Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
1.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38955226

RESUMEN

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Asunto(s)
Evolución Biológica , Aves , Plumas , Fósiles , Muda , Animales , Plumas/anatomía & histología , Fósiles/anatomía & histología , Aves/fisiología , Aves/anatomía & histología , Muda/fisiología , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Vuelo Animal , China , Alas de Animales/anatomía & histología
2.
Commun Biol ; 7(1): 820, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969778

RESUMEN

Lobopodians represent a key step in the early history of ecdysozoans since they were the first animals to evolve legs within this clade. Their Cambrian representatives share a similar body plan with a typically cylindrical annulated trunk and a series of non-jointed legs. However, they do not form a monophyletic group and likely include ancestors of the three extant panarthropod lineages (Tardigrada, Onychophora, Euarthropoda). Some species display astonishing protective devices such as cuticular plates and spines. We describe here the armor and molting process of Microdictyon from the early Cambrian of China. Microdictyon secreted ovoid paired cuticular sclerites that were duplicated in a non-synchronous way along the animal's body. The reticulated pattern and cuticular architecture of these sclerites have similarities to extant armored tardigrades that recently served in hypothesizing that tardigrades are possibly miniaturized lobopodians. Ecdysis and hard cuticular protection are now well documented in the whole spectrum of early Cambrian ecdysozoans such as soft-bodied scalidophorans, lobopodians and fully articulated euarthropods. We hypothesize that the secretion of sclerotized cuticular elements periodically renewed via ecdysis was a key innovation that opened large-scale evolutionary opportunities to invertebrate animal life, specifically ecdysozoans, both in terms of anatomical functionalities and ecological success.


Asunto(s)
Fósiles , Muda , Animales , Muda/fisiología , Fósiles/anatomía & histología , Evolución Biológica , Artrópodos/anatomía & histología , Artrópodos/clasificación , Artrópodos/fisiología , China , Filogenia
3.
Pestic Biochem Physiol ; 203: 106011, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084776

RESUMEN

To accommodate growth, insects must periodically shed their exoskeletons. In Manduca sexta, Drosophila melanogaster and Tribolium castaneum, Bursicon (Burs)/ Partner of bursicon (Pburs)-LGR2 signal is an indispensable component for the proper execution of ecdysis behavior during adult eclosion. Nevertheless, the behavioral events and the roles of bursicon signaling in other insects deserve further exploration. In the current paper, we found that the pupal-adult ecdysis in Henosepilachna vigintioctomaculata could be divided into three distinct stages, preecdysis, ecdysis and postecdysis. Preecdysis behavioral sequences included abdomen twitches, dorsal-ventral contractions and air filling that function to loosen the old cuticle. Ecdysis events began with anterior-posterior contractions that gradually split the old integument along the dorsal body midline, followed by freeing of legs and mouthparts, and culminated in detachment from pupal cuticle. Postecdysis behavioral processes contained three actions: perch selection and stretching of elytra and hindwings. RNA interference for HvBurs, HvPburs or Hvrk (encoding LGR2) strongly impaired wing expansion actions, and slightly influenced preecdysis and ecdysis behaviors. The RNAi beetles failed to extend their elytra and hindwings. In addition, injected with dsrk also caused kinked femurs and tibia. Our findings establish that bursicon pathway is involved in regulation of adult eclosion behavior, especially wing expansion motor programs. Given that wings facilitate food foraging, courtship, predator avoidance, dispersal and migration, our results provide a potential target for controlling H. vigintioctomaculata.


Asunto(s)
Escarabajos , Animales , Escarabajos/fisiología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transducción de Señal , Muda/fisiología , Pupa , Interferencia de ARN , Conducta Animal , Hormonas de Invertebrados/metabolismo , Alas de Animales
4.
Ecol Evol Physiol ; 97(3): 129-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875140

RESUMEN

AbstractTemperate reptiles are often considered to be low-energy systems, with their discrete use of time and energy making them model systems for the study of time-energy budgets. However, the semifrequent replacement and sloughing of the epidermis is a ubiquitous feature of squamate reptiles that is often overlooked when accounting for time and energy budgets in these animals. We used open-flow respirometry to measure both the energetic effort of ecdysis and the duration of the associated metabolic upregulation (likely related to behavioral changes often reported for animals in shed) in wild-caught timber rattlesnakes (Crotalus horridus). We hypothesized that total effort of skin biosynthesis and physical removal would be related to body mass and expected the duration of the process to remain static across individuals at a fixed temperature (25°C). We provide both the first measurements of the cost of skin biosynthesis and physical removal in a reptile and the highest-resolution estimate of process duration recorded to date. We found that skin biosynthesis, but not the cost of physical removal of the epidermis, was related to body mass. Shed cycle duration was consistent across individuals, taking nearly 4 wk from process initiation to physical removal of the outermost epidermal layer. Total energetic effort of ecdysis was of sizeable magnitude, requiring ∼3% of the total annual energy budget of a timber rattlesnake. Energetic effort for a 500-g snake was equivalent to the amount of metabolizable energy acquired from the consumption of approximately two adult mice. Ecdysis is a significant part of the time-energy budgets of snakes, necessitating further attention in studies of reptilian energetics.


Asunto(s)
Crotalus , Metabolismo Energético , Muda , Animales , Metabolismo Energético/fisiología , Crotalus/metabolismo , Muda/fisiología , Masculino , Femenino
5.
J Exp Biol ; 227(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38869075

RESUMEN

Lepidosaurian reptiles, particularly snakes, periodically shed the outer epidermal layers of their skin (ecdysis) to restore or enhance vital functions such as regulating water and gaseous exchange, growth, and protection against insult, infection or physical injury. Although many studies have focused on the nature and mechanisms of skin shedding, little attention has been paid to the timing of the first ecdysis in neonates following birth or hatching. A recent study investigated patterns of the time to first postnatal ecdysis in snakes based on a large dataset taken from the literature. The analysis demonstrated patterns in the time to first postnatal ecdysis related to phylogeny as well as several life history traits. While this assessment provides important advances in our knowledge of this topic, data on known biophysical drivers of ecdysis - temperature and humidity - were largely unavailable and were not evaluated. The first postnatal ecdysis of neonatal snakes can be viewed as an adaptive adjustment to the transition from the aqueous environment of the embryo to the aerial environment of the newborn. Hence, the timing of the first postnatal ecdysis is logically influenced by the aerial environment into which a newborn snake or hatchling finds itself. Therefore, in this Commentary, we first emphasize the putative plasticity of ecdysis with respect to epidermal lipids that structure the water permeability barrier and are established or renewed during ecdysis to reduce transepidermal evaporative water loss. We then discuss the likely importance of biophysical variables as influential covariates that need future investigation as potential co-determinants of the timing of first postnatal ecdysis.


Asunto(s)
Muda , Serpientes , Animales , Serpientes/fisiología , Serpientes/crecimiento & desarrollo , Muda/fisiología , Factores de Tiempo , Animales Recién Nacidos/fisiología , Animales Recién Nacidos/crecimiento & desarrollo
6.
J Exp Biol ; 227(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826104

RESUMEN

Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.


Asunto(s)
Temperatura Corporal , Plumas , Muda , Spheniscidae , Animales , Spheniscidae/fisiología , Muda/fisiología , Plumas/fisiología , Regulación de la Temperatura Corporal/fisiología , Masculino , Femenino
7.
Horm Behav ; 164: 105592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941765

RESUMEN

A multitude of animal species undergo prolonged fasting events at regularly occurring life history stages. During such periods of food deprivation, individuals need to suppress their appetite. The satiety signalling gut hormone ghrelin has received much attention in this context in studies looking at mammalian systems. In wild birds, however, knowledge on the ghrelin system and its role during extended fasts is still scarce. In this study, we collected plasma samples for measurements of circulating ghrelin concentrations from adult southern rockhopper penguins (Eudyptes chrysocome chrysocome) during the three to four week-long moult-fast that they repeat annually to replace their feathers. We further sampled chicks before and after feeding bouts and non-moulting adults. Circulating ghrelin levels did not differ significantly between fed and unfed chicks but chicks had significantly lower plasma ghrelin levels compared to adults. Furthermore, penguins in late moult (i.e. individuals at the end of the prolonged fasting bout) had higher ghrelin levels compared to non-moulting adults. Our results show elevated levels of circulating ghrelin during moult and generally lower levels of ghrelin in chicks than in adults regardless of feeding state. Given the scarcity or absence of knowledge on the function of ghrelin in seabirds and in fasting birds in general, our results add greatly to our understanding of the avian ghrelin system.


Asunto(s)
Ghrelina , Muda , Spheniscidae , Animales , Ghrelina/sangre , Spheniscidae/sangre , Spheniscidae/fisiología , Muda/fisiología , Masculino , Ayuno , Femenino , Privación de Alimentos/fisiología , Apetito/fisiología , Conducta Alimentaria/fisiología
8.
Int J Biol Macromol ; 274(Pt 1): 133028, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857725

RESUMEN

Silkworm fibroins are natural proteinaceous macromolecules and provide core mechanical properties to silk fibers. The synthesis process of fibroins is posterior silk gland (PSG)-exclusive and appears active at the feeding stage and inactive at the molting stage. However, the molecular mechanisms controlling it remain elusive. Here, the silk gland's physiological and nuclear proteomic features were used to characterize changes in its structure and development from molting to feeding stages. The temporal expression profile and immunofluorescence analyses revealed a synchronous transcriptional on-off mode of fibroin genes. Next, the comparative nuclear proteome of the PSG during the last molting-feeding transition identified 798 differentially abundant proteins (DAPs), including 42 transcription factors and 15 epigenetic factors. Protein-protein interaction network analysis showed a "CTCF-FOX-HOX-SOX" association with activated expressions at the molting stage, suggesting a relatively complex and multifactorial regulation of the PSG at the molting stage. In addition, FAIRE-seq verification indicated "closed" and "open" conformations of fibroin gene promoters at the molting and feeding stages, respectively. Such proteome combined with chromatin accessibility analysis revealed the detailed signature of protein factors involved in the temporal regulation of fibroin synthesis and provided insights into silk gland development as well as silk production in silkworms.


Asunto(s)
Bombyx , Fibroínas , Animales , Bombyx/genética , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Núcleo Celular/metabolismo , Fibroínas/genética , Fibroínas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Muda/fisiología , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Seda/metabolismo , Seda/biosíntesis
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124309, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663137

RESUMEN

Scorpion fluorescence under ultraviolet light is a well-known phenomenon, but its features under excitation in the UVA, UVB and UVC bands have not been characterized. Systematic fluorescence characterization revealed indistinguishable fluorescence spectra with a peak wavelength of 475 nm for whole exuviae from second-, third- and fifth-instar scorpions under different ultraviolet light ranges. In-depth investigations of the chelae, mesosoma, metasoma and telson of adult scorpions further indicated heterogeneity in the typical fluorescence spectrum within the visible light range and in the newly reported fluorescence spectrum with a peak wavelength of 320 nm within the ultraviolet light range, which both showed excitation wavelength-independent features. Dynamic fluorescence changes during the molting process of third-instar scorpions revealed the fluorescence heterogeneity-dependent recovery speed of scorpion exoskeletons. The typical fluorescence spectra of the molted chelae and telson rapidly recovered approximately 6 h after ecdysis under UVA light and approximately 36 h after ecdysis under UVB and UVC light. However, it took approximately 12 h and 24 h to obtain the typical fluorescence spectra of the molted metasoma and mesosoma, respectively, under UVA irradiation and 72 h to obtain the typical fluorescence spectra under UVB and UVC irradiation. The fluorescence heterogeneity-dependent fluorescence recovery of the scorpion exoskeleton was further confirmed by tissue section analysis of different segments from molting third-instar scorpions. These findings reveal novel scorpion fluorescence features and provide potential clues on the biological function of scorpion fluorescence.


Asunto(s)
Muda , Escorpiones , Espectrometría de Fluorescencia , Rayos Ultravioleta , Escorpiones/fisiología , Escorpiones/química , Animales , Muda/fisiología , Fluorescencia , Exoesqueleto/química
10.
Sci Rep ; 14(1): 9163, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644433

RESUMEN

Emerging infestations of bed bugs are affecting normal human lifestyle globally. This study has been designed to optimize the rearing conditions for Cimex lectularius L. (Hemiptera), to support the scientific research on them. Bed bugs have been projected onto three different temperature (20 °C, 25 °C, and 30 °C) and relative humidity (50%, 70%, and 90%) conditions to check their overall growth and survival rate. Adult mortality, weight loss, egg laying, percentage hatching, hatching initiation and completion, nymph mortality, and molting have been evaluated to optimize the best conditions. The temperature at 25 °C with 90% RH showed minimum mortality for adults (female 13.33 ± 3.33% and male 6.67 ± 3.33%) and nymphs (13.33 ± 3.33%), while maximum egg laying (40.33 ± 1.86), with highest percentage hatching (98.23 ± 0.58%). At 30 °C with 90% RH, hatching initiation and completion (5.19 ± 0.12 days and 7.23 ± 0.16 days) as well as molting initiation and completion (3.73 ± 0.12 days and 7.00 ± 0.24 days) were found to be fastest. Thus, it can be concluded that 25 °C with 90% RH is ideal for rearing of adults and 30 °C with 90% RH is appropriate for rapid growth of nymphs.


Asunto(s)
Chinches , Humedad , Ninfa , Temperatura , Animales , Chinches/crecimiento & desarrollo , Chinches/fisiología , Femenino , Masculino , Ninfa/crecimiento & desarrollo , Muda/fisiología , Laboratorios
11.
Curr Biol ; 34(7): 1438-1452.e6, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38513654

RESUMEN

Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.


Asunto(s)
Proteínas de Drosophila , Receptores de Esteroides , Animales , Proteínas de Unión al ADN/metabolismo , Ecdisona , Ecdisteroides , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Muda/fisiología , Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica
12.
J Exp Zool A Ecol Integr Physiol ; 341(4): 327-337, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38247310

RESUMEN

Camouflage expressed by animals is an adaptation to local environments that certain animals express to maximize survival and fitness. Animals at higher latitudes change their coat color according to a seasonally changing environment, expressing a white coat in winter and a darker coat in summer. The timing of molting is tightly linked to the appearance and disappearance of snow and is mainly regulated by photoperiod. However, due to climate change, an increasing mismatch is observed between the coat color of these species and their environment. Here, we conducted an experiment in northern Sweden, with white and brown decoys to study how camouflage (mis)-match influenced (1) predator attraction to decoys, and (2) predation events. Using camera trap data, we showed that mismatching decoys attracted more predators and experienced a higher likelihood of predation events in comparison to matching decoys, suggesting that camouflage mismatched animals experience increased detection by predators. These results provide insight into the function of a seasonal color coat and the need for this adaptation to maximize fitness in an environment that is exposed to high seasonality. Thus, our results suggest that, with increasing climate change and reduced snow cover, animals expressing a seasonal color coat will experience a decrease in survival.


Asunto(s)
Cambio Climático , Nieve , Animales , Muda/fisiología , Estaciones del Año , Conducta Predatoria
13.
Geroscience ; 46(2): 2343-2358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37946010

RESUMEN

Among land vertebrates, the laying hen stands out due to its great reproductive efficiency: producing an egg daily all year long. This production rate makes the laying hen a special model animal to study the general process of reproduction and aging. One unique aspect of hens is their ability to undergo reproductive plasticity and to rejuvenate their reproductive tract during molting, a standard industrial feed restriction protocol for transiently pausing reproduction, followed by improved laying efficiency almost to peak production. Here we use longitudinal metabolomics, immunology, and physiological assays to show that molting promotes reproduction, compresses morbidity, and restores youthfulness when applied to old hens. We identified circulating metabolic biomarkers that quantitatively predict the reproduction and age of individuals. Lastly, we introduce metabolic noise, a robust, unitless, and quantifiable measure for heterogeneity of the complete metabolome as a general marker that can indicate the rate of aging of a population. Indeed, metabolic noise increased with age in control hens, whereas molted hens exhibited reduced noise following molting, indicating systemic rejuvenation. Our results suggest that metabolic noise can be used as a quick and universal proxy for assessing successful aging treatments, accelerating the timeline for drug development.


Asunto(s)
Pollos , Rejuvenecimiento , Humanos , Animales , Femenino , Pollos/fisiología , Restricción Calórica , Reproducción/fisiología , Muda/fisiología
14.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239932

RESUMEN

The plant mirid bug Apolygus lucorum is an omnivorous pest that can cause considerable economic damage. The steroid hormone 20-hydroxyecdysone (20E) is mainly responsible for molting and metamorphosis. The adenosine monophosphate-activated protein kinase (AMPK) is an intracellular energy sensor regulated by 20E, and its activity is regulated allosterically through phosphorylation. It is unknown whether the 20E-regulated insect's molting and gene expression depends on the AMPK phosphorylation. Herein, we cloned the full-length cDNA of the AlAMPK gene in A. lucorum. AlAMPK mRNA was detected at all developmental stages, whereas the dominant expression was in the midgut and, to a lesser extent, in the epidermis and fat body. Treatment with 20E and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AlCAR) or only AlCAR resulted in activation of AlAMPK phosphorylation levels in the fat body, probed with an antibody directed against AMPK phosphorylated at Thr172, enhancing AlAMPK expression, whereas no phosphorylation occurred with compound C. Compared to compound C, 20E and/or AlCAR increased the molting rate, the fifth instar nymphal weight and shortened the development time of A. lucorum in vitro by inducing the expression of EcR-A, EcR-B, USP, and E75-A. Similarly, the knockdown of AlAMPK by RNAi reduced the molting rate of nymphs, the weight of fifth-instar nymphs and blocked the developmental time and the expression of 20E-related genes. Moreover, as observed by TEM, the thickness of the epidermis of the mirid was significantly increased in 20E and/or AlCAR treatments, molting spaces began to form between the cuticle and epidermal cells, and the molting progress of the mirid was significantly improved. These composite data indicated that AlAMPK, as a phosphorylated form in the 20E pathway, plays an important role in hormonal signaling and, in short, regulating insect molting and metamorphosis by switching its phosphorylation status.


Asunto(s)
Ecdisterona , Muda , Animales , Muda/fisiología , Ecdisterona/farmacología , Ecdisterona/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilcarnitina/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/metabolismo
15.
J Agric Food Chem ; 71(14): 5496-5506, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37013678

RESUMEN

In order to increase the application of natural bioresources in drug discovery and development, a study on N-acetyl-glucosamine (GlcNAc) derivatives of chitin as green pesticides was necessary. In this study, we designed and synthesized a series of novel C-glycoside naphthalimides using GlcNAc as a starting material. Compound 10l showed high inhibitory activity against OfHex1 (IC50 = 1.77 µM), with a nearly 30-fold increase in activity over our previously reported C-glycoside CAUZL-A (IC50 = 47.47 µM). By observing the morphology of the Ostrinia furnacalis, we found that the synthesized compounds significantly inhibited the molting process. In addition, we further explored the morphological changes of the inhibitor-treated O. furnacalis cuticle using scanning electron microscopy. This is the first study to validate the insecticidal mechanism of OfHex1 inhibitors at the microscale level. Several compounds also exhibited excellent larvicidal activity against Plutella xylostella. Moreover, the toxicity measurements and predictions indicated that the C-glycoside naphthalimides have little effect on the natural enemy Trichogramma ostriniae and rats. Together, our results highlight an approach for the design of green pesticides, taking advantage of natural bioresources to control pests in agriculture.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Plaguicidas , Animales , Ratas , Insecticidas/farmacología , Muda/fisiología , Naftalimidas , beta-N-Acetilhexosaminidasas , Insectos , Acetilglucosamina , Agricultura
16.
Artículo en Inglés | MEDLINE | ID: mdl-36572141

RESUMEN

Chinese mitten crab (Eriocheir sinensis) is an economically important aquaculture species, and its growth and development are regulated by temperature, but the molecular mechanisms of the responses to temperature remain unclear. Herein, we identified TRPA1 from E. sinensis, a member of the TRP family of heat receptor potential channels, performed RACE cloning and bioinformatics analysis, and investigated the effect of TRPA1 on temperature responses and molting by real-time PCR and RNA interference (RNAi). The open reading frame of Es-TRPA1 is 3660 bp, and the encoded protein has a molecular weight of 136.91 kDa, and is expressed in embryos and juveniles. RNAi-mediated silencing decreased Es-TRPA1 expression in juvenile crabs, molting rate was decreased, mortality was increased, and crabs avoided cold areas (4 °C) much less than control juvenile crabs. The results suggest that Es-TRPA1 is involved in regulating temperature adaptation and molting processes in E. sinensis. The findings lay a foundation for further exploration of temperature regulation mechanisms in E. sinensis and other crustaceans.


Asunto(s)
Braquiuros , Muda , Animales , Secuencia de Aminoácidos , Temperatura , Muda/fisiología , Crustáceos/genética , Clonación Molecular , Braquiuros/genética , Filogenia
17.
J Vet Med Sci ; 85(2): 207-213, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574998

RESUMEN

The detailed reproductive physiology of cockatoos based on gonadal hormone dynamics is unclear. In this study, we aimed to investigate ovarian activity by monitoring urofecal sex steroid hormone profiles in a captive female white cockatoo (Cacatua alba) and to noninvasively reveal basic reproductive physiology by comparing the hormone profiles with the laying dates, body mass changes, and molt progress. Urofeces were collected regularly for approximately 4 years from one female that frequently laid unfertilized eggs under single-rearing conditions. Urofecal progesterone (P4) and estradiol-17ß (E2) were measured by enzyme immunoassay. In addition, body mass and the number of fallen feathers were measured periodically. The urofecal P4 concentration peaked at an average of 17.7 days after the start of the rise in urofecal E2 concentration, and egg laying began on the day after the peak urofecal P4 concentration. The clutch size was usually two eggs, with an average interval of 4.5 days between eggs in each egg-laying cycle. There was a significant correlation between the dynamics of E2 concentration in urofeces and body mass. The results strongly suggest that E2 and P4 reflect the follicle growth and ovulation status, respectively, and that noninvasive monitoring of hormone dynamics using urofeces can accurately capture ovarian activity in the white cockatoo. Furthermore, changes in body mass can predict follicular growth, and reproduction and molt are antagonistic.


Asunto(s)
Cacatúas , Femenino , Animales , Muda/fisiología , Óvulo , Reproducción/fisiología , Progesterona , Estradiol , Peso Corporal
18.
Biosci. j. (Online) ; 39: e39045, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1428231

RESUMEN

Although lettuce is one of the most important vegetable crops cultivated in Brazil, producers conduct seedling production empirically, as there are no published reports on the optimal start time and management strategy for seedling fertigation. The present aimed to assess the influence of fertigation management on the growth, physiological aspects and nutritional status of lettuce seedlings and to determine the optimal fertigation start time and frequency. Two experiments were conducted, each with a randomized block design and six repetitions. The first consisted of six treatments, namely six fertigation start times at 0, 3, 6, 9, 12, and 15 d after emergence (DAE), and the second consisted of five treatments, representing different application frequencies at 3, 4, 5, 6, and 7 d intervals. The assessment of nutrient accumulation levels and biometric and physiological characteristics of the seedlings were performed after transplanting. Fertigation start times significantly affected 14 of the 18 variables assessed, particularly the number of leaves, shoot dry weight, leaf area, initial chlorophyll fluorescence, and P, K, Ca, Mg, and S accumulation. The best results for ten variables were obtained when fertigation began at emergence, with values 17.77 - 35.63% higher than those at fertigation onset at 15 DAE. Application frequency only influenced chlorophyll content and N, P, K, and S accumulation, with optimal results obtained at 3 - 6 d intervals. Beginning fertigation at plant emergence favors dry weight production, nutrition and photosynthesis and shortens the production time of lettuce seedlings. The optimal start time for lettuce seedling fertigation is at emergence, with application performed every 6 d.


Asunto(s)
Lombricultura , Lactuca , Muda , Muda/fisiología , Desarrollo de la Planta
19.
Nature ; 612(7940): 488-494, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450990

RESUMEN

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Asunto(s)
Hormigas , Líquidos Corporales , Muda , Pupa , Conducta Social , Animales , Hormigas/crecimiento & desarrollo , Hormigas/fisiología , Larva/fisiología , Muda/fisiología , Pupa/fisiología , Líquidos Corporales/fisiología
20.
Insect Biochem Mol Biol ; 149: 103844, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115517

RESUMEN

The insect cuticle is a key component of their success, being important for protection, communication, locomotion, and support. Conversely, as an exoskeleton, it also limits the size of the insect and must be periodically molted and a new one synthesized, to permit growth. To achieve this, the insect secretes a solution of chitinases, proteases and other proteins, known collectively as molting fluid, during each molting process to break down and recycle components of the old cuticle. Previous research has focused on the degradative enzymes in molting fluid and offered some characterization of their biochemical properties. However, identification of the specific proteins involved remained to be determined. We have used 2D SDS-PAGE and LC/MS-based proteomic analysis to identify proteins in the molting fluid of the tobacco hornworm, Manduca sexta, undergoing the larval to pupal molt. We categorized these proteins based on their proposed functions including chitin metabolism, proteases, peptidases, and immunity. This analysis complements previous reported work on M. sexta molting fluid and identifies candidate genes for enzymes involved in cuticle remodeling. Proteins classified as having an immune function highlight potential for molting fluid to act as an immune barrier to prevent infections during the cuticle degradation and ecdysis processes. Several proteins known to function in melanin synthesis as an immune response in hemolymph were present in molting fluid. We demonstrated that the bacterium Micrococcus luteus and the entomopathogenic fungus Beauveria bassiana can stimulate activation of phenoloxidase in molting fluid, indicating that the recognition proteins, protease cascade, and prophenoloxidase needed for melanin synthesis are present as a defense against infection during cuticle degradation. This analysis offers insights for proteins that may be important not only for molting in M. sexta but for insects in general.


Asunto(s)
Quitinasas , Manduca , Animales , Quitina/metabolismo , Endopeptidasas , Proteínas de Insectos/metabolismo , Larva/metabolismo , Manduca/genética , Melaninas/metabolismo , Muda/fisiología , Monofenol Monooxigenasa , Péptido Hidrolasas , Proteómica , Pupa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...