Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.364
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000573

RESUMEN

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Asunto(s)
Proteínas de Unión al ADN , Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virales , Micobacteriófagos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Lisogenia/genética , Genoma Viral , ADN Viral/genética
2.
Int J Biol Macromol ; 272(Pt 1): 132727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823743

RESUMEN

Due to the uniqueness and essentiality of MEP pathway for the synthesis of crucial metabolites- isoprenoids, hopanoids, menaquinone etc. in mycobacterium, enzymes of this pathway are considered promising anti-tubercular drug targets. In the present study we seek to understand the consequences of downregulation of three of the essential genes- DXS, IspD, and IspF of MEP pathway using CRISPRi approach combined with transcriptomics in Mycobacterium smegmatis. Conditional knock down of either DXS or IspD or IspF gene showed strong bactericidal effect and a profound change in colony morphology. Impaired MEP pathway due to downregulation of these genes increased the susceptibility to frontline anti-tubercular drugs. Further, reduced EtBr accumulation in all the knock down strains in the presence and absence of efflux inhibitor indicated altered cell wall topology. Subsequently, transcriptional analysis validated by qRT-PCR of +154DXS, +128IspD, +104IspF strains showed that modifying the expression of these MEP pathway enzymes affects the regulation of mycobacterial core components. Among the DEGs, expression of small and large ribosomal binding proteins (rpsL, rpsJ, rplN, rplX, rplM, rplS, etc), essential protein translocases (secE, secY and infA, infC), transcriptional regulator (CarD and SigB) and metabolic enzymes (acpP, hydA, ald and fabD) were significantly depleted causing the bactericidal effect. However, mycobacteria survived under these damaging conditions by upregulating mostly the genes needed for the repair of DNA damage (DNA polymerase IV, dinB), synthesis of essential metabolites (serB, LeuA, atpD) and those strengthening the cell wall integrity (otsA, murA, D-alanyl-D-alanine dipeptidase etc.).


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Antituberculosos/farmacología , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Redes y Vías Metabólicas
3.
Microbiol Spectr ; 12(7): e0048724, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38860795

RESUMEN

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The Mycobacterium tuberculosis iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available. In contrast, iron-uptake gene transcription is induced when iron is depleted. The ideR gene is essential in M. tuberculosis and is required for bacterial growth. To further study how iron regulates transcription, wee developed an iron responsive reporter system that relies on an IdeR-regulated promoter to drive Cre and loxP mediated recombination in Mycobacterium smegmatis. Recombination leads to the expression of an antibiotic resistance gene so that mutations that activate the IdeR-regulated promoter can be selected. A transposon library in the background of this reporter system was exposed to media containing iron and hemin, and this resulted in the selection of mutants in the antioxidant mycothiol synthesis pathway. We validated that inactivation of the mycothiol synthesis gene mshA results in increased recombination and increased IdeR-regulated promoter activity in the reporter system. Further, we show that vitamin C, which has been shown to oxidize iron through the Fenton reaction, can decrease promoter activity in the mshA mutant. We conclude that the intracellular redox state balanced by mycothiol can alter IdeR activity in the presence of iron.IMPORTANCEMycobacterium smegmatis is a tractable organism to study mycobacterial gene regulation. We used M. smegmatis to construct a novel recombination-based reporter system that allows for the selection of mutations that deregulate a promoter of interest. Transposon mutagenesis and insertion sequencing (TnSeq) in the recombination reporter strain identified genes that impact iron regulated promoter activity in mycobacteria. We found that the mycothiol synthesis gene mshA is required for IdeR mediated transcriptional regulation by maintaining intracellular redox balance. By affecting the oxidative state of the intracellular environment, mycothiol can modulate iron-dependent transcriptional activity. Taken more broadly, this novel reporter system can be used in combination with transposon mutagenesis to identify genes that are required by Mycobacterium tuberculosis to overcome temporary or local changes in iron availability during infection.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Glicopéptidos , Inositol , Hierro , Mycobacterium smegmatis , Oxidación-Reducción , Hierro/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inositol/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/biosíntesis , Regiones Promotoras Genéticas , Cisteína/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Elementos Transponibles de ADN , Proteínas Represoras
4.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776712

RESUMEN

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Asunto(s)
Nucleótidos de Desoxiguanina , Proteínas de Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Especificidad por Sustrato , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sustitución de Aminoácidos , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/análogos & derivados
5.
Tuberculosis (Edinb) ; 147: 102520, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781657

RESUMEN

Targeted gene deletion in mycobacteria remain complicated, requiring expertise and multiple steps. Here we present a single-step, easy to understand and perform method for targeted gene deletion. Using this method, we successfully deleted several genes in both M. smegmatis and M. abscessus. We believe this method will facilitate molecular research of mycobacteria and make it accessible to a greater number of researchers throughout the world.


Asunto(s)
Eliminación de Gen , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium abscessus/genética , Genes Bacterianos , Humanos , Proteínas Bacterianas/genética
6.
FEBS Lett ; 598(13): 1620-1632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697952

RESUMEN

Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding ßγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.


Asunto(s)
Proteínas Bacterianas , Calcio , Pared Celular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Calcio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Pared Celular/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mutación , Unión Proteica , Ácidos Micólicos/metabolismo
7.
Nat Commun ; 15(1): 4161, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755122

RESUMEN

Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.


Asunto(s)
Proteínas Bacterianas , Biotina , Mycobacterium tuberculosis , Biotina/metabolismo , Biotina/análogos & derivados , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sulfurtransferasas/metabolismo , Sulfurtransferasas/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimología , Escherichia coli/metabolismo , Escherichia coli/genética
8.
Nat Commun ; 15(1): 4065, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744895

RESUMEN

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteolisis , Proteolisis/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Aprendizaje Automático
9.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698289

RESUMEN

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Asunto(s)
Macrófagos , Mycobacterium tuberculosis , Transaminasas , Ratones , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Animales , Células RAW 264.7 , Virulencia , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Transaminasas/metabolismo , Transaminasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mycobacterium smegmatis/patogenicidad , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimología , Citocinas/metabolismo , Receptor Toll-Like 4/metabolismo , Humanos , Inmunidad Innata , Interacciones Huésped-Patógeno/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología
10.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 4): 82-91, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656226

RESUMEN

The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an ∼40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments. Fatty-acid synthesis (FAS) in bacteria proceeds via the type II pathway, which is substantially different from the type I pathway utilized in animals. This makes bacterial fatty-acid biosynthesis (Fab) enzymes appealing as drug targets. FabG is an essential FASII enzyme, and some bacteria, such as Mycobacterium tuberculosis, the causative agent of TB, harbor multiple homologs. FabG4 is a conserved, high-molecular-weight FabG (HMwFabG) that was first identified in M. tuberculosis and is distinct from the canonical low-molecular-weight FabG. Here, structural and functional analyses of Mycolicibacterium smegmatis FabG4, the third HMwFabG studied to date, are reported. Crystal structures of NAD+ and apo MsFabG4, along with kinetic analyses, show that MsFabG4 preferentially binds and uses NADH when reducing CoA substrates. As M. smegmatis is often used as a model organism for M. tuberculosis, these studies may aid the development of drugs to treat TB and add to the growing body of research that distinguish HMwFabGs from the archetypal low-molecular-weight FabG.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Moleculares , Secuencia de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600064

RESUMEN

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano/genética , Operón/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulación Bacteriana de la Expresión Génica
12.
mSphere ; 9(5): e0012224, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38591887

RESUMEN

Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE: Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.


Asunto(s)
Proteínas Bacterianas , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Farmacorresistencia Bacteriana , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Antígenos Bacterianos
13.
J Biol Chem ; 300(5): 107287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636658

RESUMEN

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.


Asunto(s)
Proteínas Bacterianas , AMP Cíclico , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , AMP Cíclico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Viabilidad Microbiana , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Unión Proteica
14.
Curr Opin Microbiol ; 79: 102478, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653035

RESUMEN

Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.


Asunto(s)
Pared Celular , Galactanos , Ácidos Micólicos , Pared Celular/metabolismo , Ácidos Micólicos/metabolismo , Galactanos/metabolismo , Peptidoglicano/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Corynebacterium glutamicum/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/genética , Arabinosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
15.
Microb Pathog ; 191: 106657, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649100

RESUMEN

Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.


Asunto(s)
Biopelículas , Cisteína , Glucosamina , Óxido Nítrico , Staphylococcus aureus , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Staphylococcus aureus/genética , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Nitrito de Sodio/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiología , Mycobacterium smegmatis/metabolismo , Mutación , Humanos , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Compuestos de Sulfhidrilo/metabolismo , Estrés Oxidativo
16.
J Biochem ; 176(1): 43-54, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38444151

RESUMEN

Protection against oxidative stress is a vital defense mechanism for Mycobacterium tuberculosis within the host. However, few transcription factors that control bacterial antioxidant defense are known. Here, we present evidence that SdrR, encoded by the MSMEG_5712 (Ms5712) gene, functions as an oxidative stress response regulator in Mycobacterium smegmatis. SdrR recognizes an 11-bp motif sequence in the operon's upstream regulatory region and negatively regulates the expression of short-chain dehydrogenases/reductases (SDR). Overexpressing sdrR inhibited SDR expression, which rendered the strain oxidative more stress-sensitive. Conversely, sdrR knockout alleviates SDR repression, which increases its oxidative stress tolerance. Thus, SdrR responds to oxidative stress by negatively regulating sdr expression. Therefore, this study elucidated an underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.


Asunto(s)
Antioxidantes , Proteínas Bacterianas , Mycobacterium smegmatis , Estrés Oxidativo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Antioxidantes/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Operón
17.
ACS Sens ; 9(3): 1359-1371, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38449100

RESUMEN

N-Acetyl modification, a chemical modification commonly found on biomacromolecules, plays a crucial role in the regulation of cell activities and is related to a variety of diseases. However, due to the instability of N-acetyl modification, accurate and rapid identification of N-acetyl modification with a low measurement cost is still technically challenging. Here, based on hydroxylamine deacetylation and nanopore single molecule chemistry, a universal sensing strategy for N-acetyl modification has been developed. Acetohydroxamic acid (AHA), which is produced by the hydroxylamine deacetylation reaction and serves as a reporter for N-acetylation identification, is specifically sensed by a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA). With this strategy, N-acetyl modifications on RNA, DNA, proteins, and glycans were identified, demonstrating its generality. Specifically, histones can be treated with hydroxylamine deacetylation, from which the generated AHA can represent the amount of N-acetyl modification detected by a nanopore sensor. The unique event features of AHA also demonstrate the robustness of sensing against other interfering analytes in the environment.


Asunto(s)
Nanoporos , Hidroxilamina/metabolismo , Acetilación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Hidroxilaminas
18.
Sci Rep ; 14(1): 6794, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514663

RESUMEN

Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.


Asunto(s)
Productos Biológicos , Mycobacteriaceae , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , ARN Ribosómico 16S , Antibacterianos/farmacología , Mycobacterium smegmatis/genética , Productos Biológicos/farmacología , Mezclas Complejas , Antituberculosos/farmacología , Antituberculosos/química
19.
Nat Commun ; 15(1): 2191, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467648

RESUMEN

The growth and division of mycobacteria, which include clinically relevant pathogens, deviate from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. The phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM) are cell envelope components critical for host-pathogen interactions, but their physiological functions in mycobacteria remained elusive. In this work, using biosynthetic mutants of these lipoglycans, we examine their roles in maintaining cell envelope integrity in Mycobacterium smegmatis and Mycobacterium tuberculosis. We find that mutants defective in producing mature LAM fail to maintain rod cell shape specifically at the new pole and para-septal regions whereas a mutant that produces a larger LAM becomes multi-septated. Therefore, LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell wall integrity and septal placement.


Asunto(s)
Lipopolisacáridos , Mycobacterium tuberculosis , Mycobacterium smegmatis/genética , Pared Celular , Mycobacterium tuberculosis/genética
20.
J Basic Microbiol ; 64(6): e2400027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548701

RESUMEN

Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.


Asunto(s)
Biopelículas , Genoma Viral , Genómica , Lisogenia , Micobacteriófagos , Mycobacterium smegmatis , Micobacteriófagos/genética , Micobacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Genoma Viral/genética , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...