Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.465
Filtrar
1.
Cancer Cell ; 42(5): 797-814.e15, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744246

RESUMEN

The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.


Asunto(s)
Colitis , Inhibidores de Puntos de Control Inmunológico , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/farmacología , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Interferón gamma/metabolismo , Femenino , Análisis de la Célula Individual , Ratones
2.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732595

RESUMEN

While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.


Asunto(s)
Colitis , Colon , Sulfato de Dextran , Dieta Cetogénica , Grasas de la Dieta , Modelos Animales de Enfermedad , Fluoresceína-5-Isotiocianato/análogos & derivados , Ratones Endogámicos C57BL , Animales , Colitis/inducido químicamente , Colitis/dietoterapia , Masculino , Ratones , Grasas de la Dieta/efectos adversos , Colon/patología , Colon/metabolismo , Permeabilidad , Proteínas de Uniones Estrechas/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ácidos Grasos , Dextranos
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718845

RESUMEN

BACKGROUND: Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS: Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS: OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.


Asunto(s)
Ácido Quenodesoxicólico , Modelos Animales de Enfermedad , Mucosa Intestinal , Receptores Citoplasmáticos y Nucleares , Síndrome del Intestino Corto , Animales , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Síndrome del Intestino Corto/metabolismo , Síndrome del Intestino Corto/tratamiento farmacológico , Síndrome del Intestino Corto/patología , Ratas , Humanos , Masculino , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Persona de Mediana Edad , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Adulto , Proteínas de Uniones Estrechas/metabolismo
4.
Nat Med ; 30(5): 1349-1362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38724705

RESUMEN

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Asunto(s)
Colitis , Inhibidores de Puntos de Control Inmunológico , Mucosa Intestinal , Análisis de la Célula Individual , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Colitis/inducido químicamente , Colitis/inmunología , Colitis/genética , Colitis/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Femenino , Masculino , Perfilación de la Expresión Génica , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anciano , Transcriptoma , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Colon/patología , Colon/inmunología , Colon/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología
5.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742709

RESUMEN

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Asunto(s)
Colitis , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Receptores CXCR4 , Regeneración , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Células Madre Mesenquimatosas/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/inmunología , Colitis/terapia , Colitis/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Sulfato de Dextran , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Células de la Médula Ósea/metabolismo
6.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716199

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Asunto(s)
Infecciones por Coronavirus , Suplementos Dietéticos , Lacticaseibacillus rhamnosus , Virus de la Diarrea Epidémica Porcina , Probióticos , Enfermedades de los Porcinos , Animales , Porcinos , Probióticos/administración & dosificación , Enfermedades de los Porcinos/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/terapia , Estrés Oxidativo , Intestinos/patología , Polvos , Mucosa Intestinal/patología
7.
Front Immunol ; 15: 1353614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698858

RESUMEN

Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.


Asunto(s)
Microbioma Gastrointestinal , Ginsenósidos , Panax , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Panax/química , Humanos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
8.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691831

RESUMEN

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Mucosa Intestinal , Sepsis , Linfocitos T Reguladores , Células Th17 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Células Th17/inmunología , Células Th17/efectos de los fármacos , Ratas , Medicamentos Herbarios Chinos/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Masculino , Ratas Sprague-Dawley
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731952

RESUMEN

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Asunto(s)
Acroleína , Mucosa Intestinal , Factor 2 Relacionado con NF-E2 , Óxido Nítrico , Fosfatidilinositol 3-Quinasas , Porphyromonas gingivalis , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacología , Animales , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Porphyromonas gingivalis/patogenicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Óxido Nítrico/metabolismo , Línea Celular , Lipopolisacáridos , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo
10.
World J Gastroenterol ; 30(16): 2220-2232, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690017

RESUMEN

Several features of drug-induced mucosal alterations have been observed in the upper gastrointestinal tract, i.e., the esophagus, stomach, and duodenum. These include pill-induced esophagitis, desquamative esophagitis, worsening of gastroesophageal reflux, chemotherapy-induced esophagitis, proton pump inhibitor-induced gastric mucosal changes, medication-induced gastric erosions and ulcers, pseudomelanosis of the stomach, olmesartan-related gastric mucosal inflammation, lanthanum deposition in the stomach, zinc acetate hydrate tablet-induced gastric ulcer, immune-related adverse event gastritis, olmesartan-asso-ciated sprue-like enteropathy, pseudomelanosis of the duodenum, and lanthanum deposition in the duodenum. For endoscopists, acquiring accurate knowledge regarding these diverse drug-induced mucosal alterations is crucial not only for the correct diagnosis of these lesions but also for differential diag-nosis of other conditions. This minireview aims to provide essential information on drug-induced mucosal alterations observed on esophagogastroduodenoscopy, along with representative endoscopic images.


Asunto(s)
Endoscopía del Sistema Digestivo , Humanos , Endoscopía del Sistema Digestivo/métodos , Mucosa Gástrica/patología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/diagnóstico por imagen , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/diagnóstico por imagen , Inhibidores de la Bomba de Protones/efectos adversos , Mucosa Esofágica/patología , Mucosa Esofágica/efectos de los fármacos , Mucosa Esofágica/diagnóstico por imagen
11.
World J Gastroenterol ; 30(16): 2184-2190, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690020

RESUMEN

MicroRNAs (miRNAs), small non-coding RNAs composed of 18-24 nucleotides, are potent regulators of gene expression, contributing to the regulation of more than 30% of protein-coding genes. Considering that miRNAs are regulators of inflammatory pathways and the differentiation of intestinal epithelial cells, there is an interest in exploring their importance in inflammatory bowel disease (IBD). IBD is a chronic and multifactorial disease of the gastrointestinal tract; the main forms are Crohn's disease and ulcerative colitis. Several studies have investigated the dysregulated expression of miRNAs in IBD, demonstrating their important roles as regulators and potential biomarkers of this disease. This editorial presents what is known and what is expected regarding miRNAs in IBD. Although the important regulatory roles of miRNAs in IBD are clearly established, biomarkers for IBD that can be applied in clinical practice are lacking, emphasizing the importance of further studies. Discoveries regarding the influence of miRNAs on the inflammatory process and the exploration of their role in gene regulation are expected to provide a basis for the use of miRNAs not only as potent biomarkers in IBD but also as therapeutic targets for the control of inflammatory processes in personalized medicine.


Asunto(s)
Biomarcadores , Regulación de la Expresión Génica , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Biomarcadores/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/inmunología , Medicina de Precisión/métodos
12.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690023

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Asunto(s)
Quitina , Colon , Modelos Animales de Enfermedad , Glucanos , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Dolor Visceral , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/fisiopatología , Masculino , Humanos , Colon/efectos de los fármacos , Colon/patología , Ratas , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/fisiopatología , Dolor Visceral/metabolismo , Dolor Visceral/etiología , Quitina/farmacología , Glucanos/farmacología , Glucanos/administración & dosificación , Ratones , Prebióticos/administración & dosificación , Ácido Trinitrobencenosulfónico/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/fisiopatología , Colitis/patología , Células HT29
13.
EBioMedicine ; 103: 105128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653187

RESUMEN

BACKGROUND: The use of mesenchymal stem cells (MSCs) has recently emerged as a promising new therapeutic strategy for many diseases including perianal fistulizing Crohn's disease (CD). Whether hUC-MSCs can promote the healing of luminal ulcer in CD has not been studied so far. METHODS: The model of TNBS-induced colitis in rats was used to confirm the efficacy of hUC-MSCs in the treatment of CD. Then, seventeen CD patients refractory to or unsuitable for currently available therapies were enrolled and received once submucosal local injection through colonoscopy combined with once intravenous drip on the next day. All patients received a 24-week follow-up. Clinical and laboratory assessments were monitored at baseline, week 4, 8, 12, and 24. Endoscopic evaluations were conducted at baseline and week 12. Mucosal specimens were obtained at the margin of lesions by endoscopy biopsies and used for RNA sequencing. Two hUC-MSCs co-culture systems were established in vitro, one with the mucosa specimens and the other with M1 macrophages induced from THP1. The expressions of genes representing inflammation (TNFα, IL-6, and IL-1ß) and intestinal barrier function (ZO1, CLAUDIN1, and CDH1) were tested by RT-PCR. FINDINGS: hUC-MSCs treatment increased body weight and decreased disease activity index (DAI), colon macroscopic damage index (CMDI), and histopathological score (HPS) of rats with TNBS-induced colitis. The results of the clinical study also showed that this mode of hUC-MSCs application was associated with regression of intestinal ulceration. Eight patients (47%) got endoscopic responses (SES-CD improvement of ≥50% from baseline) and three patients (17.65%) got mucosal healing (SES-CD is zero), with a parallel improvement of clinical and laboratory parameters without serious adverse events. RNA sequencing showed hUC-MSCs therapy was associated with an upregulation of transcripts linked to intestinal epithelial barrier integrity and a downregulation of inflammatory signaling pathways in the intestinal mucosa, especially the TNF signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. RNA expression of intestinal epithelial tight junction protein (ZO1, CLAUDIN1, and CDH1), and the RNA expression of major intestinal inflammatory factors in CD (IL-1ß, IL-6, and TNFα, p < 0.001 for all) were improved significantly. Moreover, hUC-MSCs could attenuate the polarization of M1 macrophage induced from THP1, thereby decreasing the mRNA expression of IL-1ß, IL-6, and TNFα significantly (p < 0.05 for all). TSG-6 expression was evaluated in hUC-MSCs culture supernatant after treatment with TNFα, IFNγ, and LPS for 48 h. And hUC-MSCs could inhibit the phosphorylation of JAK/STAT1 in the intestinal mucosa of CD patients. INTERPRETATION: hUC-MSCs transplantation alleviated TNBS-induced colitis in rats. In this pilot clinical study, preliminary data suggested that this approach to administering hUC-MSCs might have potential for clinical efficacy and manageable safety in treating refractory CD, potentially providing hope for better outcomes. No serious adverse events were observed. FUNDING: This work was funded by General Program of National Natural Science Foundation of China (Grant No. 82270639), the Scientific research project of Shanghai Municipal Health Committee (Grant No. 202240001), Specialty Feature Construction Project of Shanghai Pudong New Area Health Commission (Grant No. PWZzb2022-05), Shanghai East Hospital Youth Research and Cultivation Foundation program (Grant No. DFPY2022015), Peak Disciplines (Type IV) of Institutions of Higher Learning in Shanghai, Technology Development Project of Pudong Science, Technology and Economic Commission of Shanghai (Grant No. PKJ2021-Y08), Key Disciplines Group Construction Project of Shanghai Pudong New Area Health Commission (Grant No. PWZxq2022-06), Medical discipline Construction Project of Pudong Health Committee of Shanghai (Grant No. PWYgf2021-02) and National Natural Science Foundation of China (Grant No. 82300604).


Asunto(s)
Colitis , Enfermedad de Crohn , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ácido Trinitrobencenosulfónico , Animales , Enfermedad de Crohn/terapia , Enfermedad de Crohn/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Ratas , Humanos , Masculino , Femenino , Adulto , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ácido Trinitrobencenosulfónico/efectos adversos , Proyectos Piloto , Colitis/terapia , Colitis/inducido químicamente , Colitis/metabolismo , Persona de Mediana Edad , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Resultado del Tratamiento , Citocinas/metabolismo
14.
J Proteome Res ; 23(5): 1801-1809, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38655769

RESUMEN

Alcohol consumption perturbs the gut immune barrier and ultimately results in alcoholic liver diseases, but little is known about how immune-related cells in the gut are perturbed in this process. In this study, we employed laser capture microdissection and a label-free proteomics approach to investigate the consequences of alcohol exposure to the proteomes of crypts and villi in the proximal small intestine. Intestinal tissues from alcohol-fed and pair-fed mice were microdissected to selectively capture cells in the crypts and villi regions, followed by one-pot protein digestion and data-independent LC-MS/MS analysis. We successfully identified over 3000 proteins from each of the crypt or villi regions equivalent to ∼3000 cells. Analysis of alcohol-treated tissues indicated an enhanced alcohol metabolism and reduced levels of α-defensins in crypts, alongside increased lipid metabolism and apoptosis in villi. Immunofluorescence imaging further corroborated the proteomic findings. Our work provides a detailed profiling of the proteomic changes in the compartments of the mouse small intestine and aids in molecular-level understanding of alcohol-induced tissue damage.


Asunto(s)
Etanol , Intestino Delgado , Proteómica , Animales , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Proteómica/métodos , Ratones , Etanol/toxicidad , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Proteoma/análisis , Proteoma/efectos de los fármacos , Captura por Microdisección con Láser , Cromatografía Liquida , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Masculino , Apoptosis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
15.
Int Immunopharmacol ; 133: 112155, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688134

RESUMEN

BACKGROUND: Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT: 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS: 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS: 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION: This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.


Asunto(s)
Ferroptosis , Coactivadores de Receptor Nuclear , Daño por Reperfusión , Animales , Ferroptosis/fisiología , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Ratones , Masculino , Ratones Endogámicos C57BL , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/patología , Modelos Animales de Enfermedad , Hierro/metabolismo , Ferritinas/metabolismo
16.
Nat Immunol ; 25(5): 886-901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609547

RESUMEN

Intestinal immune responses to microbes are controlled by the cytokine IL-10 to avoid immune pathology. Here, we use single-cell RNA sequencing of colon lamina propria leukocytes (LPLs) along with RNA-seq and ATAC-seq of purified CD4+ T cells to show that the transcription factors Blimp-1 (encoded by Prdm1) and c-Maf co-dominantly regulate Il10 while negatively regulating proinflammatory cytokines in effector T cells. Double-deficient Prdm1fl/flMaffl/flCd4Cre mice infected with Helicobacter hepaticus developed severe colitis with an increase in TH1/NK/ILC1 effector genes in LPLs, while Prdm1fl/flCd4Cre and Maffl/flCd4Cre mice exhibited moderate pathology and a less-marked type 1 effector response. LPLs from infected Maffl/flCd4Cre mice had increased type 17 responses with increased Il17a and Il22 expression and an increase in granulocytes and myeloid cell numbers, resulting in increased T cell-myeloid-neutrophil interactions. Genes over-expressed in human inflammatory bowel disease showed differential expression in LPLs from infected mice in the absence of Prdm1 or Maf, revealing potential mechanisms of human disease.


Asunto(s)
Colitis , Helicobacter hepaticus , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Proto-Oncogénicas c-maf , Animales , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-maf/genética , Colitis/inmunología , Colitis/genética , Humanos , Helicobacter hepaticus/inmunología , Infecciones por Helicobacter/inmunología , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/genética , Regulación de la Expresión Génica , Modelos Animales de Enfermedad
17.
Am J Surg Pathol ; 48(6): 719-725, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584461

RESUMEN

Serrated epithelial change (SEC) in inflammatory bowel disease is most often defined as hyperplastic polyp-like mucosal change detected on random biopsies. Although SEC has been reported to be associated with an increased risk of synchronous and/or metachronous colorectal neoplasia, it remains unknown if SEC represents a form of dysplastic lesion despite the lack of morphologic evidence of dysplasia. Since the risk of colorectal neoplasia in ulcerative colitis (UC) is positively correlated with increased histologic inflammation, this study investigated if increased colonic inflammation is an independent risk factor for SEC. A cohort of 28 UC patients with SEC was analyzed and compared with 51 control UC patients without SEC. None of these patients had a history of colorectal neoplasia. For each patient with SEC, all biopsies conducted before and at the time of SEC diagnosis (versus all biopsies for each control patient) were scored by using a 4-point scoring system: no activity (no epithelial infiltration by neutrophils=0); mild activity (cryptitis only=1); moderate activity (cryptitis plus crypt abscess formation in <50% of crypts=2); and severe activity (crypt abscess formation in ≥50% of crypts, erosion, neutrophilic exudate, and/or ulceration=3). Each biopsy was designated a score, and both mean and maximum inflammation scores were calculated from all biopsies taken during each colonoscopy. The inflammation burden score was calculated for each surveillance interval by multiplying the average maximum score between each pair of surveillance episodes by the length of the surveillance interval in years. The average scores of all colonoscopies for each patient were used to assign the patient's overall mean, maximum, and inflammation burden scores. The SEC cohort included 12 (43%) men and 16 (57%) women with a mean age of 47 years at the time of the first SEC diagnosis and a long history of UC (mean: 13 y). The majority of patients (n=21; 75%) had pancolitis, and only 1 (4%) patient had primary sclerosing cholangitis. A total of 37 SEC were identified in the 28 patients, 4 (14%) of whom had multifocal SEC. SEC was predominantly found in the left colon (n=32; 86%). In the multivariate analysis, none of the 3 summative inflammation scores, including overall mean (odds ratio [OR] 1.9, P =0.489), maximum (OR 0.4, P =0.259), and inflammation burden scores (OR 1.2, P =0.223), were significantly associated with the development of SEC. Similarly, no other potential risk factors, including age, gender, ethnicity, and duration and extent of UC, were significantly correlated with the detection of SEC ( P >0.05). In conclusion, the development of SEC in UC is not significantly associated with increased histologic inflammation. Given the reported association of SEC with an increased risk of synchronous and/or metachronous colorectal neoplasia, along with the presence of molecular alterations in some cases (such as TP53 mutations and aneuploidy), SEC may represent an early morphologic indicator of segmental or pan-colonic molecular abnormalities that have not advanced enough to result in colorectal neoplasia, as opposed to being a form of dysplasia.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/patología , Colitis Ulcerosa/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Adulto , Factores de Riesgo , Anciano , Mucosa Intestinal/patología , Biopsia , Inflamación/patología , Colon/patología , Pólipos del Colon/patología , Lesiones Precancerosas/patología , Adulto Joven , Colonoscopía
18.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636715

RESUMEN

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , Macrófagos , Selenio , Tricotecenos , Animales , Tricotecenos/toxicidad , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Selenio/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo
19.
Int J Biol Macromol ; 268(Pt 1): 131589, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643924

RESUMEN

This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1ß and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.


Asunto(s)
Antioxidantes , Broussonetia , Estrés Oxidativo , Hojas de la Planta , Polisacáridos , Animales , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Ratas , Masculino , Hojas de la Planta/química , Antioxidantes/farmacología , Broussonetia/química , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Dieta , Modelos Animales de Enfermedad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Peroxidación de Lípido/efectos de los fármacos
20.
Chem Biol Interact ; 395: 111014, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38648921

RESUMEN

There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.


Asunto(s)
Colitis Ulcerosa , Colon , Sulfato de Dextran , Genisteína , Mucina 2 , Animales , Mucina 2/metabolismo , Mucina 2/genética , Sulfato de Dextran/toxicidad , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Genisteína/farmacología , Genisteína/uso terapéutico , Ratones , Colon/patología , Colon/efectos de los fármacos , Colon/metabolismo , Autofagia/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratones Noqueados , Apoptosis/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA