Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583991

RESUMEN

C-glycosides have a unique structure, in which an anomeric carbon of a sugar is directly bonded to the carbon of an aglycone skeleton. One of the natural C-glycosides, carminic acid, is utilized by the food, cosmetic, and pharmaceutical industries, for a total of more than 200 tons/y worldwide. However, a metabolic pathway of carminic acid has never been identified. In this study, we isolated the previously unknown carminic acid-catabolizing microorganism and discovered a flavoenzyme "C-glycoside 3-oxidase" named CarA that catalyzes oxidation of the sugar moiety of carminic acid. A Basic Local Alignment Search Tool (BLAST) search demonstrated that CarA homologs were distributed in soil microorganisms but not intestinal ones. In addition to CarA, two CarA homologs were cloned and heterologously expressed, and their biochemical properties were determined. Furthermore, a crystal structure of one homolog was determined. Together with the biochemical analysis, the crystal structure and a mutagenesis analysis of CarA revealed the mechanisms underlying their substrate specificity and catalytic reaction. Our study suggests that CarA and its homologs play a crucial role in the metabolism of C-glycosides in nature.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , Glicósidos/metabolismo , Microbacterium/metabolismo , Glicósidos Cardíacos/metabolismo , Carmín/metabolismo , Catálisis , Redes y Vías Metabólicas/fisiología , Mutagénesis/fisiología , Oxidorreductasas/metabolismo , Especificidad por Sustrato
2.
Sci Rep ; 11(1): 16340, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381152

RESUMEN

Aryl polyenes (APE) are one of the most widespread secondary metabolites among gram-negative bacteria. In Acinetobacter baumannii, strains belonging to the virulent global clone 2 (GC2) mostly contain APE biosynthesis genes; its relevance in elevated pathogenicity is of great interest. APE biosynthesis gene clusters harbor two ketosynthases (KSs): the heterodimeric KS-chain length factor complex, ApeO-ApeC, and the homodimeric ketoacyl-acyl carrier protein synthase I (FabB)-like KS, ApeR. The role of the two KSs in APE biosynthesis is unclear. We determined the crystal structures of the two KSs from a pathogenic A. baumannii strain. ApeO-ApeC and ApeR have similar cavity volumes; however, ApeR has a narrow cavity near the entrance. In vitro assay based on the absorption characteristics of polyene species indicated the generation of fully elongated polyene with only ApeO-ApeC, probably because of the funnel shaped active site cavity. However, adding ApeR to the reaction increases the throughput of APE biosynthesis. Mutagenesis at Tyr135 in the active site cavity of ApeR reduces the activity significantly, which suggests that the stacking of the aryl group between Tyr135 and Phe202 is important for substrate recognition. Therefore, the two KSs function complementarily in the generation of APE to enhance its production.


Asunto(s)
Polienos/química , Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Dominio Catalítico/fisiología , Mutagénesis/fisiología , Sintasas Poliquetidas/química
3.
Biomolecules ; 11(6)2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198819

RESUMEN

Drugs targeting DNA and RNA in mammalian cells or viruses can also affect bacteria present in the host and thereby induce the bacterial SOS system. This has the potential to increase mutagenesis and the development of antimicrobial resistance (AMR). Here, we have examined nucleoside analogues (NAs) commonly used in anti-viral and anti-cancer therapies for potential effects on mutagenesis in Escherichia coli, using the rifampicin mutagenicity assay. To further explore the mode of action of the NAs, we applied E. coli deletion mutants, a peptide inhibiting Pol V (APIM-peptide) and metabolome and proteome analyses. Five out of the thirteen NAs examined, including three nucleoside reverse transcriptase inhibitors (NRTIs) and two anti-cancer drugs, increased the mutation frequency in E. coli by more than 25-fold at doses that were within reported plasma concentration range (Pl.CR), but that did not affect bacterial growth. We show that the SOS response is induced and that the increase in mutation frequency is mediated by the TLS polymerase Pol V. Quantitative mass spectrometry-based metabolite profiling did not reveal large changes in nucleoside phosphate or other central carbon metabolite pools, which suggests that the SOS induction is an effect of increased replicative stress. Our results suggest that NAs/NRTIs can contribute to the development of AMR and that drugs inhibiting Pol V can reverse this mutagenesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Mutagénesis/efectos de los fármacos , Nucleósidos/análogos & derivados , Nucleósidos/farmacología , Antineoplásicos/farmacología , Antivirales/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Mutagénesis/fisiología , Estavudina/análogos & derivados , Estavudina/farmacología
4.
Mutat Res Rev Mutat Res ; 787: 108364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34083043

RESUMEN

The purpose of this review is to evaluate the literature on the genotoxicity of cumene (CAS # 98-82-8) and to assess the role of mutagenicity, if any, in the mode of action for cumene-induced rodent tumors. The studies reviewed included microbial mutagenicity, DNA damage/ repair, cytogenetic effects, and gene mutations. In reviewing these studies, attention was paid to their conformance to applicable OECD test guidelines which are considered as internationally recognized standards for performing these assays. Cumene was not a bacterial mutagen and did not induce Hprt mutations in CHO cell cultures. In the primary rat hepatocyte cultures, cumene induced unscheduled DNA synthesis in one study but this response could not be reproduced in an independent study using a similar protocol. In a study that is not fully compliant to the current OECD guideline, no increase in chromosomal aberrations was observed in CHO cells treated with cumene. The weight of the evidence (WoE) from multiple in vivo studies indicates that cumene is not a clastogen or aneugen. The weak positive response in an in vivo comet assay in the rat liver and mouse lung tissues is of questionable significance due to several study deficiencies. The genotoxicity profile of cumene does not match that of a classic DNA-reactive molecule and the available data does not support a conclusion that cumene is an in vivo mutagen. As such, mutagenicity does not appear to be an early key event in cumene-induced rodent tumors and alternate hypothesized non-mutagenic modes-of-action are presented. Further data are necessary to rule in or rule out a particular MoA.


Asunto(s)
Daño del ADN/fisiología , Animales , Células CHO , Ensayo Cometa , Cricetulus , Daño del ADN/genética , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Pruebas de Mutagenicidad , Mutación/genética , Ratas
6.
PLoS Biol ; 19(4): e3001153, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891583

RESUMEN

Mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) encode vital bioenergetic apparatus, and mutations in these organelle DNA (oDNA) molecules can be devastating. In the germline of several animals, a genetic "bottleneck" increases cell-to-cell variance in mtDNA heteroplasmy, allowing purifying selection to act to maintain low proportions of mutant mtDNA. However, most eukaryotes do not sequester a germline early in development, and even the animal bottleneck remains poorly understood. How then do eukaryotic organelles avoid Muller's ratchet-the gradual buildup of deleterious oDNA mutations? Here, we construct a comprehensive and predictive genetic model, quantitatively describing how different mechanisms segregate and decrease oDNA damage across eukaryotes. We apply this comprehensive theory to characterise the animal bottleneck with recent single-cell observations in diverse mouse models. Further, we show that gene conversion is a particularly powerful mechanism to increase beneficial cell-to-cell variance without depleting oDNA copy number, explaining the benefit of observed oDNA recombination in diverse organisms which do not sequester animal-like germlines (for example, sponges, corals, fungi, and plants). Genomic, transcriptomic, and structural datasets across eukaryotes support this mechanism for generating beneficial variance without a germline bottleneck. This framework explains puzzling oDNA differences across taxa, suggesting how Muller's ratchet is avoided in different eukaryotes.


Asunto(s)
Eucariontes/genética , Células Germinativas/metabolismo , Mutación/fisiología , Orgánulos/genética , Animales , Arabidopsis , ADN Mitocondrial/genética , Drosophila , Eucariontes/clasificación , Regulación del Desarrollo de la Expresión Génica , Especiación Genética , Mutación de Línea Germinal/fisiología , Humanos , Ratones , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Modelos Genéticos , Mutagénesis/fisiología , Tasa de Mutación , Biogénesis de Organelos , Orgánulos/fisiología
7.
Nat Commun ; 12(1): 737, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531491

RESUMEN

The human neuropeptide Y (NPY) Y2 receptor (Y2R) plays essential roles in food intake, bone formation and mood regulation, and has been considered an important drug target for obesity and anxiety. However, development of drugs targeting Y2R remains challenging with no success in clinical application yet. Here, we report the crystal structure of Y2R bound to a selective antagonist JNJ-31020028 at 2.8 Å resolution. The structure reveals molecular details of the ligand-binding mode of Y2R. Combined with mutagenesis studies, the Y2R structure provides insights into key factors that define antagonistic activity of diverse antagonists. Comparison with the previously determined antagonist-bound Y1R structures identified receptor-ligand interactions that play different roles in modulating receptor activation and mediating ligand selectivity. These findings deepen our understanding about molecular mechanisms of ligand recognition and subtype specificity of NPY receptors, and would enable structure-based drug design.


Asunto(s)
Receptores de Neuropéptido Y/metabolismo , Benzamidas/farmacología , Cristalografía por Rayos X , Células HEK293 , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Hormonas Peptídicas/farmacología , Piperazinas/farmacología , Estructura Secundaria de Proteína , Piridinas/farmacología , Receptores de Neuropéptido Y/genética , Difracción de Rayos X
8.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443141

RESUMEN

Mutagenic compounds are a potent source of human disease. By inducing genetic instability, they can accelerate the evolution of human cancers or lead to the development of genetically inherited diseases. Here, we show that in addition to genetic mutations, mutagens are also a powerful source of transcription errors. These errors arise in dividing and nondividing cells alike, affect every class of transcripts inside cells, and, in certain cases, greatly exceed the number of mutations that arise in the genome. In addition, we reveal the kinetics of transcription errors in response to mutagen exposure and find that DNA repair is required to mitigate transcriptional mutagenesis after exposure. Together, these observations have far-reaching consequences for our understanding of mutagenesis in human aging and disease, and suggest that the impact of DNA damage on human physiology has been greatly underestimated.


Asunto(s)
Daño del ADN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Transcripción Genética/genética , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Mutágenos/toxicidad , Mutación/genética
9.
PLoS One ; 15(12): e0244790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382846

RESUMEN

Ribonucleoside triphosphates are often incorporated into genomic DNA during DNA replication. The accumulation of unrepaired ribonucleotides is associated with genomic instability, which is mediated by DNA topoisomerase 1 (Top1) processing of embedded ribonucleotides. The cleavage initiated by Top1 at the site of a ribonucleotide leads to the formation of a Top1-DNA cleavage complex (Top1cc), occasionally resulting in a DNA double-strand break (DSB). In humans, tyrosyl-DNA phosphodiesterases (TDPs) are essential repair enzymes that resolve the trapped Top1cc followed by downstream repair factors. However, there is limited cellular evidence of the involvement of TDPs in the processing of incorporated ribonucleotides in mammals. We assessed the role of TDPs in mutagenesis induced by a single ribonucleotide embedded into DNA. A supF shuttle vector site-specifically containing a single riboguanosine (rG) was introduced into the human lymphoblastoid TK6 cell line and its TDP1-, TDP2-, and TDP1/TDP2-deficient derivatives. TDP1 and TDP2 insufficiency remarkably decreased the mutant frequency caused by an embedded rG. The ratio of large deletion mutations induced by rG was also substantially lower in TDP1/TDP2-deficient cells than wild-type cells. Furthermore, the disruption of TDPs reduced the length of rG-mediated large deletion mutations. The recovery ratio of the propagated plasmid was also increased in TDP1/TDP2-deficient cells after the transfection of the shuttle vector containing rG. The results suggest that TDPs-mediated ribonucleotide processing cascade leads to unfavorable consequences, whereas in the absence of these repair factors, a more error-free processing pathway might function to suppress the ribonucleotide-induced mutagenesis. Furthermore, base substitution mutations at sites outside the position of rG were detected in the supF gene via a TDPs-independent mechanism. Overall, we provide new insights into the mechanism of mutagenesis induced by an embedded ribonucleotide in mammalian cells, which may lead to the fatal phenotype in the ribonucleotide excision repair deficiency.


Asunto(s)
Mutagénesis/fisiología , Mutágenos , Hidrolasas Diéster Fosfóricas/genética , Ribonucleótidos/genética , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Ribonucleótidos/metabolismo
10.
Bioengineered ; 11(1): 1233-1244, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131413

RESUMEN

Enzymes displaying high activity at low temperatures and good thermostability are attracting attention in many studies. However, improving low-temperature activity along with the thermostability of enzymes remains challenging. In this study, the mutant Mut8S, including eight sites (N61E, K156R, P236E, T243K, D268E, T277D, Q390K, and R409D) mutated from the exo-inulinase InuAGN25, was designed on the basis of increasing the number of salt bridges through comparison between the low-temperature-active InuAGN25 and thermophilic exo-inulinases. The recombinant Mut8S, which was expressed in Escherichia coli, was digested by human rhinovirus 3 C protease to remove the amino acid fusion sequence at N-terminus, producing RfsMut8S. Compared with wild-type RfsMInuAGN25, the mutant RfsMut8S showed (1) lower root mean square deviation values, (2) lower root mean square fluctuation (RMSF) values of residues in six regions of the N and C termini but higher RMSF values in five regions of the catalytic pocket, (3) higher activity at 0-40°C, and (4) better thermostability at 50°C. This study proposes a way to increase low-temperature activity along with a thermostability improvement of exo-inulinase on the basis of increasing the rigidity of the terminus and the flexibility of the catalytic domain. These findings may prove useful in formulating rational designs for increasing the thermal performance of enzymes.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Dominio Catalítico , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósido Hidrolasas/genética , Cinética , Mutagénesis/genética , Mutagénesis/fisiología , Temperatura
11.
Nat Commun ; 11(1): 4046, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792488

RESUMEN

2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG dependent dioxygenase function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc)-the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 associates with the OGDHc and maintains catalytic activity of lipoyl domain by preventing the formation of lipoyl adducts, highlighting ABHD11 as a regulator of functional lipoylation and 2-OG metabolism.


Asunto(s)
Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mitocondrias/metabolismo , Mutagénesis/fisiología , Serina Proteasas/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Células HeLa , Humanos , Complejo Cetoglutarato Deshidrogenasa/genética , Modelos Biológicos , Mutagénesis/genética , Serina Proteasas/genética
12.
Nat Commun ; 11(1): 4132, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807781

RESUMEN

Precise genome editing using CRISPR-Cas9 is a promising therapeutic avenue for genetic diseases, although off-target editing remains a significant safety concern. Guide RNAs shorter than 16 nucleotides in length effectively recruit Cas9 to complementary sites in the genome but do not permit Cas9 nuclease activity. Here we describe CRISPR Guide RNA Assisted Reduction of Damage (CRISPR GUARD) as a method for protecting off-targets sites by co-delivery of short guide RNAs directed against off-target loci by competition with the on-target guide RNA. CRISPR GUARD reduces off-target mutagenesis while retaining on-target editing efficiencies with Cas9 and base editor. However, we discover that short guide RNAs can also support base editing if they contain cytosines within the deaminase activity window. We explore design rules and the universality of this method through in vitro studies and high-throughput screening, revealing CRISPR GUARD as a rapidly implementable strategy to improve the specificity of genome editing for most genomic loci. Finally, we create an online tool for CRISPR GUARD design.


Asunto(s)
Edición Génica/métodos , ARN Guía de Kinetoplastida/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , ARN Guía de Kinetoplastida/genética
13.
Nat Chem Biol ; 16(11): 1246-1254, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32807966

RESUMEN

The diamide insecticide class is one of the top-selling insecticides globally. They are used to control a wide range of pests by targeting their ryanodine receptors (RyRs). Here, we report the highest-resolution cryo-electron microscopy (cryo-EM) structure of RyR1 in the open state, in complex with the anthranilic diamide chlorantraniliprole (CHL). The 3.2-Å local resolution map facilitates unambiguous assignment of the CHL binding site. The molecule induces a conformational change by affecting the S4-S5 linker, triggering channel opening. The binding site is further corroborated by mutagenesis data, which reveal how diamide insecticides are selective to the Lepidoptera group of insects over honeybee or mammalian RyRs. Our data reveal that several pests have developed resistance via two mechanisms, steric hindrance and loss of contact. Our results provide a foundation for the development of highly selective pesticides aimed at overcoming resistance and therapeutic molecules to treat human myopathies.


Asunto(s)
Bloqueadores de los Canales de Calcio/metabolismo , Diamida/química , Insecticidas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ortoaminobenzoatos/metabolismo , Secuencia de Aminoácidos , Animales , Abejas , Sitios de Unión , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Microscopía por Crioelectrón , Desarrollo de Medicamentos , Resistencia a Medicamentos , Insecticidas/química , Insecticidas/farmacología , Lepidópteros , Modelos Moleculares , Mutagénesis/fisiología , Unión Proteica , Conformación Proteica , Transducción de Señal , Especificidad por Sustrato , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
14.
Nat Commun ; 11(1): 3469, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651386

RESUMEN

Insertions and deletions (InDels) are frequently observed in natural protein evolution, yet their potential remains untapped in laboratory evolution. Here we introduce a transposon-based mutagenesis approach (TRIAD) to generate libraries of random variants with short in-frame InDels, and screen TRIAD libraries to evolve a promiscuous arylesterase activity in a phosphotriesterase. The evolution exhibits features that differ from previous point mutagenesis campaigns: while the average activity of TRIAD variants is more compromised, a larger proportion has successfully adapted for the activity. Different functional profiles emerge: (i) both strong and weak trade-off between activities are observed; (ii) trade-off is more severe (20- to 35-fold increased kcat/KM in arylesterase with 60-400-fold decreases in phosphotriesterase activity) and (iii) improvements are present in kcat rather than just in KM, suggesting adaptive solutions. These distinct features make TRIAD an alternative to widely used point mutagenesis, accessing functional innovations and traversing unexplored fitness landscape regions.


Asunto(s)
Mutación INDEL/genética , Evolución Molecular , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Biología Sintética/métodos
15.
Endocrinology ; 161(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569368

RESUMEN

Ovarian-derived inhibin A and inhibin B (heterodimers of common α- and differing ß-subunits) are secreted throughout the menstrual cycle in a discordant pattern, with smaller follicles producing inhibin B, whereas the dominant follicle and corpus luteum produce inhibin A. The classical function for endocrine inhibins is to block signalling by activins (homodimers of ß-subunits) in gonadotrope cells of the anterior pituitary and, thereby, inhibit the synthesis of FSH. Whether inhibin A and inhibin B have additional physiological functions is unknown, primarily because producing sufficient quantities of purified inhibins, in the absence of contaminating activins, for preclinical studies has proven extremely difficult. Here, we describe novel methodology to enhance inhibin A and inhibin B activity and to produce these ligands free of contaminating activins. Using computational modeling and targeted mutagenesis, we identified a point mutation in the activin ß A-subunit, A347H, which completely disrupted activin dimerization and activity. Importantly, this ß A-subunit mutation had minimal effect on inhibin A bioactivity. Mutation of the corresponding residue in the inhibin ß B-subunit, G329E, similarly disrupted activin B synthesis/activity without affecting inhibin B production. Subsequently, we enhanced inhibin A potency by modifying the binding site for its co-receptor, betaglycan. Introducing a point mutation into the α-subunit (S344I) increased inhibin A potency ~12-fold. This study has identified a means to eliminate activin A/B interference during inhibin A/B production, and has facilitated the generation of potent inhibin A and inhibin B agonists for physiological exploration.


Asunto(s)
Inhibinas , Ingeniería de Proteínas/métodos , Femenino , Células HEK293 , Humanos , Inhibinas/genética , Inhibinas/aislamiento & purificación , Inhibinas/metabolismo , Inhibinas/farmacología , Proteínas de la Membrana , Modelos Moleculares , Mutagénesis/fisiología , Ovario/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Subunidades de Proteína/farmacología , Proteínas de Saccharomyces cerevisiae , Transfección
16.
Nat Commun ; 11(1): 1848, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296061

RESUMEN

Genetically encoded Förster Resonance Energy Transfer (FRET)-based biosensors are powerful tools to illuminate spatiotemporal regulation of cell signaling in living cells, but the utility of the red spectrum for biosensing was limited due to a lack of bright and stable red fluorescent proteins. Here, we rationally improve the photophysical characteristics of the coral-derived fluorescent protein TagRFP-T. We show that a new single-residue mutant, super-TagRFP (stagRFP) has nearly twice the molecular brightness of TagRFP-T and negligible photoactivation. stagRFP facilitates significant improvements on multiple green-red biosensors as a FRET acceptor and is an efficient FRET donor that supports red/far-red FRET biosensing. Capitalizing on the ability of stagRFP to couple with multiple FRET partners, we develop a novel multiplex method to examine the confluence of signaling activities from three kinases simultaneously in single living cells, providing evidence for a role of Src family kinases in regulating growth factor induced Akt and ERK activities.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Luminiscentes/química , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína Fluorescente Roja
17.
Biochem J ; 477(5): 937-951, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32039434

RESUMEN

The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase ß (polß). In agreement, polß overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype. However, the structural basis for the misincorporation of dATP opposite Pt-GG is unknown. Here, we report the first structures of a DNA polymerase inaccurately bypassing Pt-GG. We solved two structures of polß misincorporating dATP opposite the 5'-dG of Pt-GG in the presence of Mg2+ or Mn2+. The Mg2+-bound structure exhibits a sub-optimal conformation for catalysis, while the Mn2+-bound structure is in a catalytically more favorable semi-closed conformation. In both structures, dATP does not form a coplanar base pairing with Pt-GG. In the polß active site, the syn-dATP opposite Pt-GG appears to be stabilized by protein templating and pi stacking interactions, which resembles the polß-mediated dATP incorporation opposite an abasic site. Overall, our results suggest that the templating Pt-GG in the polß active site behaves like an abasic site, promoting the insertion of dATP in a non-instructional manner.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , Daño del ADN/fisiología , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Mutagénesis/fisiología , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Cristalografía por Rayos X/métodos , Daño del ADN/efectos de los fármacos , Humanos , Mutagénesis/efectos de los fármacos , Estructura Secundaria de Proteína
18.
J Integr Plant Biol ; 62(2): 165-180, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30697931

RESUMEN

Targeting-induced local lesions in genomes (TILLING) is a powerful reverse-genetics tool that enables high-throughput screening of genomic variations in plants. Although TILLING has been developed for many diploid plants, the technology has been used in very few polyploid species due to their genomic complexity. Here, we established an efficient capillary electrophoresis-based TILLING platform for allotetraploid cultivated tobacco (Nicotiana tabacum L.) using an ethyl methanesulfonate (EMS)-mutagenized population of 1,536 individuals. We optimized the procedures for endonuclease preparation, leaf tissue sampling, DNA extraction, normalization, pooling, PCR amplification, heteroduplex formation, and capillary electrophoresis. In a test screen using seven target genes with eight PCR fragments, we obtained 118 mutants. The mutation density was estimated to be approximately one mutation per 106 kb on average. Phenotypic analyses showed that mutations in two heavy metal transporter genes, HMA2S and HMA4T, led to reduced accumulation of cadmium and zinc, which was confirmed independently using CRISPR/Cas9 to generate knockout mutants. Our results demonstrate that this powerful TILLING platform (available at http://www.croptilling.org) can be used in tobacco to facilitate functional genomics applications.


Asunto(s)
Nicotiana/metabolismo , Sistemas CRISPR-Cas , Cadmio/metabolismo , Electroforesis Capilar , Metanosulfonato de Etilo/metabolismo , Mutagénesis/genética , Mutagénesis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Reacción en Cadena de la Polimerasa , Poliploidía , Nicotiana/genética , Zinc/metabolismo
19.
Interdiscip Sci ; 12(1): 32-43, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31309397

RESUMEN

Ent-copalyl diphosphate synthase controls the biosynthesis of gibberellin plant hormones, which in turn coordinate the expression of numerous enzymes. Some gibberellin-dependent genes encode enzymes coordinating the biosynthesis of tanshinones: diterpene derivatives with broad medical applications. New biotechnological approaches, such as metabolic engineering using naturally occurring or mutated enzymes, have been proposed to meet the growing demand for tanshinones which is currently met by the Chinese medicinal plant Salvia miltiorrhiza Bunge. These mutants may be prepared by directed evolution, saturation mutagenesis or rational enzyme design. In the presented paper, 15,257 non-synonymous variants of Arabidopsis thaliana ent-copalyl diphosphate synthase were obtained using the SNAP2 tool. The obtained forms were screened to isolate variants with potentially improved biological functions. A group of 455 mutants with potentially improved stability was isolated and subjected to further screening on the basis of ligand-substrate affinity, and both secondary structure and active site structure stability. Finally, a group of six single mutants was obtained, which were used to construct double mutants with potentially improved stability and ligand affinity. The potential influence of single mutations on protein stability and ligand affinity was evaluated by double mutant cycle analysis. Finally, the procedure was validated by in silico assessment of the experimentally verified enzyme mutants with reduced enzymatic activity.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Mutagénesis/genética , Mutagénesis/fisiología , Filogenia , Proteínas de Plantas/genética
20.
J Mol Biol ; 432(4): 878-896, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31877322

RESUMEN

Apicomplexan parasites contain rhoptries, which are specialized secretory organelles that coordinate host cell invasion. During the process of invasion, rhoptries secrete their contents to facilitate interaction with, and entry into, the host cell. Here, we report the crystal structure of the rhoptry protein Armadillo Repeats-Only (ARO) from the human malaria parasite, Plasmodium falciparum (PfARO). The structure of PfARO comprises five tandem Armadillo-like (ARM) repeats, with adjacent ARM repeats stacked in a head-to-tail orientation resulting in PfARO adopting an elongated curved shape. Interestingly, the concave face of PfARO contains two distinct patches of highly conserved residues that appear to play an important role in protein-protein interaction. We functionally characterized the P. falciparum homolog of ARO interacting protein (PfAIP) and demonstrate that it localizes to the rhoptries. We show that conditional mislocalization of PfAIP leads to deficient red blood cell invasion. Guided by the structure, we identified mutations of PfARO that lead to mislocalization of PfAIP. Using proximity-based biotinylation we probe into PfAIP interacting proteins.


Asunto(s)
Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Humanos , Malaria/fisiopatología , Datos de Secuencia Molecular , Mutagénesis/genética , Mutagénesis/fisiología , Mutación , Parasitemia/parasitología , Filogenia , Plasmodium falciparum/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA