis and alleviated inflammation in the colon. Nano-selenium enhanced the diversity of the intestinal flora, elevated the concentration of short-chain fatty acids (SCFAs) in feces, and improved the integrity of the intestinal barrier. CONCLUSIONS: In summary, nano-Se may reduce intestinal inflammation by regulating the growth of intestinal microorganisms and protecting the intestinal barrier.


Asunto(s)
Cadmio , Colitis , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Selenio , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Selenio/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Masculino , Enfermedad Crónica , Modelos Animales de Enfermedad , Nanopartículas , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Sulfato de Dextran , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
15.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732600

RESUMEN

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Asunto(s)
Estudios Cruzados , Jugos de Frutas y Vegetales , Interleucina-6 , Receptores de Lipopolisacáridos , Malus , Carrera de Maratón , Resistencia Física , Polifenoles , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Polifenoles/farmacología , Polifenoles/administración & dosificación , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Interleucina-6/sangre , Receptores de Lipopolisacáridos/sangre , Carrera de Maratón/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Lipopolisacáridos/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Carrera/fisiología , Adulto Joven
16.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732595

RESUMEN

While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.


Asunto(s)
Colitis , Colon , Sulfato de Dextran , Dieta Cetogénica , Grasas de la Dieta , Modelos Animales de Enfermedad , Fluoresceína-5-Isotiocianato/análogos & derivados , Ratones Endogámicos C57BL , Animales , Colitis/inducido químicamente , Colitis/dietoterapia , Masculino , Ratones , Grasas de la Dieta/efectos adversos , Colon/patología , Colon/metabolismo , Permeabilidad , Proteínas de Uniones Estrechas/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ácidos Grasos , Dextranos
17.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732613

RESUMEN

Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).


Asunto(s)
Carragenina , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Akkermansia , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo
18.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732614

RESUMEN

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Asunto(s)
Sulfato de Dextran , Microbioma Gastrointestinal , Estrés Oxidativo , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Polisacáridos/farmacología , Ratones , Masculino , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Células HT29 , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
19.
Sci Rep ; 14(1): 10702, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729976

RESUMEN

Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.


Asunto(s)
Ciego , Pollos , Coccidiosis , Eimeria , Microbioma Gastrointestinal , Íleon , Enfermedades de las Aves de Corral , Animales , Pollos/microbiología , Pollos/parasitología , Ciego/microbiología , Ciego/parasitología , Eimeria/fisiología , Íleon/microbiología , Íleon/parasitología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/parasitología , Mucosa Intestinal/microbiología , Mucosa Intestinal/parasitología
20.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731952

RESUMEN

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Asunto(s)
Acroleína , Mucosa Intestinal , Factor 2 Relacionado con NF-E2 , Óxido Nítrico , Fosfatidilinositol 3-Quinasas , Porphyromonas gingivalis , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacología , Animales , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Porphyromonas gingivalis/patogenicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Óxido Nítrico/metabolismo , Línea Celular , Lipopolisacáridos , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA