Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.732
Filtrar
1.
Braz J Biol ; 84: e286961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319983

RESUMEN

Fruit peels such as Banana, Orange, and Pineapple can be used to produce eco-enzymes producing diverse chemical compounds. Eco-enzymes are derived from the organic fermentation process of the specified ingredients. The objective of this study was to characterize the organic compounds present in Eco-enzymes derived from various raw materials. The research phase involved the extraction of eco-friendly Eco-enzymes from different raw materials and the identification of the chemical compounds in them. The results of this study are expected to contribute to organic waste management, highlighting the importance of utilizing waste as an economically and environmentally viable resource and strategic steps in a more sustainable waste management. Data analysis of the Eco-enzyme extraction results was carried out using high-liquid chromatography (HPLC) to ascertain the levels of organic chemical compounds produced. The findings revealed eight organic compounds categorized into organic acids (acetic acid, citric acid, lactic acid, oxalic acid) Acetic acid compound in pineapple fermentation 1.83 (g/L). Citric acid compound in banana peel fermentation 3.39 (g/L). Lactic acid compounds in orange fermentation 4.89 (g/L). The highest oxalic acid compound was identified in orange fermentation with a content of 0.1764 (g/L).


Asunto(s)
Ananas , Citrus sinensis , Musa , Ananas/química , Ananas/enzimología , Musa/química , Citrus sinensis/química , Cromatografía Líquida de Alta Presión , Fermentación , Frutas/química
2.
BMC Plant Biol ; 24(1): 890, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343895

RESUMEN

BACKGROUND: Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS: The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS: This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .


Asunto(s)
Productos Agrícolas , Frutas , Genómica , Productos Agrícolas/genética , Frutas/genética , Genómica/métodos , Internet , Bases de Datos Genéticas , Persea/genética , Carica/genética , Musa/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
3.
Ecotoxicol Environ Saf ; 283: 116982, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39217893

RESUMEN

The spread of antibiotic resistance genes (ARGs) and subsequent soil-borne disease outbreaks are major threats to soil health and sustainable crop production. However, the relationship between occurrences of soil-borne diseases and the transmission of soil ARGs remains unclear. Here, soil ARGs, mobile genetic elements and microbial communities from co-located disease suppressive and conducive banana orchards were deciphered using metagenomics and metatranscriptomics approaches. In total, 23 ARG types, with 399 subtypes, were detected using a metagenomics approach, whereas 23 ARG types, with 452 subtypes, were discovered using a metatranscriptomics method. Furthermore, the metagenomics analysis revealed that the ARG total abundance levels were greater in rhizospheres (0.45 ARGs/16S rRNA on average) compared with bulk (0.32 ARGs/16S rRNA on average) soils. Interestingly, metatranscriptomics revealed that the total ARG abundances were greater in disease-conducive (8.85 ARGs/16S rRNA on average) soils than disease suppressive (1.45 ARGs/16S rRNA on average) soils. Mobile genetic elements showed the same trends as ARGs. Network and binning analyses indicated that Mycobacterium, Streptomyces, and Blastomonas are the main potential hosts of ARGs. Furthermore, Bacillus was significantly and negatively correlated with Fusarium (P < 0.05, r = -0.84) and hosts of ARGs (i.e., Mycobacterium, Streptomyces, and Blastomonas). By comparing metagenomic and metatranscriptomic analyses,this study demonstrated that metatranscriptomics may be more sensitive in indicating ARGs activities in soil. Our findings enable the more accurate assessment of the transmission risk of ARGs. The data provide a new perspective for recognizing soil health, in which soil-borne disease outbreaks appear to be associated with ARG spread, whereas beneficial microbe enrichment may mitigate wilt disease and ARG transmission.


Asunto(s)
Farmacorresistencia Microbiana , Fusarium , Musa , Microbiología del Suelo , Musa/microbiología , Fusarium/genética , Farmacorresistencia Microbiana/genética , Enfermedades de las Plantas/microbiología , Suelo/química , Metagenómica , ARN Ribosómico 16S/genética
4.
Chemosphere ; 364: 143246, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236920

RESUMEN

The purpose of the study is to standardize the silver nanoparticle (BP-AgNPs) synthesis and its antibacterial activity and photocatalytic application with the selected dyes using the banana pseudo stem extract. "One-factor analysis (OFTA)" was carried out for the standardization of silver nanoparticle synthesis and nanoparticle-chitosan complex immobilization. The parameters were identified with plant quantity (20 g), silver nitrate concentration (1 mM), the ratio of plant extract and silver nitrate solution (2:8), pH (12), temperature (37 °C), dispersed light conditions, shaking conditions (120 rpm), and time (6 h) were analysed. The photocatalytic decolorization efficiency of the standardized BP-AgNPs (immobilized with chitosan complex) has shown 96.92% for methylene blue (10 ppm) at 3 h and 97.55% for safranin (100 ppm) at 15 h. The antibacterial activity for the synthesised BP-AgNPs was determined. MIC value of the BP-AgNPs was determined to be 15.62 µg. mL-1 for S. aureus. The synthesised BP-AgNPs treated with 0.5×, 1× and 2× MIC concentration (x = 15.62 µg. mL-1) showed decreased viable counts of S. aureus (99.6% at 2× concentration having viable count of 22.6 × 102 CFU. mL-1) at 24 h incubation when compared with the control culture. The structural characteristics of the BP-AgNPs were identified as spherical with SEM and the size was identified as 12.19 ± 1.62 nm with TEM and as 37.23 ± 17.89 nm with XRD. The parameters such as FTIR, Zeta potential, EDS further supports the nanoparticle synthesis with banana pseudostem extract. The current result suggested that, the silver nanoparticles (BP-AgNPs) synthesised using the extract of the banana pseudo stem could be used as an alternative source for dye decolorization and antibacterial activities.


Asunto(s)
Antibacterianos , Quitosano , Colorantes , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Musa , Plata , Staphylococcus aureus , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Musa/química , Staphylococcus aureus/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Colorantes/química , Catálisis , Textiles , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tallos de la Planta/química
5.
Trop Anim Health Prod ; 56(8): 265, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39304570

RESUMEN

Bananas are one of the most extensively cultivated fruits globally, yielding substantial amounts of greenery, including their leaves. Banana leaves (BL) have notable protein content, bioactive compounds, and a significant fiber component. This study aimed to investigate the impact of incorporating dried and nutrient-determined BL along with a multienzyme complex into the diet of quails. The experiment lasted 35 days, a total of 280 one-day-old quail chicks (Coturnix coturnix japonica) were allocated into four groups with seven replicates. Experimental diets were formulated with the addition of dried BL at levels of 0% (C), 3% (BL3), 6% (BL6), and 9% (BL9), with the inclusion of 1,000 mg/kg multienzyme complex to the basal diet. The total fiber content of diets was determined at 2.77%, 4.28%, 5.77%, and 7.28%, respectively. The inclusion of BL in the diet did not significantly affect growth performance. However, the addition of 3% and 6% BL to the diet resulted in a significant reduction in meat oxidation. A 6% BL inclusion led to the lowest serum low-density lipoprotein and the highest high-density lipoprotein concentrations (p < 0.05). Meat yellowness (b*) increased with all three levels of BL in the diet compared to the basal diet (p < 0.05), while L* and a* values remained unaffected. A 6% BL addition to quail diets may lead to improved meat quality and higher serum HDL concentration without detrimental effects on growth performance.


Asunto(s)
Alimentación Animal , Colesterol , Coturnix , Dieta , Fibras de la Dieta , Suplementos Dietéticos , Carne , Musa , Hojas de la Planta , Animales , Musa/química , Alimentación Animal/análisis , Hojas de la Planta/química , Coturnix/crecimiento & desarrollo , Coturnix/fisiología , Dieta/veterinaria , Fibras de la Dieta/análisis , Fibras de la Dieta/administración & dosificación , Carne/análisis , Suplementos Dietéticos/análisis , Colesterol/sangre , Colesterol/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Masculino
6.
Trop Anim Health Prod ; 56(8): 263, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302552

RESUMEN

Ruminant animals constitute major contributors to greenhouse gas (GHG) emissions and play an important part in sustainable agricultural systems. A bioactive compound (BC) with antibacterial properties was utilized to inhibit rumen methanogens and decrease ruminant methane emissions. The bio efficacy of ruminant nutrition was frequently employed using a new technology through microencapsulation technique to produce stable products. The microencapsulated banana flower powder pellet (mBAFLOP) powder was used as a BC in the diets. Consequently, this study aimed to evaluate the effects of mBAFLOP supplementation on in vitro gas production kinetics, rumen fermentation, microbial population, and methane production. A completely randomized design (CRD) was used to randomly assign respective treatments at 0, 1, 2, and 3% of the total dry matter (DM) substrate. Ruminal pH, in vitro dry matter degradability and volatile fatty acid profile both at 12, and 24 h were not negatively affected by supplementation with mBAFLOP. The supplemented mBAFLOP (3% of total DM substrate) resulting in ruminal ammonia-nitrogen concentrations was linearly increased (P < 0.01) different among treatments, while methane production was reduced when compared with other treatment (quadratic effect, P < 0.05). Moreover, Ruminococcus flavefaciens was increased when the proportion of mBAFLOP supplement was increased. Furthermore, there was a linear effect (P < 0.05) of decreasing Methanobacteriales in the rumen with increased levels of mBAFLOP supplementation. Based on this study, the use of mBAFLOP at 3% could enhance NH3N concentration and cellulolytic bacteria especially Ruminococcus flavefaciens was increased. Furthermore, supplementation with mBAFLOP decreased methane production. Therefore, a possible dietary plant-based bioactive compound, mBAFLOP supplementation cloud enhances rumen fermentation and mitigates methane production.


Asunto(s)
Alimentación Animal , Digestión , Fermentación , Metano , Musa , Rumen , Animales , Musa/química , Rumen/microbiología , Rumen/metabolismo , Metano/metabolismo , Fermentación/efectos de los fármacos , Digestión/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Flores/química , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Polvos , Composición de Medicamentos/veterinaria , Bovinos
7.
ScientificWorldJournal ; 2024: 5515855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280721

RESUMEN

This study investigated the proximate composition and inhibitory potential of hot water and ethanolic extracts of the pulp, peel and whole fruit of green banana (Musa sapientum) on α-amylase and α-glucosidase. Bioactive compounds were identified using GC-MS analysis. In addition, the cytotoxic effect on human gingival fibroblast (hGF) was evaluated using the sulphorhodamine B (SRB) assay. The results showed that the peel of green banana had the highest amount of ash (10.05%), fat (2.83%), protein (3.64%) and total dietary fibre (36.62%). The carbohydrate content of the whole fruit (81.79%) and pulp (81.50%) was higher than that of the peel (71.90%). The moisture content of the pulp (13.08%) was higher than that of the peel (11.58%) and whole fruit (11.30%). The ethanolic green banana peel extract showed a good inhibitory effect of α-amylase and α-glucosidase with the concentration necessary for 50% inhibition (IC50) of 0.512 and 0.100 mg·mL-1, respectively. The α-glucosidase inhibitory effect of the ethanolic green banana peel extract and the hot water green banana peel extract was not significantly different from that of acarbose (IC50 0.108 mg·mL-1). GC-MS analysis of the ethanolic green banana peel extract revealed fatty acids and fatty acid ester (9-octadecenamide (Z), octadecanamide and other compounds). The ethanolic peel extract exhibits a significant noncytotoxicity effect on hGF cells at concentrations ranging from 0.0001 to 1.0 mg·mL-1.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Musa , Extractos Vegetales , alfa-Amilasas , alfa-Glucosidasas , Musa/química , alfa-Amilasas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , Humanos , Frutas/química , Polvos , Cromatografía de Gases y Espectrometría de Masas , Fibroblastos/efectos de los fármacos
8.
JMIR Res Protoc ; 13: e56772, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222346

RESUMEN

BACKGROUND: The introduction of complementary foods during the first year of life influences the diversity of the gut microbiome. How this diversity affects immune development and health is unclear. OBJECTIVE: This study evaluates the effect of consuming kumara or kumara with added banana powder (resistant starch) compared to a reference control at 4 months post randomization on the prevalence of respiratory tract infections and the development of the gut microbiome. METHODS: This study is a double-blind, randomized controlled trial of mothers and their 6-month-old infants (up to n=300) who have not yet started solids. Infants are randomized into one of 3 groups: control arm (C), standard kumara intervention (K), and a kumara intervention with added banana powder product (K+) to be consumed daily for 4 months until the infant is approximately 10 months old. Infants are matched for sex using stratified randomization. Data are collected at baseline (prior to commencing solid food) and at 2 and 4 months after commencing solid food (at around 8 and 10 months of age). Data and samples collected at each timepoint include weight and length, intervention adherence (months 2 and 4), illness and medication history, dietary intake (months 2 and 4), sleep (diary and actigraphy), maternal dietary intake, breast milk, feces (baseline and 4 months), and blood samples (baseline and 4 months). RESULTS: The trial was approved by the Health and Disability Ethics Committee of the Ministry of Health, New Zealand (reference 20/NTA/9). Recruitment and data collection did not commence until January 2022 due to the COVID-19 pandemic. Data collection and analyses are expected to conclude in January 2024 and early 2025, respectively. Results are to be published in 2024 and 2025. CONCLUSIONS: The results of this study will help us understand how the introduction of a specific prebiotic complementary food affects the microbiota and relative abundances of the microbial species, the modulation of immune development, and infant health. It will contribute to the expanding body of research that aims to deepen our understanding of the connections between nutrition, gut microbiota, and early-life postnatal health. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12620000026921; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=378654. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/56772.


Asunto(s)
Microbioma Gastrointestinal , Femenino , Humanos , Lactante , Masculino , Método Doble Ciego , Microbioma Gastrointestinal/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales del Lactante/inmunología , Musa , Nueva Zelanda/epidemiología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Open Vet J ; 14(8): 1990-1998, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39308702

RESUMEN

Background: Repeated acute exposure to ultraviolet B (UVB) rays can cause photoaging. Musa balbisiana peel contains flavonoid compounds which act as antioxidants. However, the physicochemicals of flavonoids are unstable, have high molecular weight, and are easily oxidized, causing their use is still limited and transdermal delivery to be inefficient. Aim: To investigate the ameliorative effect of transfersome gel of M. balbisiana peels against photoaging in Wistar rat skin. Methods: Transfersome gel was characterized by transmission electron microscopy (TEM). In vivo research was used to determine the ameliorative effects of M. balbisiana peel. The composition of transfersome consists of ethanol extracts of M. balbisiana peel, soybean phosphatidylcholine, and tween 80. The gel was applied three times a week for 4 weeks with a total UVB radiation dose of 840 mJ/cm2. To evaluate the repair mechanism by measuring the degree of wrinkles, epidermal thickening, dermal thinning, collagen fiber irregularity, matrix metalloproteinase 1 (MMP-1), and transforming growth factor-ß (TGF-ß) expression, malondialdehyde (MDA) and tumor necrosis factor-α (TNFα) levels. Results: TEM results show that gel transfersome M. balbisiana peel has a round morphology with a diameter of ±50 nm and no aggregation, which are defined as nanoparticles. Transfersome gel ameliorated the degree of wrinkle, epidermal thickening, dermal thinning, and irregularity of collagen fibers caused by UVB exposure, suppresses lipid peroxidation by decreasing MDA and TNFα level, also collagen imbalance by inhibiting MMP-1 expression and activating TGF-ß expression, which was found statistically significantly different from non-transfersome gel group. Conclusion: Transfersome gel of M. balbisiana peel can act as an alternative medicine to ameliorate clinical photoaging due to exposure to UVB.


Asunto(s)
Musa , Extractos Vegetales , Ratas Wistar , Envejecimiento de la Piel , Rayos Ultravioleta , Animales , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación , Ratas , Musa/química , Rayos Ultravioleta/efectos adversos , Piel/efectos de los fármacos , Piel/efectos de la radiación , Geles/química , Femenino
10.
Int J Neural Syst ; 34(11): 2450058, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39155690

RESUMEN

Effectively regulating anger driving has become critical in ensuring road safety. The existing research lacks a feasible exploration of anger-driving regulation. This paper delves into the effect and neural mechanisms of emotional olfactory stimuli (EOS) on regulating anger driving based on EEG. First, this study designed an angry driving regulation experiment based on EOS to record EEG signals. Second, brain activation patterns under various EOS conditions are explored by analyzing functional brain networks (FBNs). Additionally, the paper analyzes dynamic alterations in anger-related characteristics to explore the intensity and persistence of regulating anger driving under different EOS. Finally, the paper studies the frequency energy of EEG changes under EOS through time-frequency analysis. The results indicate that EOS can effectively regulate a driver's anger emotions, especially with the banana odor showing superior effects. Under banana odor stimulus, synchronization between the parietal and temporal lobes significantly decreased. Notably, the regulatory effect of banana odor is optimal and exhibits sustained efficacy. The regulatory effect of banana odor on anger emotions is persistent. Furthermore, the impact of banana odor significantly reduces the distribution of high-energy activation states in the parietal lobe region. Our findings provide new insights into the dynamic characterization of functional connectivity during anger-driving regulation and demonstrate the potential of using EOS as a reliable tool for regulating angry driving.


Asunto(s)
Ira , Conducción de Automóvil , Electroencefalografía , Humanos , Ira/fisiología , Masculino , Adulto , Adulto Joven , Odorantes , Percepción Olfatoria/fisiología , Femenino , Encéfalo/fisiología , Musa , Emociones/fisiología
12.
Nat Microbiol ; 9(9): 2232-2243, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39152292

RESUMEN

Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most damaging plant diseases known. Foc race 1 (R1) decimated the Gros Michel-based banana (Musa acuminata) trade, and now Foc tropical race 4 (TR4) threatens global production of its replacement, the Cavendish banana. Here population genomics revealed that all Cavendish banana-infecting Foc race 4 strains share an evolutionary origin distinct from that of R1 strains. Although TR4 lacks accessory chromosomes, it contains accessory genes at the ends of some core chromosomes that are enriched for virulence and mitochondria-related functions. Meta-transcriptomics revealed the unique induction of the entire mitochondrion-localized nitric oxide (NO) biosynthesis pathway upon TR4 infection. Empirically, we confirmed the unique induction of a NO burst in TR4, suggesting that nitrosative pressure may contribute to virulence. Targeted mutagenesis demonstrated the functional importance of fungal NO production and the accessory gene SIX4 as virulence factors.


Asunto(s)
Fusarium , Musa , Óxido Nítrico , Enfermedades de las Plantas , Fusarium/genética , Fusarium/patogenicidad , Fusarium/metabolismo , Musa/microbiología , Enfermedades de las Plantas/microbiología , Óxido Nítrico/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Filogenia
13.
Int J Biol Macromol ; 278(Pt 1): 134630, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142481

RESUMEN

Banana fibers are a sustainable material with natural mechanical strength and antibacterial properties. These fibers are extracted from the large amount of waste produced by banana pseudo stems annually. However, despite their numerous advantages, their stiffness and rough texture impede their full use in the textile. This research investigates the degumming treatment of banana fibers using enzyme combination and chemical methods to achieve spinnable soft banana fibers. An L9 orthogonal array was used in a Taguchi design of the experiment to optimize the process parameters. For enzyme combination degumming, the experimental setup comprised different quantities of hemicellulase, laccase, amylase, and pectinase; for chemical degumming, varied amounts of sodium hydroxide (NaOH) were used. The results indicate that enzyme-based degumming procedures produce better results than chemical treatments. Optimum enzyme combinations for various fiber qualities were found using the Taguchi design of experiments. These combinations included Hemicellulase 5 %, Laccase 5 %, Amylase 3 %, and Hemicellulase 5 %, Laccase 3 %, Pectinase 5 %. Without degrading the cellulose structure, these ideal enzyme combinations produced fibers with lower lignin content and higher cellulose percentages, moisture content, and tenacity values. By determining the most efficient enzyme combinations and their effects on fiber qualities, the study offers sustainable fiber processing methods for textile grade banana fiber.


Asunto(s)
Fibra de Algodón , Lacasa , Musa , Textiles , Musa/química , Lacasa/química , Lacasa/metabolismo , Poligalacturonasa/química , Poligalacturonasa/metabolismo , Amilasas/metabolismo , Amilasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Celulosa/química
14.
Int J Biol Macromol ; 278(Pt 2): 134877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163967

RESUMEN

A hybrid hydrogel nanocomposite derived from cellulose fiber extracted from Banana Pseudo Stem (BPS) was developed as an adsorbent material for wastewater treatment. The hydrogel was developed by graft copolymerization of N-hydroxyethylacrylamide on Cellulose Fiber (BPSCF-g-PHEAAm) with potassium peroxodisulphate (KPS) as an initiator and N, N'-methylene bisacrylamide (MBA) as a crosslinker using microwave irradiation. Magnetic nanoparticles generated by an in-situ method were incorporated into the network structure. Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller analysis (BET), Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive Spectrometer (EDS) were employed. The adsorption capacities of hydrogel and its nanocomposite were evaluated using Methylene Blue (MB) and Crystal Violet (CV) as model dyes. The parent gel exhibited the maximum absorption capacity of 235, and 219 mg g-1 towards MB and CV respectively which was enhanced to 320 and 303 mg g-1 for the nanocomposite. Adsorption data were best fitted with the pseudo-second-order kinetic model and the Freundlich isotherm model. Negative ΔG° and positive ΔH° indicated spontaneous and endothermic adsorption. Desorption was effective to an extent of 99 % in the HCl medium suggesting high reusability potential of the developed adsorbent material.


Asunto(s)
Celulosa , Colorantes , Musa , Nanocompuestos , Contaminantes Químicos del Agua , Musa/química , Celulosa/química , Adsorción , Nanocompuestos/química , Colorantes/química , Colorantes/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cinética , Purificación del Agua/métodos , Azul de Metileno/química , Azul de Metileno/aislamiento & purificación , Hidrogeles/química , Tallos de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
15.
Molecules ; 29(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124966

RESUMEN

The fruit processing industry is responsible for disposing of huge amounts of byproducts, especially fruit peels (FPs), which are often discarded in landfills. Using FPs in biotechnological processes contributes to a circular economy, reducing the environmental burden of FPs and increasing the revenue of the fruit processing industry. This study was focused on upgrading the nutritional value of orange (OPs) and banana (BPs) peels by solid-state fermentation (SSF) with filamentous fungi. SSF factors (moisture, fermentation time, inoculum size, ammonium sulfate (AS), and corn steep liquor (CSL)) and fungi species (Aspergillus ibericus and Rhizopus oryzae) were studied by a variable screening Plackett-Burman design. Both fungi grew on untreated FPs, increasing their protein content and antioxidant activity. Moisture, AS, and CSL were further studied by a Box-Behnken design with A. ibericus. Fermented OPs at 70% moisture and 0.005 g/g AS increased their protein content by 200%, whereas BPs at 70% moisture and 0.005 g/g CSL increased by 123%. Fermented peels were enriched in protein, fiber, and minerals, with a low content of carbohydrates and soluble sugars. Fermented OPs and BPs showed higher antioxidant activity than unfermented peels. The SSF of these FPs is an innovative approach that contributes to obtaining rich nutrient-fermented peels for food.


Asunto(s)
Fermentación , Frutas , Valor Nutritivo , Rhizopus oryzae , Frutas/microbiología , Frutas/química , Frutas/metabolismo , Rhizopus oryzae/metabolismo , Aspergillus/metabolismo , Musa/microbiología , Antioxidantes/metabolismo , Citrus sinensis/microbiología , Citrus sinensis/química
16.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125075

RESUMEN

Banana peels, comprising about 35% of the fruit's weight, are often discarded, posing environmental and economic issues. This research focuses on recycling banana peel waste by optimizing advanced extraction techniques, specifically microwave-assisted (MAE) and ultrasound-assisted extraction (UAE), for the isolation of phenolic compounds. A choline chloride-based deep eutectic solvent (DES) with glycerol in a 1:3 ratio with a water content of 30% (w/w) was compared to 30% ethanol. Parameters, including sample-to-solvent ratio (SSR), extraction time, and temperature for MAE or amplitude for UAE, were varied. Extracts were analyzed for hydroxycinnamic acid (HCA) and flavonoid content, and antioxidant activity using FRAP and ABTS assays. DES outperformed ethanol, with HCA content ranging from 180.80 to 765.92 mg/100 g and flavonoid content from 96.70 to 531.08 mg/100 g, accompanied by higher antioxidant activity. Optimal MAE conditions with DES were an SSR of 1:50, a temperature of 60 °C, and a time of 10 min, whereas an SSR of 1:60, time of 5 min, and 75% amplitude were optimal for UAE. The polyphenolic profile of optimized extracts comprised 19 individual compounds belonging to the class of flavonols, flavan-3-ols, and phenolic acids. This study concluded that DESs, with their superior extraction efficiency and environmental benefits, are promising solvents for the extraction of high-value bioactive compounds from banana peels and offer significant potential for the food and pharmaceutical industries.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Musa , Fenoles , Extractos Vegetales , Musa/química , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Flavonoides/química , Flavonoides/aislamiento & purificación , Frutas/química , Microondas , Tecnología Química Verde/métodos , Solventes/química
17.
Food Res Int ; 192: 114804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147504

RESUMEN

This study investigated spray drying a method for microencapsulating Lacticaseibacillus rhamnosus GG using a gastrointestinal resistant composite matrix. An encapsulate composite matrix comprising green banana flour (GBF) blended with maltodextrin (MD) and gum arabic (GA). The morphology of resulted microcapsules revealed a near-spherical shape with slight dents and no surface cracks. Encapsulation efficiency and product yield varied significantly among the spray-dried microencapsulated probiotic powder samples (SMPPs). The formulation with the highest GBF concentration (FIV) exhibited maximum post-drying L. rhamnosus GG viability (12.57 ± 0.03 CFU/g) and best survivability during simulated gastrointestinal digestion (9.37 ± 0.05 CFU/g). Additionally, glass transition temperature (Tg) analysis indicated good thermal stability of SMPPs (69.3 - 92.9 ℃), while Fourier Transform infrared (FTIR) spectroscopy confirmed the structural integrity of functional groups within microcapsules. The SMPPs characterization also revealed significant variation in moisture content, water activity, viscosity, and particle size. Moreover, SMPPs exhibited differences in total phenolic and flavonoid, along with antioxidant activity and color values throughout the study. These results suggested that increasing GBF concentration within the encapsulating matrix, while reducing the amount of other composite materials, may offer enhanced protection to L. rhamnosus GG during simulated gastrointestinal conditions, likely due to the gastrointestinal resistance properties of GBF.


Asunto(s)
Composición de Medicamentos , Goma Arábiga , Lacticaseibacillus rhamnosus , Musa , Polisacáridos , Polvos , Probióticos , Secado por Pulverización , Lacticaseibacillus rhamnosus/química , Goma Arábiga/química , Polisacáridos/química , Musa/química , Tamaño de la Partícula , Cápsulas , Harina/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Digestión , Viscosidad , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana
18.
PLoS One ; 19(8): e0307909, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39159201

RESUMEN

Foxtail millet (FM) and green banana (GB) are rich in health-promoting nutrients and bioactive substances, like antioxidants, dietary fibers, and various essential macro and micronutrients. Utilizing GB and FM flour as prebiotics is attributed to their ability to support gut health and offer multiple health benefits. The present study aimed to evaluate the impact of incorporating 10% GB flour (GBF) and different proportions (10-40%) of FM flour (FMF) on the prebiotic potential, antioxidant, nutrient, color, cooking quality, water activity and sensory attributes of noodles. The prebiotic potential, antioxidant, and nutrient of the produced noodles were significantly improved by increasing the levels of FMF. Sensorial evaluation revealed that noodles containing 30% FMF and 10% GBF attained comparable scores to the control sample. Furthermore, the formulated noodles exhibited significantly (p < 0.05) higher levels of protein, essential minerals (such as iron, magnesium, and manganese), dietary fiber (9.37 to 12.71 g/100 g), total phenolic compounds (17.81 to 36.35 mg GA eq./100 g), and total antioxidants (172.57 to 274.94 mg AA eq./100 g) compared to the control. The enriched noodles also demonstrated substantially (p < 0.05) increased antioxidant capacity, as evidenced by enhanced DPPH and FRAP activities, when compared to the control noodles. Overall, the incorporation of 30% FMF and 10% GBF led to a noteworthy improvement in the nutritional and antioxidant qualities of the noodles, as well as the prebiotic potential of the noodles with regard to L. plantarum, L. rhamnosus, and L. acidophilus. The implementation of this enrichment strategy has the potential to confer a multitude of health advantages.


Asunto(s)
Antioxidantes , Harina , Musa , Valor Nutritivo , Prebióticos , Antioxidantes/análisis , Prebióticos/análisis , Harina/análisis , Musa/química , Fibras de la Dieta/análisis , Mijos/química , Humanos
19.
Luminescence ; 39(8): e4871, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143684

RESUMEN

Graphene oxide (GO) and copper nanoparticles (Cu NPs) were incorporated to modulate and enhance the fluorescence properties of pegylated graphite phase carbon nitride (g-C3N4-PEG). Combined with the specific recognition capability of a molecular imprinted polymer (MIP), a highly sensitive and selective fluorescent molecular imprinted probe for dopamine detection was developed. The fluorescent g-C3N4-PEG was synthesized from melamine and modified with GO and Cu NPs to obtain GO/g-C3N4-PEG@Cu NPs. Subsequently, MIP was prepared on the surface of GO/g-C3N4-PEG@Cu NPs using dopamine as the template molecule. Upon elution of the template molecule, a dopamine-specific GO/g-C3N4-PEG@Cu NPs/MIP fluorescence probe was obtained. The fluorescence intensity of the probe was quenched through the adsorption of different concentrations of dopamine by the MIP, thus establishing a novel method for the detection of dopamine. The linear range of dopamine detection was from 5 × 10-11 to 6 × 10-8 mol L-1, with a detection limit of 2.32 × 10-11 mol L-1. The sensor was utilised for the detection of dopamine in bananas, achieving a spiked recovery rate between 90.3% and 101.3%. These results demonstrate that the fluorescence molecular imprinted sensor developed in this study offers a highly sensitive approach for dopamine detection in bananas.


Asunto(s)
Cobre , Dopamina , Colorantes Fluorescentes , Grafito , Nanopartículas del Metal , Musa , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Dopamina/análisis , Grafito/química , Cobre/química , Cobre/análisis , Musa/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Espectrometría de Fluorescencia , Polímeros Impresos Molecularmente/química , Nitrilos/química , Límite de Detección , Compuestos de Nitrógeno
20.
Pak J Biol Sci ; 27(7): 365-372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39206470

RESUMEN

<b>Background and Objective:</b> Organic fertilizer is a source of nutrition for plants which is an alternative to inorganic fertilizer. Liquid organic fertilizer (LOF) which comes from coconut fiber and banana LOF which comes from banana stems from which the fruit has been removed, so that wasted plant residue can be used as fertilizer. The study aimed to obtain the best type of LOF and concentration in increasing the growth and yield of the Batang Piaman rice variety using the SRI method. <b>Materials and Methods:</b> The research was conducted from June to December, 2023 in Padang City, West Sumatra. The method used was an experiment with a Randomized Complete Block Design (RCBD) in nested with each treatment consisting of 3 groups. The treatment consisted of LOF types at two levels (banana stems and coconut fiber) and LOF concentrations at seven levels (0, 50, 100, 150, 200, 250 and 300 mL/L). Observational data were analysed by variance analysis with F test at 5% real level, but if there were differences, it was continued with DMRT further test at 5% real level by STAR IRRI Philippine software (Philippine). <b>Results:</b> The results obtained were that LOF coconut fiber provided better growth components, yield components and physiological components than banana stem LOF with the best concentration, on the provision of LOF coconut fiber 100 mL/L on the number of rice plant tillers and stomatal density and concentration of 200 mL/L on the number of productive tillers. <b>Conclusion:</b> The application of LOF coconut fiber is better for the growth and yield of rice plants of the Batang Piaman variety compared to the administration of LOF banana stems by applying coconut fiber liquid organic fertilizer with a concentration of 100 mL/L, it is recommended to add coconut fiber LOF to rice fields to increase growth and yield.


Asunto(s)
Fertilizantes , Musa , Oryza , Oryza/crecimiento & desarrollo , Musa/crecimiento & desarrollo , Cocos/crecimiento & desarrollo , Agricultura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...