Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.361
Filtrar
1.
Genet Test Mol Biomarkers ; 28(4): 151-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38657121

RESUMEN

Introduction: Approximately 80% of primary hyperoxaluria cases are caused by primary hyperoxaluria type 1 (PH1, OMIM# 259900), which is characterized by pathogenic variants in the AGXT gene, resulting in deficiency of the liver-specific enzyme alanine-glyoxylate aminotransferase (AGT). This leads to increased production of oxalate, which cannot be effectively eliminated from the body, resulting in its accumulation primarily in the kidneys and other organs. Subjects and Methods: This study included 17 PH1 Egyptian patients from 12 unrelated families, recruited from the Inherited Kidney Disease Outpatient Clinic and the Dialysis Units, Cairo University Hospitals, during the period from January 2018 to December 2019, aiming to identify the pathogenic variants in the AGXT gene. Results: Six different variants were detected. These included three frameshift and three missense variants, all found in homozygosity within the respective families. The most common variant was c.121G>A;p.(Gly41Arg) detected in four families, followed by c.725dup;p.(Asp243GlyfsTer12) in three families, c.33dup;p.(Lys12Glnfs156) in two families, and c.731T >C;p.(Ile244Thr), c.33delC;p.(Lys12Argfs34), and c.568G>A;p.(Gly190Arg) detected in one family each. Conclusion: Consanguineous Egyptian families with history of renal stones or renal disease suspicious of primary hyperoxaluria should undergo AGXT genetic sequencing, specifically targeting exons 1 and 7, as variants in these two exons account for >75% of disease-causing variants in Egyptian patients with confirmed PH1.


Asunto(s)
Hiperoxaluria Primaria , Transaminasas , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven , Egipto , Mutación del Sistema de Lectura/genética , Homocigoto , Hiperoxaluria Primaria/genética , Mutación , Mutación Missense/genética , Transaminasas/genética , Transaminasas/metabolismo
2.
J Oral Biosci ; 66(1): 225-231, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244688

RESUMEN

OBJECTIVES: Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked genetic disorder caused by mutations in the BCL6 co-repressor (BCOR) and is mainly characterized by radiculomegaly (elongated dental roots). All BCOR mutations reported to date have been associated with premature termination codons, indicating that nonsense-mediated mRNA decay (NMD) might play a vital role in the pathogenesis of OFCD syndrome. However, the molecular mechanisms underlying NMD remain unclear. In this study, we investigated the involvement of up-frameshift protein 1 (UPF1), which plays a central role in NMD, in the hyperactive root formation caused by BCOR mutations. METHODS: Periodontal ligament cells, isolated from a Japanese woman with a c.3668delC frameshift mutation in BCOR, and primary human periodontal ligament fibroblasts (HPdLFs) were used for an RNA immunoprecipitation assay to confirm the binding of UPF1 to mutated BCOR. Additionally, the effects of UPF1 on the BCOR transcription levels and corresponding gene expression were determined by performing relative quantitative real-time polymerase chain reactions. RESULTS: RNA immunoprecipitation revealed that UPF1 binds to exon 9 of mutated BCOR. Additionally, UPF1 knockdown via siRNA upregulated the transcription of BCOR, whereas overexpression of wild-type and mutated BCOR with the same frameshift mutation in HPdLFs altered bone morphogenetic protein 2 (BMP2) expression. CONCLUSIONS: Our findings indicate that BCOR mutations regulate the transcription of BCOR via UPF1, which may in turn regulate the expression of BMP2. NMD, caused by a c.3668delC mutation, potentially leads to an OFCD syndrome phenotype, including elongated dental roots.


Asunto(s)
Catarata/congénito , Mutación del Sistema de Lectura , Defectos de los Tabiques Cardíacos , Microftalmía , Degradación de ARNm Mediada por Codón sin Sentido , Femenino , Humanos , Mutación del Sistema de Lectura/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Codón sin Sentido/genética , Transactivadores/genética , Transactivadores/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(6): e2317453121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289956

RESUMEN

The synthesis of proteins as encoded in the genome depends critically on translational fidelity. Nevertheless, errors inevitably occur, and those that result in reading frame shifts are particularly consequential because the resulting polypeptides are typically nonfunctional. Despite the generally maladaptive impact of such errors, the proper decoding of certain mRNAs, including many viral mRNAs, depends on a process known as programmed ribosomal frameshifting. The fact that these programmed events, commonly involving a shift to the -1 frame, occur at specific evolutionarily optimized "slippery" sites has facilitated mechanistic investigation. By contrast, less is known about the scope and nature of error (i.e., nonprogrammed) frameshifting. Here, we examine error frameshifting by monitoring spontaneous frameshift events that suppress the effects of single base pair deletions affecting two unrelated test proteins. To map the precise sites of frameshifting, we developed a targeted mass spectrometry-based method called "translational tiling proteomics" for interrogating the full set of possible -1 slippage events that could produce the observed frameshift suppression. Surprisingly, such events occur at many sites along the transcripts, involving up to one half of the available codons. Only a subset of these resembled canonical "slippery" sites, implicating alternative mechanisms potentially involving noncognate mispairing events. Additionally, the aggregate frequency of these events (ranging from 1 to 10% in our test cases) was higher than we might have anticipated. Our findings point to an unexpected degree of mechanistic diversity among ribosomal frameshifting events and suggest that frameshifted products may contribute more significantly to the proteome than generally assumed.


Asunto(s)
Escherichia coli , Proteómica , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación del Sistema de Lectura/genética , Sistema de Lectura Ribosómico/genética , Codón/metabolismo
4.
Am J Med Genet A ; 194(6): e63528, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38169111

RESUMEN

Somatic variants in the NOTCH pathway regulator FBXW7 are frequently seen in a variety of malignancies. Heterozygous loss-of-function germline variants in FBXW7 have recently been described as causative for a neurodevelopmental syndrome. Independently, FBXW7 was also considered as a susceptibility gene for Wilms tumor due to a few observations of heterozygous germline variants in patients with Wilms tumor. Whether the same FBXW7 variants are implicated in both, neurodevelopmental delay and Wilms tumor formation, remained unclear. By clinical testing, we now observed a patient with neurodevelopmental delay due to a de novo constitutional mosaic FBXW7 splice site pathogenic variant who developed Wilms tumor. In the tumor, we identified a second hit frameshift variant in FBXW7. Immunohistochemical staining was consistent with mosaic loss of FBXW7 protein expression in the tumor. Our data support the role of constitutional FBXW7 pathogenic variants in both, neurodevelopmental disorder and the etiology of Wilms tumor. Therefore, Wilms tumor screening should be considered in individuals with constitutional or germline pathogenic variants in FBXW7 and associated neurodevelopmental syndrome.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Predisposición Genética a la Enfermedad , Tumor de Wilms , Humanos , Masculino , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Mutación del Sistema de Lectura/genética , Mutación de Línea Germinal/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Tumor de Wilms/genética , Tumor de Wilms/patología , Niño
5.
Am J Med Genet A ; 194(2): 363-367, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37818768

RESUMEN

Vissers-Bodmer Syndrome (VIBOS) is an autosomal dominant disorder caused by variants in the CNOT1 gene. It is characterized by systemic developmental and language-motor delay, intellectual disabilities, growth and behavioral abnormalities, hypotonia, and distal skeletal defects, such as deformities of the hands and feet. This syndrome becomes evident during infancy and can display a highly variable phenotype. Thirty-nine individuals with heterozygous de novo CNOT1 variants were first reported in 2019. Herein, we report a child with VIBOS who exhibited delayed motor development for over 4 years, along with hypotonia and atypical facial features. Notably, the patient developed short stature as the primary characteristic without any intellectual disability or organic nervous system lesions. Genetic testing revealed a de novo base duplication variant in exon 5 of the CNOT1 gene, NM_016284.5(CNOT1):c.316_317dup(p.Pro107Serfs*10). Importantly, the pathogenicity of this specific variant has not been reported in relevant literature. This study reports a new variant, thereby enriching the variant spectrum of CNOT1 associated with VIBOS, and contributes to the genetic counseling of affected families.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Niño , Humanos , Discapacidades del Desarrollo/genética , Hipotonía Muscular/genética , Mutación del Sistema de Lectura/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Síndrome , Factores de Transcripción/genética
6.
Clin Genet ; 105(3): 243-253, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37937686

RESUMEN

Amelogenesis imperfecta (AI) represents a group of clinically and genetically heterogeneous disorders that affect enamel formation and mineralization. Although AI is commonly considered a monogenic disorder, digenic inheritance is rarely reported. In this study, we recruited two nonconsanguineous Chinese families exhibiting diverse phenotypes of enamel defects among affected family members. Digenic variants were discovered in both probands. In family 1, the proband inherited a paternal frameshift variant in LAMA3 (NM_198129.4:c.3712dup) and a maternal deletion encompassing the entire AMELX gene. This resulted in a combined hypoplastic and hypomineralized AI phenotype, which was distinct from the parents' manifestations. In family 2, whole-exome sequencing analysis revealed the proband carried a maternal heterozygous splicing variant in COL17A1 (NC_000010.11 (NM_000494.3): c.4156 + 2dup) and compound heterozygous variants in RELT (paternal: NM_032871.4:c.260A > T; maternal: NM_032871.4:c.521 T > G). These genetic changes caused the abundant irregular enamel defects observed in the proband, whereas other affected family members carrying heterozygous variants in both COL17A1 and RELT displayed only horizontal grooves as their phenotype. The pathogenicity of the novel COL17A1 splice site variant was confirmed through RT-PCR and minigene assay. This study enhances our understanding by highlighting the potential association between the co-occurrence of variants in two genes and variable phenotypes observed in AI patients.


Asunto(s)
Amelogénesis Imperfecta , Humanos , Amelogénesis Imperfecta/genética , Fenotipo , Mutación del Sistema de Lectura/genética , Proteínas de la Matriz Extracelular/genética , Variación Biológica Poblacional , Linaje
7.
Clin Genet ; 105(1): 72-76, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526414

RESUMEN

KDM4B (MIM*609765, NM_015015.3, formerly JMJD2B) encodes a histone demethylase and regulates gene expression via demethylation, mainly of H3K9 tri-methylation. Heterozygous KDM4B loss-of-function variants cause autosomal dominant intellectual developmental disorder 65 (MIM#619320), which is characterized by global developmental delay, intellectual disability, language and gross motor delays, structural brain anomalies, characteristic facial features, and clinodactyly. Although the majority of reported patients have de novo pathogenic variants, some patients inherit pathogenic variants from affected parents. To our knowledge, only 23 patients with heterozygous KDM4B variants have been reported to date, and there are no reports of patients with biallelic KDM4B pathogenic variants. Herein, we report a female patient with a biallelic KDM4B frameshift variant (NM_015015.3: c.1384_1394delinsGGG, p.(Leu462Glyfs*43)) located at exon 12 of 23 protein-coding exons, which is thought to be subject to nonsense-mediated mRNA decay and no protein production. She presented developmental and language delays and a hypotonic and characteristic face. The patient's phenotype was more obvious than that of her mother, who is heterozygous for the same variant. Although declining birth rate (embryonic lethality in male mice) in homozygous knockout mice has been demonstrated, our report suggests that homozygous KDM4B frameshift variants can be viable in humans at least female.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Humanos , Masculino , Femenino , Animales , Ratones , Mutación del Sistema de Lectura/genética , Exones , Fenotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Histona Demetilasas con Dominio de Jumonji/genética
8.
Medicina (Kaunas) ; 59(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38004002

RESUMEN

Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome associated with malformations. DBA is related to defective ribosome biogenesis, which impairs erythropoiesis, causing hyporegenerative macrocytic anemia. The disease has an autosomal dominant inheritance and is commonly diagnosed in the first year of life, requiring continuous treatment. We present the case of a young woman who, at the age of 21, developed severe symptomatic anemia. Although, due to malformations, a congenital syndrome had been suspected since birth, a confirmation diagnosis was not made until the patient was referred to our center for an evaluation of her anemia. In her neonatal medical history, she presented with anemia that required red blood cell transfusions, but afterwards remained with a stable, mild, asymptomatic anemia throughout her childhood and adolescence. Her family history was otherwise unremarkable. To explain the symptomatic anemia, vitamin deficiencies, autoimmune diseases, bleeding causes, and myeloid and lymphoid neoplasms were investigated and ruled out. A molecular investigation showed the RPL5 gene variant c.392dup, p.(Asn131Lysfs*6), confirming the diagnosis of DBA. All family members have normal blood values and none harbored the mutation. Here, we will discuss the unusual evolution of this case and revisit the literature.


Asunto(s)
Anemia de Diamond-Blackfan , Mutación del Sistema de Lectura , Humanos , Adulto Joven , Recién Nacido , Femenino , Adolescente , Niño , Mutación del Sistema de Lectura/genética , Proteínas Ribosómicas/genética , Mutación , Anemia de Diamond-Blackfan/complicaciones , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Fenotipo
9.
Tohoku J Exp Med ; 261(2): 103-107, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37438121

RESUMEN

Human monkeypox virus (hMPXV) has caused sporadic outbreaks intermittently across countries in recent years, with the largest outbreak in 2022. However, the underlying mechanisms remain unclear. This study searched for recently developed structural variants of the viral genome. A total of 22 hMPXV whole genome sequences were randomly selected from the National Center for Biotechnology Information GenBank sequence database for initial screening. As a result, a recent frameshift mutation based on a 2-base insertion in a coding region was identified at the 3' terminal of the OPG191 gene, which encodes MPXVgp168 (B7R) protein. With this insertion, the protein was prematurely truncated, and the last 11 amino acids were missing, with 3 alternative amino acids added. Among the hMPXV genome sequences registered in the GenBank database as of January 2023, 61 sequences lacked the 2-base insertion and 3,362 sequences were inserted. All 61 sequences without mutations were collected before 2020, whereas 3,358 (99.9%) of the 3,362 sequences with the insertion were collected during or after 2022. These findings imply that a 2-base insertion has recently emerged and has been fixed among the virus population that prevailed in 2022. In summary, a recently emerged frameshift mutation with a 2-base insertion was identified in hMPXV OPG191 gene. Although the structural and functional consequences of this mutation on virulence and infectivity are unknown, research on the possible associations between this mutation and recent hMPXV outbreaks is warranted.


Asunto(s)
Mutación del Sistema de Lectura , Monkeypox virus , Humanos , Mutación del Sistema de Lectura/genética , Mutación/genética , Genoma Viral/genética , Aminoácidos
10.
Clin Genet ; 104(4): 491-496, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37270786

RESUMEN

Restrictive dermopathy (RD) is a lethal condition caused by biallelic loss-of-function mutations in ZMPSTE24, whereas mutations preserving residual enzymatic activity of the ZMPSTE24 protein lead to the milder mandibuloacral dysplasia with type B lipodystrophy (MADB) phenotype. Remarkably, we identified a homozygous, presumably loss-of-function mutation in ZMPSTE24 [c.28_29insA, p.(Leu10Tyrfs*37)] in two consanguineous Pakistani families segregating MADB. To clarify how lethal consequences are prevented in affected individuals, functional analysis was performed. Expression experiments supported utilization of two alternative translation initiation sites, preventing complete loss of protein function consistent with the relatively mild phenotypic outcome in affected patients. One of these alternative start codons is newly formed at the insertion site. Our findings indicate that the creation of new potential start codons through N-terminal mutations in other disease-associated genes should generally be taken into consideration in the variant interpretation process.


Asunto(s)
Mutación del Sistema de Lectura , Metaloendopeptidasas , Humanos , Mutación del Sistema de Lectura/genética , Codón Iniciador/genética , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Mutación , Codón , Proteínas de la Membrana/genética
11.
Parkinsonism Relat Disord ; 109: 105353, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863113

RESUMEN

BACKGROUND: Mitochondrial membrane protein‒associated neurodegeneration (MPAN) is a rare genetic disease characterized by progressive neurodegeneration with brain iron accumulations combined with neuronal α-synuclein and tau aggregations. Mutations in C19orf12 have been associated with both autosomal recessive and autosomal dominant inheritance patterns of MPAN. METHODS: We present clinical features and functional evidence from a Taiwanese family with autosomal dominant MPAN caused by a novel heterozygous frameshift and nonsense mutation in C19orf12, c273_274 insA (p.P92Tfs*9). To verify the pathogenicity of the identified variant, we examined the mitochondrial function, morphology, protein aggregation, neuronal apoptosis, and RNA interactome in p.P92Tfs*9 mutant knock-in SH-SY5Y cells created with CRISPR-Cas9 technology. RESULTS: Clinically, the patients with the C19orf12 p.P92Tfs*9 mutation presented with generalized dystonia, retrocollis, cerebellar ataxia, and cognitive decline, starting in their mid-20s. The identified novel frameshift mutation is located in the evolutionarily conserved region of the last exon of C19orf12. In vitro studies revealed that the p.P92Tfs*9 variant is associated with impaired mitochondrial function, reduced ATP production, aberrant mitochondria interconnectivity and ultrastructure. Increased neuronal α-synuclein and tau aggregations, and apoptosis were observed under conditions of mitochondrial stress. Transcriptomic analysis revealed that the expression of genes in clusters related to mitochondrial fission, lipid metabolism, and iron homeostasis pathways was altered in the C19orf12 p.P92Tfs*9 mutant cells compared to control cells. CONCLUSION: Our findings provide clinical, genetic, and mechanistic insight revealing a novel heterozygous C19orf12 frameshift mutation to be a cause of autosomal dominant MPAN, further strengthening the importance of mitochondrial dysfunction in the pathogenesis of MPAN.


Asunto(s)
Mutación del Sistema de Lectura , Neuroblastoma , Humanos , Mutación del Sistema de Lectura/genética , alfa-Sinucleína/genética , Linaje , Proteínas Mitocondriales/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Proteínas de la Membrana/genética , Hierro/metabolismo
13.
Clin Genet ; 104(1): 133-135, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36756699

RESUMEN

Each family member had a SALL4 variant. This is the first report of quadricuspid aortic valve and a genetic variant. The variation in phenotype caused by SALL4 mutations questions the division of SALL4-related phenotypes in three different entities.


Asunto(s)
Válvula Aórtica , Válvula Aórtica Cuadricúspide , Humanos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/anomalías , Mutación del Sistema de Lectura/genética , Fenotipo , Factores de Transcripción/genética
16.
Am J Med Genet A ; 191(3): 794-804, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598158

RESUMEN

Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.


Asunto(s)
Microcefalia , Recién Nacido , Humanos , Microcefalia/genética , Codón de Terminación , Irán , Proteínas Asociadas a Microtúbulos/genética , Mutación del Sistema de Lectura/genética , Linaje
18.
J Med Genet ; 60(8): 819-826, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36543534

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders characterised by susceptibility to fractures, primarily due to defects in type 1 collagen. The aim of this study is to present a novel OI phenotype and its causative candidate gene. METHODS: Whole-exome sequencing and clinical evaluation were performed in five patients from two unrelated families. PHLDB1 mRNA expression in blood and fibroblasts was investigated by real-time PCR, and western blot analysis was further performed on skin fibroblasts. RESULTS: The common findings among the five affected children were recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment. We identified biallelic NM_001144758.3:c.2392dup and NM_001144758.3:c.2690_2693del pathogenic variants in PHLDB1 in the affected patients, respectively, in the families; parents were heterozygous for these variants. PHLDB1 encodes pleckstrin homology-like domain family B member-1 (PHLDB1) protein, which has a role in insulin-dependent Akt phosphorylation. Compared with controls, a decrease in the expression levels of PHLDB1 in the blood and skin fibroblast samples was detected. Western blot analysis of cultured fibroblasts further confirmed the loss of PHLDB1. CONCLUSION: Two biallelic frameshift variants in the candidate gene PHLDB1 were identified in independent families with a novel, mild-type, autosomal recessive OI. The demonstration of decreased PHLDB1 mRNA expression levels in blood and fibroblast samples supports the hypothesis that PHLDB1 pathogenic variants are causative for the observed phenotype.


Asunto(s)
Fracturas Óseas , Osteogénesis Imperfecta , Humanos , Preescolar , Osteogénesis Imperfecta/genética , Heterocigoto , Fenotipo , Mutación del Sistema de Lectura/genética , Colágeno Tipo I/genética , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos y Proteínas de Señalización Intracelular/genética
19.
Ann Clin Lab Sci ; 53(6): 959-963, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38182156

RESUMEN

Coffin-Siris syndrome (CSS) is a rare congenital disorder characterized by coarse facial features, intellectual disability or developmental delay, and aplasia or hypoplasia of the tips of the fifth finger and/or toes. Mutations in genes affecting the switch/sucrose non-fermenting ATP-dependent chromatin remodeling complex are reported to cause CSS. Here, we describe three CSS patients. Two girls aged 3 and 2 years old presented with global developmental delay, poor growth, and a dysmorphic face. Whole-exome sequencing (WES) was performed and they were diagnosed with CSS due to heterozygous frameshift variants (c.3443_3444del, p.Lys1148ArgfsTer9 and c.2869_2890del, p.Pro957CysfsTer20) in ARID1B A 2-year-old girl presented with gross motor delay and dysmorphic face. She was diagnosed with CSS due to a novel heterozygous frameshift variant (c.4942_4943del: p.Gln1648GlyfsTer8) in ARID2.


Asunto(s)
Anomalías Múltiples , Femenino , Humanos , Preescolar , Anomalías Múltiples/genética , Cara , Facies , Mutación del Sistema de Lectura/genética , Factores de Transcripción/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-36376065

RESUMEN

A family, with two affected identical twins with early-onset recessive inherited retinal degeneration, was analyzed to determine the underlying genetic cause of pathology. Exome sequencing revealed a rare and previously reported causative variant (c.1923_1969delinsTCTGGG; p.Asn643Glyfs*29) in the PDE6B gene in the affected twins and their unaffected father. Further investigation, using genome sequencing, identified a novel ∼7.5-kb deletion (Chr 4:670,405-677,862del) encompassing the ATP5ME gene, part of the 5' UTR of MYL5, and a 378-bp (Chr 4:670,405-670,782) region from the 3' UTR of PDE6B in the affected twins and their unaffected mother. Both variants segregated with disease in the family. Analysis of the relative expression of PDE6B, in peripheral blood cells, also revealed a significantly lower level of PDE6B transcript in affected siblings compared to a normal control. PDE6B is associated with recessive rod-cone degeneration and autosomal dominant congenital stationary night blindness. Ophthalmic evaluation of these patients showed night blindness, fundus abnormalities, and peripheral vision loss, which are consistent with PDE6B-associated recessive retinal degeneration. These findings suggest that the loss of PDE6B transcript resulting from the compound heterozygous pathogenic variants is the underlying cause of recessive rod-cone degeneration in the study family.


Asunto(s)
Ceguera Nocturna , Degeneración Retiniana , Humanos , Degeneración Retiniana/genética , Mutación del Sistema de Lectura/genética , Ceguera Nocturna/genética , Ceguera/genética , Mutación INDEL , Linaje , Mutación , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA